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Abstract 

Accumulating evidence demonstrates that long non-coding RNAs (lncRNAs) 

play important roles in the development and progression of human complex diseases, 

but predicting novel human lncRNA-disease associations is a challenging and 

urgently needed work, especially at a time when rich and increasing amounts of 

lncRNA-related biological data are available. In this study, we proposed a global 

network-based computational framework, RWRlncD, to infer potential human 

lncRNA-disease associations by implementing random walk with restart on the 

lncRNA functional similarity network. The performance of RWRlncD was evaluated 

by experimentally verified lncRNA-disease associations based on leave-one-out 

cross-validation. We achieved an area under the ROC curve of 0.822, demonstrating 

excellent performance of RWRlncD. Of importance, the performance of RWRlncD is 

robust to different parameter selection. The predicted lncRNA-disease associations 

with high-ranks in case studies about prostate cancer and Alzheimer’s disease were 

manually confirmed by literature mining, providing evidence to show the good 

performance and potential value of the RWRlncD method in predicting 

lncRNA-disease associations. 
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Introduction 

Sequence analysis of the human genome identifies only ~ 20,000 protein-coding 

genes, consisting of less than 2% of the whole genome 
1
. Further studies demonstrate 

that at least 90% of the genome is likely to be transcribed, yielding tens of thousands 

of non coding RNAs (ncRNA) 
2
. ncRNAs can be further divided into two major 

categories based on the transcript length: small ncRNA and long ncRNA. Long 

non-coding RNAs (lncRNAs), which are longer than 200 nucleotides (nt), are 

commonly defined as RNA polymerase Ⅱ (RNAPⅡ) transcripts 
3
.  lncRNAs are 

found to be transcribed within introns of protein-coding genes, in either sense or 

antisense orientation, or within intergenic regions 
4, 5

. 

A large number of lncRNAs have been identified by experimental as well as 

bioinformatics approaches, with many being collected into public biological databases, 

such as lncRNAdb 
6
, LNCipedia 

7
, NONCODE 

8
 and PLncDB 

9
. Although the 

functions of most lncRNAs remain largely unknown, increasing evidence from public 

studies has demonstrated their critical roles in various biological processes through a 

variety of mechanisms such as chromatin remodeling, transcriptional co-activation or 

co-repression, protein inhibition and post-transcriptional modification, or as decoy 

elements 
10
.  Differential lncRNA expression has been observed in various diseases, 

and many disease-associated lncRNAs have been characterized, such as H19, XIST, 

etc., (for details, see an excellent recent review 
11
). Therefore, identifying and 

characterizing novel disease-associated lncRNAs will provide novel insights into the 

molecular mechanisms underlying human complex diseases.  

Computational approaches have been successfully applied to the discovery of 

disease-related protein coding genes or miRNAs in the past decades and considerably 

accelerated the elucidation of molecular underpinnings of human complex diseases. 

Meanwhile, many computational approaches have also been developed to predict 

novel lncRNA genes or their functions by using different biological resources 
12-19

, but 

to date few effective computational applications for identifying novel lncRNA-disease 

associations have been reported, such as LncRNADisease 
20
 and LRLSLDA 

21
. With 
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the availability of rich and increasing amounts of lncRNA-related biological data, 

computational tools for the prediction of disease-related lncRNAs is urgently needed. 

It is well known that functionally related genes are often associated with 

phenotypically similar diseases 
22, 23

. Based on such findings, we developed a method 

to measure the functional similarity of lncRNAs and construct an lncRNA functional 

similarity network. We then proposed a novel computational framework, RWRlncD, 

to infer potential lncRNA-disease associations by random walk with restart on the 

lncRNA functional similarity network. The proposed RWRlncD method exploits a 

global network-based strategy and prioritizes candidate lncRNAs for a disease of 

interest by integrating lncRNA-disease network, disease similarity network and 

lncRNA functional similarity network. The RWRlncD was validated by 

experimentally verified lncRNA-disease associations, which demonstrated excellent 

performance of our method. Furthermore, the predicted lncRNA-disease associations 

with high-ranks in case studies about prostate cancer and Alzheimer’s disease were 

confirmed both manually and by literature mining, providing convincing evidence to 

indicate the good performance and potential value of our proposed RWRlncD method 

for predicting novel lncRNA-disease associations. 

Materials and methods  

The human lncRNA-disease association data 

The human lncRNA-disease association data were retrieved from a manually curated 

lncRNA-disease relations database, lncRNADisease 

(http://cmbi.bjmu.edu.cn/lncrnadisease), which has recorded approximately 600 high 

quality experimentally verified lncRNA-disease associations from ca. 500 

publications 
20
. We further verified the names of lncRNAs and diseases. After 

removing repeating lncRNA-disease entries, we finalized 352 lncRNA-disease 

associations, including 156 lncRNAs and 190 diseases, to construct a lncRNA-disease 

association network (LDAN) (Supplementary material 1). 

Measuring functional similarity between two lncRNAs 

First, we computed the similarity scores between diseases using Wang’s measure 
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in DOSim, which is an R package for calculating the DO-based semantic similarity 

between diseases by DOID in an ontology sense 
24, 25

. Next, we extended the previous 

method for measuring the functional similarity of miRNA genes or protein-coding 

genes to calculate functional similarity scores between lncRNAs 
26, 27

. We supposed 

that lncRNA1 was associated with m diseases and lncRNA2 was associated with n 

diseases. We denoted one disease as d and one disease group as
{ }1 2, , , kD d d d= LL

. 

The functional similarity scores between the two lncRNAs can be computed as 

follows: 

( ) ( )( )

( )
( ) ( )

1

1 2 2 1

1 1

, max ,

, ,

ln 1, ln 2

i
i k

i j

i m j n
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m n
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Where d1i represents disease i associated with lncRNA1 and d2j represents disease j 

associated with lncRNA2. D1 represents a disease group, in which all diseases are 

associated with lncRNA1, and D2 represents another disease group, in which all 

diseases are associated with lncRNA2. SIM(d, D) is the maximum similarity score 

between one disease d and a disease group D, and LncSIM(lncRNA1, lncRNA2) is the 

functional similarity scores of two lncRNAs. 

Random walk with restart for lncRNA-disease association 

The random walks algorithm simulates a random walker that starts on a (or some) 

given seed node and transits from current nodes randomly to neighbors in the network 

based on the probabilities of the edges between two nodes. The random walker can 

also use a given probability to teleport to the start nodes called restart probability 
28, 29

. 

Here, we denote 0P  as the initial probability vector and tP  as a vector in which the 

i-th element holds the probability of finding the random walker at node i at step t. Let 

α  be the restart probability of the random walk in every time step at source nodes 

and W  be the lncRNA-lncRNA functional similarity matrix. The sketch of the 

random walk with restart algorithm can be defined as follows: 

( )1 01t tP WP Pα α+ = − + ⋅  
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Then the probability of random walk will become stable and can be defined as P∞ by 

performing the iteration until the difference between 
tP  and 

1tP+  measured by the 

1L  norm falls below a given cutoff. 

In this study, we proposed a novel computational framework, RWRlncD, to infer 

potential lncRNA-disease associations by random walk with restart on 

lncRNA-lncRNA functional similarity network. The schematic representation of 

RWRlncD method is in Figure 1. For RWRlncD, all the lncRNAs associated with a 

disease of interest were considered as seed lncRNAs, while other lncRNAs that have 

no any known relationship with this given disease were regarded as non-seed 

lncRNAs. These non-seed lncRNAs will be considered as candidate disease-related 

lncRNAs in the analysis. The initial probability 0P  of each seed lncRNA was set as 

1 / n  (n  is the number of seed lncRNAs), while the initial probability of all non-seed 

lncRNAs were set as zero. The stable probability P∞ of each non-seed lncRNA was 

obtained by iterative process when the difference between tP  and 1tP+  is less than 

10
-10

. The stable probability P∞  can be used as a measure of proximity to seed 

lncRNAs. If (ln )P cRNAi∞ > (ln )P cRNAj∞ , lncRNAi will be more proximate to seed 

lncRNAs than lncRNAj in the LFSN. As a result, all candidate lncRNAs can be 

ranked according to the P∞ , and the top ranked lncRNAs can be expected to have a 

high probability to be associated with the disease of interest. 

Results  

Construction and characteristics of lncRNA-disease 

association network 

In our study, there were 352 lncRNA-disease associations between 156 lncRNA 

and 190 diseases. We denoted the lncRNA set as 
{ }1 2, , , nL l l l= LL

 and the disease 

set as
{ }1 2, , , mD d d d= LL

. The lncRNA-disease association network was 
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constructed based on the 352 lncRNA-disease associations and was represented as a 

bipartite LD graph
( ), ,G L D E

, where 
{ }: ,

ij i j
E e l L d D= ∈ ∈

(Figure 2A). In this 

bipartite LD graph, there are two distinct sets of vertices corresponding to either 

lncRNA or disease. Vertices il  and jd
 are linked by an edge in the LDAN if 

lncRNA i  is associated with disease j .  

In order to obtain a global view of the lncRNA-disease association network, we 

analyzed its characteristics (Table 1). The degree of the lncRNA (or disease) node in 

LDAN is the number of diseases (or lncRNA) associated with a given lncRNA (or 

disease). On average, each lncRNA was involved with 2.3 diseases and each disease 

was associated with 1.9 lncRNAs, implying the regulatory complexity of lncRNAs in 

diseases. Examinations of the degree distribution of lncRNAs and diseases in LDAN 

revealed a power-law distribution with R
2 
= ~0.9970 for lncRNAs and R

2 
= ~0.9985 

for diseases (Figure 2B & C), indicating that the LDAN displayed scale-free 

characteristics like many other biological network. 

Construction and characteristics of lncRNA functional 

similarity network (LFSN) 

Based on the reported observations that functionally related genes may be 

associated with diseases of similar pathogeneses 
22, 23

, we applied our method in the 

calculation of the functional similarity scores between any two lncRNAs in LDAN. 

For this, we first mapped 190 diseases to Disease Ontology (DO) and obtained the 

corresponding disease DOID. Then, we used the corresponding disease DOID to 

calculate the DO-based semantic similarity between diseases using DOSIM software. 

After removing the lncRNA-disease association in which a disease could not be 

mapped to DO, we finally obtained the pairwise functional similarity scores of 133 

lncRNAs (Supplementary material 2). These scores are converted into lncRNA 

functional similarity matrix A , where the entity ( ),A i j  in row i  column j  is the 

functional similarity score between lncRNA i and j . Based on the above functional 
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similarity matrix A , we constructed the lncRNA functional similarity network using 

similarity score cutoff β  and found that the number of edges remained relatively 

stable when the score cutoff β  was chosen to be equal or larger than 0.5 (Figure 3A). 

Therefore we used 0.5 as the cutoff β  to construct the lncRNA functional similarity 

network. In LFSN, if the similarity score is equal or larger than 0.5 between two 

lncRNAs, these two lncRNAs will be linked by an edge in the LFSN (Figure 3B). In 

total, we saw 371 lncRNA-lncRNA functional associations between 117 lncRNAs in 

the LFSN and evaluated the degree distribution of the lncRNAs in the LFSN (Figure 

3C). Notably, although approximately 89% lncRNAs were associated with two or 

more of other lncRNAs, a few of them may interact with multiple functionally similar 

lncRNAs.   

Performance evaluation of the proposed method 

In order to further evaluate the performance of our RWRlncD method to infer 

potential lncRNA-disease associations, we performed leave-one-out across validation 

analysis on 198 experimentally verified lncRNA-disease associations between 49 

diseases associated with more than one lncRNA and 117 lncRNAs. For each disease, 

each known lncRNA associated with this given disease was left out as the testing case 

and other known experimentally verified lncRNAs associated with this given disease 

were taken as seed lncRNAs. All the lncRNAs without known associations with this 

given disease were placed in the candidate lncRNAs set. We wanted to test how well 

this testing case might rank relative to all lncRNAs in the candidate lncRNAs set of 

this given disease. If the ranking of the testing case in the ranking list exceeded a 

given threshold, this lncRNA-disease association would be deemed to be successfully 

predicted by the RWRlncD method. For the restart probability α in the RWRlncD 

method, we chose 0.7α =  based on its excellent performance in previous studies 
30, 

31
 . 

The sensitivity and specificity were calculated for each threshold. Sensitivity 

measures the percentage of the testing case whose ranking is higher than a given 
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threshold and specificity measures the percentage of candidate lncRNAs ranked 

below this given threshold. Finally, a receiver operating characteristics (ROC) curve 

was plotted by varying the threshold and then the value of area under curve (AUC) 

was calculated. We used AUC as a standard measure to evaluate performance of the 

RWRlncD method. The maximum value of AUC is 1, which indicates every testing 

case is ranked first in the ranking list and AUC = 0.5 indicates random performance. 

Figure 4 shows the results of performance evaluation of the RWRlncD method using 

the ROC curves obtained by calculating the sensitivity [ ( )sensitivity TP TP FN= +  ] 

and specificity [ ( )specificity TN TN FP= + ] by varying the threshold, where TP is 

true positive, TN is true negative, FN is false negative, FP is false positive, sensitivity 

is the proportion of the testing case ranked higher than a given rank cutoff and 

specificity is the proportion of the testing case ranked lower than a given rank cutoff.   

Our RWRlncD method tested on 198 experimentally verified lncRNA-disease 

associations achieved an AUC of 0.822, demonstrating the excellent performance of 

the RWRlncD method in recovering the known experimentally verified 

lncRNA-disease associations. However, taking into account the fact that the lncRNA 

functional similarity network was constructed relying on known lncRNA-disease 

associations, and each known lncRNA-disease association was used as the testing 

case in the leave-one-out across validation analysis, which may over-estimate the 

performance. Therefore, we re-evaluate the performance of RWRlncD method 

through re-constructing network from lncRNA-disease associations after removing 

this relation. As a result, our method achieved an AUC of 0.808 which is slightly 

decreased. To further determine whether the results of cross validation by the 

RWRlncD method might have been generated by chance, we performed 

randomization tests. The seed lncRNAs were generated randomly from candidate 

lncRNAs for each disease and the AUC value was calculated by performing the 

leave-one-out cross validation as above (Figure 4). The results showed that the AUC 

value under randomization tests (0.483) was much lower than that in the real situation, 

further demonstrating the effective and reliable performance of RWRlncD.  
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Previous studies have suggested that prediction performance would be enhanced 

by making use of the global network similarity information 
28, 32

. So we used all 

pairwise functional similarity scores of 133 lncRNAs to construct a weighted lncRNA 

functional similarity network (WLFSN), in which the edges were assigned different 

functional similarity scores between lncRNAs. We further improved our RWRlncD 

method on WLFSN and performed the leave-one-out cross validation as described 

above; we achieved an AUC of 0.91 when restart probability 0.7α = . 

Effects of parameters in the proposed method 

Our RWRlncD method has two parameters (restart probability α  and score 

cutoff β  to construct LFSN), which impact prediction performance. In order to 

investigate the possible effects of these two parameters on the performance of our 

RWRlncD method, we assigned different values for these two parameters and 

performed the above leave-one-out cross validation analysis using LFSN and WLFSN. 

The AUC values for different combinations of these two parameters were calculated 

and summarized in Table 2 and Table 3. The AUC for different parameters in 

RWRlncD method distributed appropriately from 0.75 ~ 0.90, demonstrating that our 

RWRlncD method could achieve reliable performance for different parameter 

combinations, and the predictive results are robust to score cutoff β  and restart 

probabilityα . 

Comparisons with other existing similar methods 

When our research was in progress, a novel method, Laplacian RegularizedLeast 

Squares for LncRNA-Disease Association (LRLSLDA) was reported to predict 

disease-related lncRNA 
21
. Unlike RWRlncD, LRLSLDA used the lncRNA expression 

information. LRLSLDA obtained an AUC of 0.776 in the leave-one-out cross 

validation on the same known experimentally verified lncRNA-disease associations 

from lncRNADisease database, but is less than an average AUC of 0.866 obtained by 

our RWRlncD method tested on the same datasets for different parameters, suggesting 

that our RWRlncD method can achieve more effective and more reliable performance 
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for predicting novel lncRNA-disease associations. Meantime, some network-based 

computational methods have been developed to predict disease-related protein-coding 

genes. So we used the best outperforming method, ICN
33, 34

, to predict 

lncRNA-disease associations based on lncRNA functional similarity network, and 

performed performance comparison analysis with RWRlncD method based on the 

same dataset. The comparison between ICN and RWRlncD was shown in Figure 4. 

The ICN method achieved an AUC of 0.734, but is less than an average AUC of 0.866 

obtained by RWRlncD tested using leave-one-out procedure on the same datasets.   

Case studies 

To illustrate the application of RWRlncD to infer novel lncRNA-disease 

associations, we presented case studies for prostate cancer and Alzheimer’s disease 

because of their relatively numerous seed lncRNAs. Here, all known lncRNAs 

associated with the disease of interest were taken as seed, and all candidate lncRNAs 

could be ranked by our RWRlncD method according to
P∞ . The comprehensive 

prediction results of potential novel lncRNA-disease associations for the given two 

diseases were summarized in Supplementary material 3. In these global ranking lists, 

we manually checked the top 10 predicted lncRNA-disease associations for a disease 

of interest from the NCBI database. The novel predicted lncRNA-disease associations 

confirmed by literature mining in the top 10 and supporting evidence were shown in 

Table 4. Among the top predicted disease-related lncRNAs, 6 lncRNAs-disease 

associations were validated directly or indirectly by reported biological experiments, 

and almost all of them were ranked high in the predictive lists. These independent 

practical applications and high-ranking evidence further demonstrate the reliable 

performance and potential value of our proposed RWRlncD method for predicting 

novel lncRNA-disease associations. 

Discussion 

The identification of potential disease-related lncRNAs is important for 

understanding their critical roles in the development and progression of human 

complex diseases and as such may provide new ways for biomarker identification and 
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drug design in the diagnosis, treatment and prevention of diseases. In this study, we 

first constructed an lncRNA-disease association network using experimentally 

verified lncRNA-disease associations and found power-law distribution of degree for 

lncRNAs and diseases, demonstrating that the associations between lncRNAs and 

diseases are not random but have biological significance. Also, lncRNA and their 

target diseases tended to densely cluster. Additionally, we observed some unconnected 

components, which reiterated the complexity of associations between lncRNAs and 

diseases. Many lines of evidence have shown that similarity networks between 

biological concepts, such as miRNAs and phenotypes, may be used to predict 

potential functions for novel biological molecules, or to infer potential candidate 

disease-related lncRNAs for guiding further biological experiments 
28, 35, 36

. In this 

study, we improved previous methods to construct an lncRNA-lncRNA functional 

similarity network based on the assumption that functionally related lncRNAs may be 

associated with phenotypically similar diseases. Then we proposed a novel 

computational framework, RWRlncD, to predict novel lncRNA-disease associations 

by integrating lncRNA-disease network, disease similarity network and lncRNA 

functional similarity network. The candidate disease-related lncRNAs for a given 

disease can be prioritized by implementing random walks with restarts on the lncRNA 

functional similarity network, making full use of global network similarity 

information.  

The results of performance evaluation based on leave-one-out cross validation 

revealed a high performance for recovering experimentally verified lncRNA-disease 

associations. The performance of RWRlncD was reliable and stable by assessing the 

effects of different parameters. These results indicate that the RWRlncD method can 

be applied to the prediction of novel lncRNA-disease associations. Previous studies 

have suggested that functionally related genes are associated with diseases of similar 

pathogeneses 
22, 23

, which has been successfully applied to detect the associations 

between protein-coding genes or miRNAs and diseases. Our proposed method added 

the disease phenotype data and adopted global network information by integrating 

disease similarity network, lncRNAs functional network and known lncRNA-disease 
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associations. However, the RWRlncD method is not applicable for lncRNAs, which 

do not have any known associated diseases. Therefore, with the availability of rich 

and increasing amounts of lncRNA-related biological data, different kinds of data 

should be considered and integrated to predict disease-related lncRNAs, such as 

expression profiles, functional characteristics, regulatory patterns between lncRNA 

and microRNAs or between lncRNAs and protein. Meanwhile, the RWRlncD method 

is based on the lncRNA functional similarity network in which lncRNA similarity was 

calculated using known lncRNA-disease associations. The performance of RWRlncD 

will be improved greatly by obtaining more lncRNA-disease association data or 

integrating more bioinformatics data to obtain more accurate functional similarity 

between lncRNAs.   
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Tables 

Table 1.Global characteristics of the lncRNA-disease association network 

No. of lncRNA No. of disease No. of lncRNA-disease 

associations 

Average degree 

of lncRNA 

Average degree 

of disease 

156 190 352 2.3 1.9 

 

Table 2. The effect for different combinations of these two parameters of RWRlncD 

method on LFSN 

α       β  0.1 0.3 0.5 0.7 0.9 

0.1 0.759 0.857 0.813 0.956 0.928 

0.3 0.788 0.874 0.819 0.955 0.926 

0.5 0.773 0.876 0.821 0.954 0.925 

0.7 0.751 0.875 0.822 0.954 0.925 

0.9 0.725 0.873 0.823 0.954 0.925 

 

Table 3. The effect for different restart probability value of the RWRlncD method on 

WLFSN 

α  0.1 0.3 0.5 0.7 0.9 

AUC 0.857 0.897 0.906 0.91 0.911 

 

Table 4. The newly lncRNA-disease associations confirmed by literature mining in the 

top 10 predicted results by RWRlncD 

LncRNA name Ranking References 

Prostate cancer 

MIR31HG 2 
37
 

PINC 2 
38
 

HOTAIR 3 
39
 

DNM3OS 6 
40
 

Alzheimer’s disease 
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TUG1 1 
41
 

PINK1-AS 2 
42
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Figures 

Figure 1. The schematic representation and overview of the RWRlncD method. 

The procedures of RWRlncD can be divided into three steps: calculating the 

functional similarity scores between lncRNAs based on lncRNA-disease associations; 

constructing the lncRNA functional similarity network; and predicting the potential 

lncRNA-disease associations by random walks with restarts on the lncRNA functional 

similarity network 

Figure 2. Construction and characteristics of lncRNA-disease association 

network. (A) lncRNA-disease association network (LDAN), generated by using 352 

experimentally verified associations between lncRNA and disease. (B) Degree 

distribution for lncRNAs in the LDAN. (C) Degree distribution of disease in the 

LDAN. 

Figure 3. Construction and characteristics of lncRNA functional similarity 

network. (A) Cumulative distribution of the edges between lncRNAs using various 

similarity cutoffs. (B) lncRNA functional similarity network (LFSN). Each node 

represents one lncRNA and the edge between two nodes indicate the functional 

similarity score of the two lncRNAs is equal or greater than the score cutoff (here the 

cutoff is 0.5). (C) Degree distribution for lncRNA in the LFSN. 

Figure 4. ROC curves and AUC values of RWRlncD on LFSN and WLFSN. The 

ROC curves were plotted and AUC values were calculated by leave-one-out cross 

validation on 352 experimentally verified lncRNA-disease associations using 

RWRlncD on LFSN and WLFSN. 
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Figure 1. The schematic representation and overview of the RWRlncD method. The procedures of RWRlncD 
can be divided into three steps: calculating the functional similarity scores between lncRNAs based on 
lncRNA-disease associations; constructing the lncRNA functional similarity network; and predicting the 

potential lncRNA-disease associations by random walks with restarts on the lncRNA functional similarity 
network  
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Figure 2. Construction and characteristics of lncRNA-disease association network. (A) lncRNA-disease 
association network (LDAN), generated by using 352 experimentally verified associations between lncRNA 
and disease. (B) Degree distribution for lncRNAs in the LDAN. (C) Degree distribution of disease in the 

LDAN.  
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Figure 3. Construction and characteristics of lncRNA functional similarity network. (A) Cumulative 
distribution of the edges between lncRNAs using various similarity cutoffs. (B) lncRNA functional similarity 
network (LFSN). Each node represents one lncRNA and the edge between two nodes indicate the functional 

similarity score of the two lncRNAs is equal or greater than the score cutoff (here the cutoff is 0.5). (C) 
Degree distribution for lncRNA in the LFSN.  
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Figure 4. ROC curves and AUC values of RWRlncD on LFSN and WLFSN. The ROC curves were plotted and 
AUC values were calculated by leave-one-out cross validation on 352 experimentally verified lncRNA-disease 

associations using RWRlncD on LFSN and WLFSN.  
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