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Abstract 
 
Chemogenomics focuses on the interactions between biologically active molecules and protein targets for drug 

discovery. Carbohydrates are the most abundant compounds in natural products. Comparing with other drugs, the 

carbohydrate drugs show weaker side effects. Searching for multi-target carbohydrate drugs can be regarded as a 

solution to improve therapeutic efficacy and safety. In this work, we collected 60344 carbohydrates from the 

Universal Natural Products Database (UNPD) and explored the chemical space of carbohydrates by principal 

component analysis. We found that there is a large quantity of potential lead compounds among carbohydrates. 

Then we explored the potential of carbohydrates in drug discovery by using a network-based multi-target 

computational approach. All carbohydrates were docked to 2389 target proteins. The most potential carbohydrates 

for drug discovery and their indications were predicted based on a docking score-weighted prediction model. We 

also explored the interactions between carbohydrates and target proteins to find the pathological networks, 

potential drug candidates and new indications. 

 
Introduction 
Chemogenomics is used to predict interactions between biologically active molecules and protein targets1, 2. Based 

on the assumption that similar ligands bind similar receptors2, knowledge on the protein-ligand interactions can be 

used to identify novel ligands for a given target or a novel target for a given ligand. 

Carbohydrates are the most abundant compounds in natural products. They are mainly distributed in the surface 

of cell and involved in many important biological recognition processes such as cell-cell communication, bacterial 

adhesion, viral infection and masking of immunological epitopes3-5. Although carbohydrates play important roles 

in a lot of recognition processes, there are relatively few carbohydrates or carbohydrate-derived drugs in the area 

of therapeutics. One main reason is that their inherent drawbacks of poor pharmacokinetic properties6. Due to their 

high polarity, it is difficult to cross the enterocyte layer in the small intestine, which is a prerequisite for oral 

availability. 

Though their inherent drawbacks, carbohydrates are still offering exciting new therapeutic opportunities. For 

example, carbohydrates have strong target specificity owing to the important role in cellular recognition processes. 

It means that carbohydrates can help drugs arrive the target accurately and act properly7. Moreover, carbohydrates 

or carbohydrate-derived small molecules can be effective drugs by modify their structures to make them more 

“drug-like”8. With the development of this new class of small-molecule drugs, which are called glycomimetics9, 

these compounds can mimic the bioactive function of carbohydrates by improving the poor pharmacokinetic 

properties. In addition, a few FDA-approved drugs contain carbohydrate moieties as part of their structures. And 

generally, removal of the sugar eliminates the therapeutic effect of the drug7. Also due to the active site of 

interaction between carbohydrate and target is almost on the surface of the cell, comparing with other drugs, the 

carbohydrate drugs have weaker side effects. 

Over the past decades, the investment by the global pharmaceutical industries on drug research and development 

has increased heavily, but the number of new drugs approved has significantly declined10. The main reason can be 

attributed to the side effects or toxicity of the candidate drug compounds observed in clinical trials11, 12. In recent 
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years, more and more evidences have shown that many drugs can exert their activities by modulating 

multi-targets13, 14. Inappropriate modulation could induce strong side effects15, 16. Therefore, searching for 

multi-target drugs can be regarded as one of the solutions to improve therapeutic efficacy and safety.  

However, the rational design and searching of multi-target drugs is still a considerable challenge for 

pharmaceutical industry. These mainly attribute to the new methods which need to consider target combinations 

and to identify important lead compounds. The combinational effect could be larger than the sum of individual 

effects. But the number of possible combinations can increase exponentially, which makes it very limiting and 

expensive to validate by experimental approach17. In this condition, computational methods that can deal with lots 

of data provide a more promising and desirable strategy18. With the help of powerful computer we can predict a 

large number of new drug-target interactions by constructing drug-target networks to explore the mechanism 

behind the combinations at the molecular level. 

These recent developments of computational methods resulted in network pharmacology, which was a novel 

paradigm with potential to provide more global comprehension of drug action, including drug resistance and side 

effects in the context of biological networks and pathways19, 20. The network-based representation and analysis 

seemed very valid in complex diseases, as it can provide new therapeutic views for drug repositioning21. It can also 

be used to design drugs based on network targeting22.  

Recently, lots of studies have been performed to analyze multi-target drug discovery by network-based 

methods22-27. For example, Li et al. used a biological network-based multi-target computational estimation scheme 

to evaluate the anticoagulant activity of a series of argatroban intermediates28. Others revealed the interactions 

between proteins and ligands, or predicted the potential drug candidate compounds and targets29, 30. 

We hereby explored the interactions between carbohydrates and target proteins to find the pathological network, 

potential drug candidates and new indications. The carbohydrates here included all kinds of sugars, the compounds 

which contained carbohydrate moieties as part of their structures, glycomimetic and carbohydrate-like compounds 

whose hydroxyl was substituted by other group.   

In 2002, our lab established a 3D structure database of components from Chinese traditional medicinal herbs31. 

And recently we constructed the Universal Natural Products Database (UNPD) which contained 208213 natural 

products from plants, animals and microorganisms32. Here, based on the largest non-commercial and freely 

available database, we collected 60344 carbohydrates through searching the fragments of carbohydrate from 

UNPD. We also explored the potential of carbohydrates in drug discovery by using a network-based multi-target 

computational approach. These attempts may offer new opportunities to understand the pharmacological properties 

of carbohydrate compounds and provide benefit for drug discovery from carbohydrates for treating complex 

diseases. 
 
Methods 
1. Collection of Carbohydrates and Approved Drugs 

The carbohydrates were collected from UNPD through searching the fragments of carbohydrate. Carbohydrate can 

exist in either a straight-chain or ring form. Moreover, the ring form sugars such as glucose and ribose play 

important roles in cellular recognition processes and most of the FDA-approved carbohydrate-based drug are 

derived from pentose and hexose33. Therefore, most of the fragments we chose are the ring form pentose, hexose 

and heptose or their analogs. Then, we removed the duplicates. We also collected the straight-line chain 

carbohydrate by structure similarity searching and set the tanimoto coefficient to 0.5. The number of carbohydrates 

and the fragments were listed in File S1 (ESI‡). We used the absolute configuration for each compound and 

deleted the salts or adducts. Finally, we found 60344 carbohydrates in total. All of the structures of carbohydrates 

were minimized in MMFF94 force field. The structures of FDA-approved drugs were downloaded from 
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DrugBank34. 

2. Calculation of Molecular Descriptors of Carbohydrates 

The carbohydrates and FDA-approved drugs were screened by “rule of five”35. And there were 11751 out of 60344 

compounds which obeyed the “rule of five”. For carbohydrates and FDA-approved drugs, we calculated AlogP, 

molecular weight (MW), Number of hydrogen bond donors (NHBD), number of hydrogen bond acceptors 

(NHBA), number of rotatable bonds (NRB), molecular volume (MV) and molecular surface area (MSA) in 

Discovery Studio (Fig. 1 and Table 1).  

 

 

Fig. 1 Distribution of four molecular descriptors of carbohydrates and approved drugs. 

 

Table 1. Statistics of molecular descriptors of carbohydrates and FDA-approved drugs. 

Descriptors Carbohydrates Approved drugs 

 Mean Median Min Max Mean Median Min Max 

AlogP 0.498±3.212 0.374 -26.173 34.758 1.899±2.814 2.164 -12.843 14.242 

MW 682.8±324.8 610.5 58.1 3760.7 360.8±199.1 322.1 6.9 1639.9 

NRB 9.7±7.5 9 0 102 5.5±4.9 4 0 44 

NHBA 14.3±7.9 12 1 104 5.2±4.2 4 0 51 

NHDA 7.1±4.9 6 0 57 2.3±2.6 2 0 23 

MV 449.2±212.4 393.4 39.8 2076.5 238.0±128.1 217.8 6.8 1053.3 

MSA 647.3±304.4 570.3 71.4 3242.1 347.7±186.4 312.5 16.6 1586.9 
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3. Chemical Space Analysis 

Principal component analysis was employed in library analysis module of Discovery Studio to compare the 

structural diversity between carbohydrates and drugs. The variance of the data called first principal component was 

maximized on the first coordinate. The rest of it on the second coordinate, and so on. We built the principal 

component analysis model with the above seven descriptors. The variances of PC1, PC2 and PC3 for 

carbohydrates and drugs in Fig. 2 were 0.486, 0.236, and 0.132, respectively. 

 
Fig. 2 The distribution in chemical space according to principal component analysis of carbohydrates and 

FDA-approved drugs. The red dots and green triangles represent carbohydrates and FDA-approved drugs, 

respectively. 

4. Construction of Drug-Target Network Based on Docking Data 

We used the crystal or NMR structures of 2389 target proteins in RCSB Protein Data Bank to screen potential lead 

compounds. All of the downloaded structures were protein-ligand complexes, which were target proteins of 

approved drugs in DrugBank or other human proteins. The hetero atoms were removed and the hydrogen atoms 

were added in Discovery Studio. The original ligands of complex structures were used to define the active site and 

as reference compounds to compare the affinity of carbohydrates to targets accordingly. The docking was 

performed by autodock4.0136 in DOVIS 2.037, and parameters were listed in File S1 (ESI‡). The binding site was 

defined as a 40×40×40 Å cube centered on the space which the original ligand occupied with a spacing of 0.375 Å. 

In order to improve the accuracy of predicted results and make data processing convenient, we selected the 

molecules that the docking score was higher than 9 and higher than that of the original ligand of complex structure 

to construct the drug-target network. The drug-target network based on docking result was constructed in 
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Cytoscape38. Also, we used the network analysis plugin to calculate the network properties and node centralities. 

To find the potential lead-like and drug-like molecules, here we constructed two drug-target networks: one was 

based on the docking data of carbohydrate molecules which obeyed the “rule of five” and the other was based on 

the docking data of all carbohydrates. 
Results and Discussion 
1. Statistics of Molecular Descriptors of Carbohydrates and FDA-approved Drugs 

Seven important molecular descriptors of carbohydrates in UNPD and FDA-approved drugs in DrugBank were 

listed in Table 1. Obviously, except for AlogP, the statistical means and standard deviations of other descriptors of 

carbohydrates were larger than those of FDA-approved drugs, so the more diverse chemical structures of natural 

products would provide more polypharmacology through interacting with multiple target proteins39. 

Lipinski’s “rule of five”35 was derived from statistic data of oral drugs and was often used in virtual screening 

from large compound libraries. The content of it was in general, an orally active drug has no more than one 

violation of the following criteria: not more than 5 hydrogen bond donors, not more than 10 hydrogen 

bond acceptors, molecular mass less than 500 Daltons and octanol-water partition coefficient log P not greater than 

5. 

We checked the satisfied condition for “rule of five” of carbohydrates and found that only 11751 (19.5%) out of 

60344 obeyed the rules while 1065 drugs (77.2%) out of 1380 obeyed the rules. The big difference was owing to 

the structural features of carbohydrate: polyhydroxy meant that it was very soluble in water and difficult to be 

satisfied with the first three rules. 

We compared carbohydrate molecules with FDA-approved drugs in properties of “rule of five” in Fig. 1. The 

histograms of the distribution of each descriptor showed that as for the molecular weight, only less than 50% 

molecules was in the range between 0 to 500, also the distribution of NHBA and NHBD of most carbohydrate 

were not in the range of “rule of five”. The log P was an exception, most values of the log P in carbohydrate were 

between -5 and 5, which was similar to that of drugs. Due to the large difference of distribution in MW, NHBA 

and NHBD between carbohydrates and drugs, we chose the molecules which obeyed the “rule of five” to explore 

their network pharmacology.  

2. Distribution of Drug-like Chemical Space 

The drug-like chemical space is important for drug discovery40-42. To get a better understanding of carbohydrates 

and FDA-approved drugs, we used principal component analysis to give visual illustration in chemical space. The 

3D plot in Fig. 2 provided the distribution information clearly. It showed that carbohydrates had vast diversity. 

From Fig. 2 we also can see that there were obvious overlaps between the two molecular datasets in chemical 

space, which indicated that the carbohydrates contained lots of drug-like compounds. And some carbohydrate 

compounds may have desired drug-like properties. 

3. Network Pharmacology Based on All Carbohydrates 

Network pharmacology was proposed by Hopkins in 200743 and it could use network analysis methods to explore 

the interaction of molecules in biological networks. It can help us understand the interaction mechanism and 

predict the drug efficacy44. It is thought to be an important and potential method to find and develop multi-target 

drugs in drug discovery45. 

  By using Autodock4 all carbohydrates were docked to 2389 targets and screened according to docking score. 

Then we constructed the drug-target network (Fig. 3). The network showed that most carbohydrate molecules 

targeted at one or two target proteins. In a network, an “edge” was an association, interaction, or any other 

well-defined relationship. The degree of a node was the number of edges connected to it. The betweenness 

centrality of a node was a measure of a node's importance in a network. It was equal to the number of shortest 

paths from all vertices to all others that pass through that node. Degree and betweenness centrality were two 
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important parameters to assess the node in the network. For example, the nodes with high betweenness centrality 

can be regarded as key nodes of a network. These network parameters also can be used to measure directly the 

importance of proteins or molecules. 

  There were several carbohydrates which have many targets, such as UNPD2675 (179 targets), UNPD119313 

(136 targets), UNPD95242 (125 targets) and UNPD52311 (103 targets). UNPD2675 (seldomycin factor 5) was 

one of the most active aminoglycoside antibiotics isolated from fermentation broth of Streptomyces hofunensis by 

using of a cationic exchange resin46. UNPD119313 was also an aminoglycoside antibiotic. 

 
Fig. 3 Drug-target network of carbohydrates and their computational targets. Red circles and cyan triangles 

correspond to target proteins and carbohydrates, respectively. 

  The drug-target network contained 2386 nodes and 9931 edges, in which cyan nodes represented potential drug 

compounds and red notes represented potential targets (Fig. 3.). Table 2 listed the degree and betweenness of the 

candidate compounds. The degree of nodes provided an opportunity for us to find highly connected molecules or 

proteins which may play important roles in the drug-target interaction network. 

Table 2 Chemical information and network parameters of carbohydrates. 

UNPD ID Name CAS NO. Degree Betweenness 
UNPD2675 Seldomycin 5 56276-26-7 179 0.07112299 
UNPD119313 N/A N/A 136 0.03954833 
UNPD95242 Mutamicin 5 55750-88-4 125 0.02347492 
UNPD52311 Gentamicin V-2 60352-78-5 103 0.01177308 
UNPD41602 Seldomycin 2 54333-78-7 89 0.01822394 
UNPD65790 Fortimicin E 71772-09-3 84 0.01757209 
UNPD174494 Mutamicin 2 54830-48-7 80 0.00606319 
UNPD70326 Mutamicin 1b 54830-51-2 72 0.01369594 
UNPD59628 Sannamycin J 83997-42-6 60 0.00500115 
UNPD123829 Neomycin C 66-86-4 50 0.0021831 
UNPD6619 Fortimicin AN 74918-34-6 40 0.00152173 
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4. Network Pharmacology Based on the Carbohydrates Which Obey the “Rule of Five” 

The above drug-target network provided the information of all carbohydrates and predicted several compounds 

which may be good candidates of lead-like carbohydrates in drug discovery. Due to the high polarity of 

carbohydrates, the drug-like candidates were screened by the “rule of five”. We used the molecules which obeyed 

the “rule of five” to construct a new drug-target network and expected to find more drug-like candidates. The 

drug-target network and candidates were shown in Fig. 4 and Table 3. 

 

 

Fig. 4 Drug-target network of carbohydrates which obey the rule of five and their computational targets. 

Representations of the symbols are the same with Fig. 3. 

 
  The network (Fig. 4) contained 339 nodes and 1011 edges. The centralization and heterogeneity analysis 

showed the network centralization and heterogeneity are 0.197 and 1.871, respectively, indicating that a few nodes 

were more central than the others in this network, i.e., the drug–target space was biased toward certain compounds 

and proteins. Such as UNPD141357, UNPD179573 and UNPD78875, degree of which was 72, 67 and 66, 

respectively. High degree meant that these compounds can interact with more targets. The degree and betweenness 

of candidates were listed in Table 3. 
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Table 3. Chemical information and network parameters of carbohydrates. 

UNPD ID Name CAS NO. Degree Betweenness 
UNPD141357 Antibiotic KA 6606 XIV 81749-22-6 72 0.15561437 
UNPD179573 Sporaricin B 68743-78-2 67 0.11885893 
UNPD78875 Antibiotic KA 6606 V 75829-53-7 66 0.16812401 
UNPD190270 Antibiotic KA 6606 XVIII 88595-56-6 65 0.11339506 
UNPD59628 Sannamycin J 83997-42-6 60 0.08723644 
UNPD27668 Antibiotic KA 6606 VIII 81768-56-1 59 0.11335026 
UNPD166516 Antibiotic KA 6606 XIX 88643-89-4 50 0.08333396 
UNPD191985 Antibiotic KA 6606 XIII 81749-23-7 46 0.06427514 
UNPD77950 Sannamyicin C 73522-71-1 46 0.04051971 
UNPD155286 Istamycin A0 72503-80-1 44 0.06905324 
UNPD143900 Istamycin C0 83860-42-8 37 0.03515297 
UNPD27844 Istamycin B0 82443-85-4 32 0.02465623 
UNPD83155 Istamycin B 72523-63-8 28 0.01281024 
UNPD14597 Sannamycin A 72503-79-8 27 0.02075767 
UNPD56972 Calystegine N1 NOT AVAILABLE 17 0.05119082 
UNPD115521 Sporaricin A 68743-79-3 16 0.00172078 
 
5. Predicted Diseases for Carbohydrates 

Carbohydrate drugs have been used to treat some diseases for many years, such as diabetes, influenza virus 

infections, thrombosis, Gaucher’s disease and osteoarthritis6. There were a few FDA-approved drugs derived from 

carbohydrates. Here we predicted the potential carbohydrates based on above networks which could be good lead 

candidates for diseases. Generally, the compounds could interact with several target proteins which would relate to 

a few diseases. We constructed a docking score-weighted prediction network model to predict the relationship 

between the carbohydrates and some diseases in Fig. 5. T is the set of targets related to a disease. The prediction 

coefficient for each carbohydrate was listed in Table 4 and File S1 (ESI‡). 

 Prediction coefficient =  

Page 8 of 12Molecular BioSystems

M
o

le
cu

la
r 

B
io

S
ys

te
m

s 
A

cc
ep

te
d

 M
an

u
sc

ri
p

t



 
Fig. 5 Potential compound-potential disease network. Red circles and cyan triangles correspond to diseases and 

carbohydrates, respectively. 

Table 4 indicated that most of the predicted compounds can interact with the target proteins of asthma and 

rheumatoid arthritis. UNPD2675 had a high prediction coefficient and it maybe a good lead candidate for Type II 

diabetes mellitus. UNPD2675 and UNPD137471 would have large possibility as drugs for asthma and Type II 

diabetes mellitus. The top rank carbohydrates which had high prediction coefficient for diseases were shown in 

Table 4 and Fig. 6. 

Table 4. Prediction coefficient of carbohydrates for diseases. 

Carbohydrates Prediction coefficient Diseases 
UNPD2675 48.5 Type II diabetes mellitus 
UNPD2675 45.77 Asthma 
UNPD137471 42.85 Asthma 
UNPD190270 39.71 Asthma 
UNPD250 38.73 Asthma 
UNPD56182 34.05 Rheumatoid arthritis, unspecified 
UNPD95242 33.85 Asthma 
UNPD17936 33.81 Rheumatoid arthritis, unspecified 
UNPD209061 33.54 Asthma 
UNPD53084 33.45 Asthma 
UNPD52311 33.44 Rheumatoid arthritis, unspecified 
UNPD25089 33.39 Asthma 
UNPD95242 33.02 Type II diabetes mellitus 
UNPD209061 25.03 Chronic lymphocytic leukemia 
UNPD52311 23.02 Multiple sclerosis 
UNPD56182 22.98 Multiple sclerosis 
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Fig. 6 Potential compound-potential disease network: Multiple sclerosis, Diabetes mellitus, Asthma, Rheumatoid 

arthritis and Chronic lymphocytic leukemia. Representations of the symbols were the same to Fig. 5. 

 
Conclusions 
In summary, we have constructed the network of interactions between carbohydrates and target proteins. We have 

constructed the network of carbohydrates which obeyed the “rule of five” and related disease targets. We found 

some potential carbohydrate candidate molecules and some new interactions between the molecules and proteins. 

Furthermore, the networks revealed that carbohydrates can be used to be potential lead candidates for multi-target 

therapies. Moreover, the network indicated that carbohydrates had potential therapeutic effects against complex 

diseases, such as asthma, rheumatoid arthritis and Type II diabetes mellitus. Our results provided new insights to 

understand the pharmacological properties of carbohydrate compounds and were beneficial for drug discovery for 

treating complex diseases. 
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