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Abstract  2 

The objectives of the present study were to (1) examine the effects of the phenotypic factors 3 

age, gender and BMI on the lipidomic profile and (2) investigate the relationship between the 4 

lipidome, inflammatory markers and insulin resistance. 5 

Specific ceramide, phosphatidylcholine and phosphatidylethanolamine lipids were increased 6 

in females relative to males and specific lysophosphatidylcholine, 7 

lysophosphatidylethanolamine , phosphatidylcholine and phosphatidylethanolamine lipids  8 

decreased as BMI increased. However, age had a minimal effect on the lipid profile with 9 

significant differences found in only two lipid species. Network analysis revealed strong 10 

negative correlations between the inflammatory markers CRP, TNF-α, resistin and MCP-1 11 

and lipids in the LPC, PC and PE classes, whereas IL-8 formed positive correlations with 12 

lipids from the CER and SM classes. Further analysis revealed that LPC a C18:1 and PE ae 13 

C40:6 were highly associated with insulin resistance as indicated by HOMA-IR score. 14 

The present study identified lipids that are affected by BMI and gender and identified a series 15 

of lipids which had significant relationships with inflammatory markers. LPC a C18:1 and PE 16 

ae C40:6 were found to be highly associated with insulin resistance pointing to the possibility 17 

that the alterations in these specific lipids may play a role in the development of insulin 18 

resistance.  19 

Keywords: lipidomics/ inflammatory markers/ insulin resistance/ BMI/ gender  20 

  21 
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Introduction 22 

Lipidomics is the systematic identification of the lipid species of a cell, tissue, biofluid or 23 

whole organism 
1
. Lipids have diverse biological functions such as cellular architecture, 24 

energy storage and cell signaling 
2
 and deregulated lipid metabolism has been implicated in 25 

many diseases such as alzheimers disease 
3
, schizophrenia 

4
, multiple sclerosis 

5
 and diabetes 26 

6
. The lipid composition of human plasma has been extensively characterised and revealed 27 

over 500 different lipid molecular species
7
. This structural diversity is mirrored by the 28 

enormous variation in lipid physiological function 
8
 and highlights the potential for biomarker 29 

discovery and biological insight to be gained from analysis of the plasma lipidome. As an 30 

example of this, specific plasma triglycerides implicated in insulin resistance improve 31 

diabetes risk prediction 
9
 and plasma levels of specific lysophospholipids have been proposed 32 

as diagnostic and prognostic markers of ovarian cancer 
10

.   33 

In addition to its application in biomedical research, plasma lipidomics holds enormous 34 

potential for nutritional research 
11, 12

. The health risks associated with an adverse plasma 35 

lipid and lipoprotein profile such as elevated TAGs and low levels of HDL-c and the impact 36 

of diet on these parameters are well established 
8, 13-16

.  Detailed analysis of the lipid 37 

composition of plasma can provide increased insight into the interaction between diet and 38 

metabolism and their contribution to health and disease. For example, lipidomic analysis of 39 

plasma or serum has been applied to investigate the effects of a wholegrain, fish and bilberry 40 

enriched diet
17

, dietary carbohydrate composition
18

, fatty fish intake
19

, fish oil 41 

supplementation 
20

 coffee consumption 
21

, plant sterol intake 
22

 and probiotic supplementation 42 

23
.  43 

In order to develop lipidomic analysis for biomarker discovery and as a means to understand 44 

the mechanistic basis of disease and nutritional effects, it is important to understand basic 45 
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physiological variation in the lipidome. Multiple studies have demonstrated that genetic 46 

variation affects the plasma and serum lipidome composition 
24

. Obesity affects the plasma 47 

lipidome with changes primarily seen in TAGs, lysophosphatidylcholines and ether 48 

phospholipids, however results have varied thus the impact of BMI needs further 49 

characterisation  
25-29

 Other studies have shown age and gender dependent effects on the 50 

lipidome 
29-32

, however further characterisation in varied populations is needed  51 

Although it is well accepted that obesity is associated with the development of insulin 52 

resistance and Type 2 Diabetes (T2DM) the precise mechanism involved is unclear. 53 

However, extensive evidence exists to suggest that dyslipidemia and inflammation play a role 54 

33-35
. With the advancement in our ability to profile lipid classes in recent years it is has 55 

become apparent that dyslipidemia in obesity extends beyond free fatty acids and indeed a 56 

number of lipid species have been proposed as mediators of insulin resistance
9, 36

. 57 

Notwithstanding this, the relationship between the lipidome and inflammatory markers in the 58 

context of insulin resistance has not been studied in detail. The objectives of the present study 59 

were to (1) examine the effects of the phenotypic factors on the lipidomic profile and (2) 60 

investigate the relationship between the lipidome, inflammatory markers and insulin 61 

resistance. 62 
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Results 63 

Characteristics of the subjects 64 

The phenotypic characteristics of 19 males and 20 females aged from 18 to 60 with an 65 

average age of 34 who participated in the study are presented in Table I. Only the percentage 66 

body fat and HDL-c levels were significantly different between gender groups. 67 

Gender and BMI significantly impact the lipidome 68 

The lipids used in the analysis represented the following classes: 6 lysophosphatidylcholines 69 

(LPC), 7 lysophosphatidylethanolamines (LPE), 48 phosphatidylethanolamines (PE), 27 70 

phosphatidylserines (PS), 40 phosphatidylcholines (PC), 26 sphingomyelins (SM), 58 71 

ceramides (CER) and 3 phosphatidylglcerols (PG).  72 

A total of 19 lipids varied due to gender (Table II), the majority of which were from the CER 73 

and PC lipid classes. All plasma gender specific lipids were elevated in females relative to 74 

males with the exception of a 2-hydroxyacyl-dihydroceramide lipid (N-C23:0-Cer(2H)). To 75 

examine gender effects further, differences in the double bond content between genders was 76 

calculated. Analysis revealed a significant difference in the total amount of lipid analytes 77 

with two double bonds (male; 530.32 ± 151.52 µM, female; 645.40 ± 99.70 µM, p=0.009). 78 

Further examination of double bond content according to lipid class revealed a significant 79 

difference in the total amount of PC lipids with two double bonds (male; 451.09 ± 135.28 80 

µM, female; 557.29 ± 88.14 µM, p=0.008) and three double bonds (male; 113.26 ± 37.96 81 

µM, female;145.72 ± 32.07 µM, p=0.010) and PE lipids with two double bonds (male; 4.68 ± 82 

2.23 µM, female; 6.65 ± 2.18 µM, p=0.013) and three double bonds (male; 2.57 ± 1.04, 83 

female; 3.52 ± 1.21 µM, p=0.020). Supplementary Figure 1 depicts the mean male/female 84 
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ratio of individual lipid analytes from (a) the PC and (b) the PE lipid class organised along 85 

the x-axis to highlight the differences in acyl chain double bond content according to gender.  86 

A total of 47 lipids were found to be influenced by BMI (Table III); these lipids decreased in 87 

concentration as BMI increased. The main lipid classes found to vary with BMI were the 88 

LPC, LPE, PC and PE classes where 100%, 71%, 50% and 23% of the total lipids in these 89 

classes respectively displayed a significant relationship with BMI. Age had a minimal effect 90 

on the lipid profile in the present cohort with significant differences found in only two lipids 91 

(PS aa C42:4; p=0.016, q= 0.242, LPE a C16:0, p=0.021 q = 0.146). 92 

The relationship between the lipidome, inflammatory markers and insulin resistance 93 

Regularised CCA (rCCA) was employed to investigate the relationship between the lipidome 94 

and various biochemical/inflammatory parameters; an overview of the results are presented in 95 

Supplementary Figure 2. Strong positive and negative relationships with lipids were observed 96 

for both leptin and TNF-α. The network graph (Figure 1) depicts associations between 97 

variables with a similarity score higher than 0.3 and allows more detailed interpretation of the 98 

trends noted in Supplementary Figure 2 The similarity score of each lipid-inflammatory 99 

parameter association is reported in the Supplementary Information Table I. The majority of 100 

negative correlations were between lipids in the LPC, LPE, PC and PE classes and leptin, 101 

CRP, TNF-α, resistin and MCP-1 (Supplementary. Figure  2 and Figure 1). The LPC lipid 102 

class was found to have the strongest associations, specifically LPC a C18:1 and LPC a 103 

C18:2 and their negative association with both leptin and CRP. In addition to this, the 104 

negative association between TNF-α  and various lipids from the PE class is noteworthy. A 105 

striking feature of the analysis was the predominant positive associations observed for IL8 106 

and IL10 (Figure 1). IL8 associated predominantly with the SM lipid class whereas IL10 107 

formed associations with lipids in the PC, PE and CER classes.  108 
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Focusing on the lipids with significant relationships with the inflammatory parameters the 109 

relationship with the HOMA score was explored (Figure 2). Again, the strongest trends were 110 

seen in the LPC and LPE lipid classes. Specifically, the negative correlation between the 111 

lipids LPC a C18:1, LPC a C18:2, LPE a C18:1, LPC e C18:0 and CRP and leptin was 112 

associated with HOMA-IR score. Individuals with decreased levels of these lipids and 113 

increased leptin or CRP levels had increased HOMA scores. A similar trend was seen with 114 

PE ae C40:6 and TNF-α and resistin, wherein low levels of PE ae C40:6 with high TNF-α 115 

and/or resistin tended to have higher HOMA scores. Linear regression analysis revealed that 116 

LPC a C18:1(β = -0.441, p=0.006) and PE ae C40:6(β = -0.347, p=0.028) were the most 117 

significant predictors of HOMA score (R
2
=0.461, p<0.0005). Figure 3 shows the relationship 118 

between LPC a C18:1, PE ae C40:6 and HOMA: decreasing levels of both these lipids was 119 

associated with increased HOMA score. 120 

The lipidome-lipoprotein network 121 

As plasma lipoprotein levels are known to vary with both gender and BMI, we examined the 122 

relationship between the lipidome and different lipoproteins to determine whether any lipid 123 

specific changes may be correlated with lipoprotein changes. Examination of the relationship 124 

between the lipidome and the lipoproteins revealed a number of positive associations with the 125 

strongest relationships observed for LDL and APO B (Supplementary Figure 3 and Figure 4). 126 

The majority of associations LDL formed were with lipids from the CER and SM lipid 127 

classes. However two of the strongest lipid-lipoprotein associations formed were between 128 

LDL and the lipids PC aa C40:5 and PE aa C40:5 (Supplementary Information Table II). Of 129 

the different lipid classes measured, the PC and PE classes tended to be the most highly 130 

associated with the lipoproteins measured. Other noteworthy relationships included the 131 

relationships between HDL-c and PC aa C34:2 and Apo C3 and both PE ae C40:6 and PE aa 132 
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C38:0. Lipids from the LPE class were primarily associated with HDL-c, specifically LPE a 133 

C18:1, LPE a C18:2 and LPE a C22:6.  134 

 135 

Discussion 136 

The present study investigated the influence of phenotypic factors on the glycerophospholipid 137 

and sphingolipid composition in plasma of a group of healthy subjects. Furthermore 138 

examination of the relationship between the lipidome, inflammatory markers and insulin 139 

resistance revealed some interesting patterns which support the hypothesis of lipid mediated 140 

insulin resistance. More specifically two lipids were found to be highly associated with 141 

insulin resistance.  142 

Gender specific differences were predominantly found in the ceramide, phosphatidylcholine, 143 

and phosphatidylethanolamine lipid classes which, apart from a decrease in N-C23:0-144 

Cer(2H), were increased in females. Moreover, females had significantly higher levels of 145 

lipids with 2 or 3 double bonds in the PC and PE lipid classes. This reflects the changes in 146 

specific lipids seen in these classes as the majority had 2 or 3 double bonds. Previous studies 147 

have also found increased levels of ceramides and PC’s in females compared to males 
37-40

 148 

and studies in mice have shown gender related differences in PC homeostasis 
41

. The majority 149 

of the gender specific lipids identified associated positively with HDL-c, LDL-c and Apo B 150 

lipoprotein levels. Gender specific differences in lipoprotein levels have been shown 151 

previously with increased levels of HDL-c, LDL-c and total cholesterol in females whereas 152 

males have been found to have higher VLDL 
42-44

.  However, N-C23:0 Cer(2H), the only 153 

gender specific lipid found to be decreased in females relative to males, did not correlate with 154 

any of the lipoproteins measured. 155 
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BMI had a significant impact on the plasma lipidome where decreased levels of LPC’s, 156 

LPE’s and specific PC’s and PE’s were the main changes associated with increasing BMI.   157 

LPC lipids have been identified as important signaling molecules and have been proposed to 158 

be involved in regulating cellular proliferation, tumour cell invasion and inflammation 
45-48

.   159 

Findings from studies investigating LPC levels in individuals with varying BMI’s have been 160 

mixed 
25-28

. In agreement with findings from the current study, both total and specific plasma 161 

LPC levels (including LPC C18:1, LPC C18:2 and LPC C18:0) have been shown to be 162 

reduced in obese individuals and LPC levels were significantly negatively associated with 163 

BMI and plasma insulin levels in recent studies 
25, 29

. However, opposite effects have also 164 

been reported
26

.  Interestingly, the LPC lipids showed no association with lipoproteins, 165 

agreeing with previous proposals that most of the circulating LPC is bound to albumin 
49, 50

. 166 

Previous studies have found increasing BMI is associated with both increases and decreases 167 

in lipids from the PC and PE lipid classes depending on fatty acid composition 
26, 27, 51

. In the 168 

present study, lipids that had a relationship with BMI from the PC and PE class had 169 

decreased levels with increasing BMI. In addition to this, the most significant changes in the 170 

PC lipid class and the majority of lipids from the PE class that changed with BMI possessed 171 

ether bonds.Ether phospholipids have been reported to have antioxidant properties 
52

 and are 172 

decreased in obese relative to non-obese co-twins 
26

. However, a recent study of the plasma 173 

lipidome in lean and obese individuals found increased ether linked PC and PE species in 174 

obese individuals 
53

. As with LPC, these differing results may be due to differences in the 175 

presence and severity of metabolic complications associated with increasing obesity such as 176 

Type 2 Diabetes in the obese group.  177 

 178 

Examining the relationship between the lipids and inflammatory markers revealed that the 179 

sphingomyelin class primarily formed positive associations, with the strongest associations 180 
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with the pro-inflammatory cytokines TNF-alpha and IL8. Elevated plasma sphingomyelin 181 

levels have been correlated with incidence of cardiovascular disease 
54

 and short and medium 182 

chain fatty acid sphingomyelins positively correlate with insulin and intra-abdominal fat 
26

. 183 

Cytokines increase hepatic sphingomyelin synthesis to increase plasma sphingomyelin levels 184 

55
 and induce secretory sphingomyelinase which promotes sphingolipid hydrolysis 

56
. This in 185 

turn may increase sphingolipid levels such as sphingosine-1-phosphate 
57

. Interestingly  186 

sphingosine-1-phosphate is involved in signal transduction and regulation of the immune 187 

system 
58

 modulating macrophage IL8 and TNF-α 
59

. Translation of these functional 188 

relationships between specific sphingomyelins with IL-8 and TNF-α in the present study 189 

suggests a functional relevance in humans. Indeed recent studies have confirmed 190 

sphingomyelins as an independent risk factor in the development of cardiovascular disease 191 

(CVD) 
60, 61

. Nevertheless establishing their potential role in the development of insulin 192 

resistance prior to overt CVD is warranted. 193 

Lipids from the LPC class were negatively associated with a number of inflammatory 194 

markers and adipokines (including IL-8, leptin, MCP-1, CRP, TNF-α) which are associated 195 

with increasing obesity and insulin resistance 
62, 63

. The novel aspect of the present work is 196 

the relationship between the lipids, the inflammatory markers/adipokines and the HOMA-IR 197 

score. Individuals with low levels of the lysophospholipids LPC a C18:1, LPC a C18:2, LPC 198 

e C18:0 and LPE a C18:1 who also had increased CRP or leptin levels had increased HOMA-199 

IR scores. Interestingly these lipids were all lower in obesity suggesting them as a link 200 

between obesity, inflammation and insulin resistance. Furthermore LPC a C18:1 in 201 

combination with PE ae C40:6 was highly associated with HOMA-IR score. Previous studies 202 

have shown plasma LPC levels are reduced in individuals with impaired glucose tolerance 
64

 203 

and LPC C16:0 was lower in insulin resistant subjects with non-alcoholic fatty liver 
65

.  LPC 204 

stimulates adipocyte glucose uptake, potentiates  glucose stimulated insulin secretion and 205 
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lowers blood glucose levels in murine models of diabetes 
66

 
67

 . Although some studies report 206 

the opposite relationship
68

, overall the emerging view is that LPC’s may play an important 207 

role in glucose homeostasis. However, it remains to be determined whether the low LPC 208 

levels in obese and insulin resistant individuals is due to greater clearance or decreased 209 

production.  The clear relationship between LPC’s, BMI, inflammatory makers and HOMA-210 

IR score suggests a potential role as mediators of insulin resistance: further work is needed to 211 

decipher whether this is the case.  212 

PE ae C40:6 was also highly correlated with HOMA-IR and associated with resistin and 213 

TNF-α, which are implicated in insulin resistance 
63

. In general, lipids from the PE and PC 214 

lipid classes were negatively associated with many inflammatory/biochemical markers such 215 

as leptin, MCP-1, CRP, resistin and TNF-α , however the majority of specific PE and PC 216 

lipids that formed strong associations with multiple inflammatory markers possessed ether 217 

bonds. It has been shown that ether phospholipids are decreased in obese co-twins and levels 218 

of specific ether phospholipids positively correlate with insulin sensitivity
26

. In a study 219 

investigating the lipid  composition  of  LDL, it was found  that  plasmalogen  PEs, a subclass 220 

of ether phospholipids, were lower in both metabolic syndrome and diabetic subjects 221 

compared to lean subjects 
69

. It has been proposed that plasmalogens are targets of oxidative 222 

stress and lower levels are indicative of oxidative stress in individuals with the metabolic 223 

syndrome and/or type 2 diabetes 
69

.  An inflammatory phenotype may reduce plasma ether 224 

phospholipid species via concomitant oxidative stress thus explaining the negative 225 

association between many of the ether phospholipids and inflammatory markers measured in 226 

the present cohort. 227 

 228 

 229 
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Conclusion 230 

A striking finding in the present study was the identification of a series of lipids which had 231 

significant relationships and potential synergy with inflammatory markers. Further analysis 232 

identified two lipids, LPC a C18:1 and PE ae C40:6, which were associated with insulin 233 

resistance pointing to the possibility that the alterations in these specific lipids play a role in 234 

the development of insulin resistance. Overall, the present study also identified lipids that are 235 

affected by phenotypic traits such as BMI and gender.  In conclusion, the present study 236 

provides strong evidence for the link between lipid levels, inflammation and markers of 237 

insulin resistance. Future work will be needed to define the directionality of the relationship 238 

between the lipids and inflammatory markers.  239 

 240 

 241 

 242 

 243 

 244 

 245 

 246 

 247 

  248 
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 249 

Experimental 250 

Volunteers 251 

Volunteers were recruited as part of a larger clinical registered study (clinicaltrials.gov 252 

NCT01172951) called the Metabolic Challenge Study (MECHE). Ethical approval was 253 

obtained from the Human Research Ethics Committee of University College Dublin (UCD) 254 

and St. Vincent’s University Hospital. A total of 214 subjects aged 18- 60 years with general 255 

good health were recruited and provided written informed consent 
70, 71

. Exclusion criteria 256 

included BMI < 18.5 kg/m
2
, iron deficiency anaemia (hemoglobin <12 g/dL), elevated fasting 257 

glucose (fasting plasma glucose ≥ 7 mM), cholesterol >7.5 mM, TAG > 3.8 mM, raised liver 258 

or kidney enzymes, pregnant or lactating females and the presence of any chronic or 259 

infectious disease and any prescribed medication for such. Body weight was measured 260 

following an overnight fast, to within 0.1 kg on a flatbed-weighing scale. Height was 261 

measured using a wall-mounted stadiometer to within 0.1 cm. 262 

Fasting blood samples were collected following a 12 hour overnight fast into EDTA and 263 

lithium-heparin coated tubes for plasma and vacutainer tubes for serum isolation. Serum 264 

samples were allowed to clot for 30 minutes at room temperature while EDTA and lithium 265 

heparin tubes were placed directly on ice. All blood samples were centrifuged at 1800 g for 266 

15 minutes at 4 ºC and 500 µl aliquots were stored at -80 ºC until further analysis. 267 

Biochemical/Inflammatory analysis 268 

Clinical chemistry analysis was performed using an RxDaytona™ analyser (Randox 269 

Laboratories, Crumlin, UK) and Randox reagents. Details of the analytes and methods are 270 

previously reported 
60, 71

. Cytokines and hormones were measured using a biochip array 271 

system (Evidence Investigator™, Randox Laboratories, Crumlin, Northern Ireland). The 272 

metabolic array I kit was used for the measurement of the cytokines and hormones as 273 
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previously described 
71

. The HOMA index was used as an estimate of insulin sensitivity and 274 

calculated as (fasting insulin (µU/ml) x fasting glucose mM)/22.5. LDL was calculated using 275 

the Friedwald equation: LDL = Total Cholesterol - HDL - TAG/5.0 (mg/dL)
61

. 276 

 277 

Lipid profiling 278 

Lipidomic analysis was performed on a total of 39 subjects. The analysis was performed by 279 

BIOCRATES Life Sciences AG (Innsbruck, Austria). The biologically most abundant 280 

members of (lyso-) glycerophospholipids, i.e. (lyso-) glycerolphosphocholines, -281 

ethanolamines, -serines, -glycerols, as well as sphingolipids, i.e. sphingomyelins, ceramides, 282 

dihydroceramides, and 2-hydroxyacyl ceramides, were quantitatively analysed by a high 283 

throughput flow injection ESI-MS/MS screening method. A total of 325 lipids were detected 284 

and quantified in the plasma.. Five internal standards were used to compensate for matrix 285 

effects, and 43 external standards for a multipoint calibration. Quantitative data analysis was 286 

performed using the in-house software MetIDQ™ which enables isotope correction. 287 

Individual lipid analytes which had ≥ 80% of values below the limit of detection were 288 

excluded from analysis 
29

 leaving a total of  215 lipids for the final analysis. 289 

Statistical Analysis 290 

Data was imported into PASW version 18.0 for statistical analysis. General linear model 291 

analysis was used to assess the impact of BMI and phenotypic factors. Linear regression 292 

analysis was employed to examine associations in data. An estimate of the false discovery 293 

rate (q-value) was calculated to take into account multiple comparisons, it was estimated on a 294 

family wide basis using the QVALUE software package 
72

 in R (version 2.15.1). 295 

Regularized canonical correlation analysis (rCCA) is a multivariate statistical method used to 296 

assess correlations between two multivariate datasets 
73

 and was employed to assess the 297 
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relationship between the lipidome and biochemical parameters or lipoproteins. This was 298 

performed using the mixOMICS software package 
74

 in R version 2.15.1. Regularization 299 

parameters were estimated using the estim.regul function and the rcc function was used to 300 

define the canonical correlations and the canonical variates. The rCCA approach was applied 301 

to the lipidome – biochemical parameter and lipidome – lipoprotein datasets with 302 

regularization parameters λ1 0.042, λ2 0.116  and λ1 0.1, λ2 0.421 respectively (based on leave 303 

one out cross validation). The first 5 dimensions (canonical correlation values of 0.992, 304 

0.989, 0.983, 0.981 and 0.976) and the first 4 dimensions (canonical correlation values of 305 

0.934, 0.918, 0.875 and 0.837) were retained for the lipidome – biochemical parameter and 306 

the lipidome – lipoprotein rCCA analysis respectively after which values dropped for the 307 

following dimensions.   308 

In order to visualise pair-wise associations highlighted by rCCA, the cim function was used 309 

to generate clustered heatmaps and the network function to produce relevance networks from 310 

the similarity matrix derived from rCCA 
75

. The values in the similarity matrix are computed 311 

as the correlation between the two types of projected variables onto the space spanned by the 312 

components/dimensions retained in the analysis and can be seen as a robust approximation of 313 

pearson correlation 
32

. 314 

The relevance network graph is a bipartite graph derived from the similarity matrix where 315 

nodes represent variables and edge colour represents the strength of the association. Only 316 

associations exceeding a specified threshold are shown. These threshold values were 317 

arbitrarily chosen in order to obtain biologically interpretable networks that were neither too 318 

sparse nor too dense. Data was exported to Gephi (0.8.1 beta) 
76

 where the layout algorithm 319 

Yifan Hu was applied to create the network figure and aid in the visualisation and exploration 320 

of the network for biological interpretation. 321 
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 485 

 Figure Legends 486 

 487 

 488 

Figure 1. Relevance network graph depicting correlations derived from rCCA between 489 

various biochemical parameters and the lipidome. Only associations where the correlation 490 

coefficient exceeds the threshold of 0.3 are shown. Nodes (circles) represent variables and are 491 

sized according to number of connections. Edges are coloured according to association score 492 

with red showing positive correlations and blue showing negative correlations. Biochemical 493 

parameters are shown in grey. Lipids are coloured according to lipid class; 494 

lysophosphatidylcholine, yellow; phosphatidylserine, blue; ceramides, orange; 495 

phosphatidylcholine, light green; phosphatidylethanolamine, dark green; sphingomyelin, 496 

pink.  497 

 498 

Figure 2. Bubble plots of specific lipids with inflammatory markers. The circle size is 499 

proportionate to HOMA-IR score. Each data point represents a volunteer. 500 

 501 

Figure 3. Bubble plot of PE ae C40:6 and LPC a C18:1. Dot size reflects HOMA-IR score. 502 

Each data point represents a volunteer. 503 

 504 
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 505 

Figure 4. Relevance network graph depicting correlations derived from rCCA between the 506 

lipoprotein and lipidome. Only associations where the correlation coefficient exceeds the 507 

threshold of 0.4 are shown. Nodes (circles) represent variables and are sized according to 508 

number of connections. Edges are coloured according to association score with increased 509 

intensity reflecting higher correlation scores. Lipoprotein variables are in grey. Lipids are 510 

coloured according to lipid class; lysophosphatidylcholine and 511 

lysophosphatidylethanolamine, yellow; phosphatidylserine, blue; ceramides, orange; 512 

phosphatidylcholine, light green; phosphatidylethanolamine, dark green; sphingomyelin, 513 

pink.  514 

 515 

 516 

 517 

 518 
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Table I. Anthropometric and biochemical parameters.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data presented as mean ± standard deviation unless otherwise stated. BMI, body mass index; HOMA, homeostasis model 

assessment; NEFA, non-esterified fatty acid.* p<0.05 when comparing males and female. 

 

Male (n=19) Female (n=20) Total 
Total 

(range) 

Age (years) 33 ± 12  36 ± 14 34 ± 13 18 – 60 

BMI (kg/m
2
) 28 ± 5 26 ± 7 26 ± 6 19 – 50 

Body fat (%) 21 ± 12* 35 ±12* 28 ± 14 9 – 59 

HOMA-IR 2.68 ±2.61 1.87 ±1.60 2.28 ± 2.17 0.31 – 9.19 

Fasting plasma glucose (mM) 5.29 ±0.66 5.24 ±0.43 5.27 ± 0.55 3.64 – 6.65 

Fasting plasma insulin 

(µIU/ml) 

10.69 ± 9.33 7.94 ± 6.42 9.32 ± 8.01 1.57 – 34.32 

Triglycerides (mM) 1.14 ±0.68 1.14 ±0.55 1.09 ± 0.50 0.37 – 2.61 

NEFA (mM) 0.51 ± 0.31 0.69 ± 0.38 0.60 ± 0.35 0.15 – 1.7 

Total cholesterol (mM) 4.55 ±1.09 4.90 ±1.04 4.76 ± 1.07 3.01 – 7.66 

HDL-c (mM) 1.19 ± 0.27* 1.67 ± 0.48* 1.44 ± 0.46 0.69 – 2.55 

LDL-c (mM) 2.69 ± 1.12 2.72 ± 0.83 2.70 ± 0.97 0.13 – 4.83 

Apo B (mg/dl) 73.33 ± 25.57 82.11 ± 23.32 77.84 ± 24.50 32 – 136 

Apo C3 (mg/dl) 6.63 ± 2.68 7.93 ± 2.04 4.00 ± 1.89 0.61 – 13.27 

Apo C2 (mg/dl) 3.95 ± 2.28 4.05 ± 1.51 7.29 ± 2.43 1.10 – 8.41 

Apo A1 (mg/dl) 111.61 ± 25.79 135.28 ± 47.95 123.44 ± 39.79 12 – 219 

Apo E (mg/dl) 2.05 ± 0.80 2.57 ± 1.58 2.32 ± 1.27 0.67 – 8.15 
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Table II. Significantly different lipids between males and females.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Lipids with significant gender effects were determined by general linear model controlling for BMI. Data presented as mean ± 

standard deviation.  

  

 

Lipid class Lipid 
Male µM 

(n=19) 

Female µM 

(n=20) 
p - value q - value 

Phosphatidylcholine  PC aa C32:1 10.739 ± 6.142 15.405 ± 6.426 0.033 0.169 

PC aa C34:2 291.299 ± 83.598 369.514 ± 65.985 0.003 0.065 

PC aa C34:3 9.264 ± 4.325 13.452 ± 5.654 0.019 0.137 

PC aa C36:2 134.078 ± 45.760 161.891 ± 30.128 0.043 0.169 

PC aa C36:3 76.034 ± 24.782 97.812 ± 20.575 0.007 0.072 

PC aa C38:3 17.758 ± 8.298 22.625 ± 5.516 0.047 0.169 

Phosphatidylethanolamine PE aa C34:2 0.991 ± 0.517 1.556 ± 0.703 0.010 0.232 

PE aa C36:2 2.829 ± 1.502 4.094 ± 1.479 0.017 0.232 

PE aa C36:3 1.202 ± 0.600 1.834 ± 0.915 0.023 0.232 

Sphingomyelin SM C16:1 16.256 ± 5.611 19.832 ± 4.356 0.038 0.047 

Ceramide N-C21:0-Cer(2H) 0.001 ± 0.001 0.002 ± 0.001  0.000 0.002 

N-C23:0-Cer(2H) 0.723 ± 0.035 0.105 ± 0.056 0.048 0.029 

N-C24:0-Cer(2H) 0.188 ± 0.093 0.272 ± 0.138 0.039 0.029 

N-C22:0(OH)-Cer 0.021 ± 0.014 0.035 ± 0.019 0.007 0.017 

 N-C23:0(OH)-Cer 0.026 ± 0.013 0.044 ± 0.026 0.007 0.017 

 N-C24:0(OH)-Cer 0.096 ± 0.052 0.129 ± 0.056 0.044 0.029 

 N-C24:0-Cer 2.009 ± 0.763 2.568 ± 0.731 0.035 0.029 

 N-C16:0-Cer 0.232 ± 0.079 0.281 ± 0.056 0.044 0.029 

 N-C22:1-Cer 0.019 ± 0.009 0.025 ± 0.007 0.046 0.029 
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Table III. Lipids with a significant relationship with BMI.  

Lipid class Lipid p - value q – value 

Lysophosphatidylcholines LPC a C16:0 0.010 0.002 

LPC a C18:0 0.025 0.003 

LPC a C18:1 0.000 0.000 

LPC a C18:2 0.001 0.000 

LPC a C20:4 0.019 0.003 

LPC e C18:0 0.002 0.000 

Lysophosphatidylethanolamine LPE a C16:0 0.011 0.002 

LPE a C18:0 0.028 0.003 

LPE a C18:1 0.011 0.002 

LPE a C18:2 0.021 0.003 

LPE a C22:6 0.028 0.003 

Phosphatidylcholine  PC aa C32:0 0.009 0.008 

PC aa C34:0 0.042 0.019 

PC aa C34:1 0.043 0.019 

PC aa C34:2 0.009 0.008 

PC aa C36:0 0.009 0.008 

PC aa C36:2 0.018 0.011 

PC aa C36:3 0.020 0.011 

PC aa C36:4 0.049 0.019 

PC aa C38:6 0.036 0.018 

PC aa C40:7 0.033 0.018 

PC ae C32:0 0.006 0.008 

PC ae C34:0 0.045 0.019 

PC ae C34:1 0.005 0.008 

PC ae C36:2 0.020 0.012 

PC ae C36:4 0.007 0.008 

PC ae C36:5 0.008 0.008 

PC ae C38:4 0.006 0.008 

 PC ae C38:5 0.006 0.008 

 PC ae C38:6 0.016 0.012 

 PC ae C40:5 0.007 0.008 

Phosphatidylethanolamine PE aa C38:0 0.043 0.084 

PE ae C34:1 0.020 0.084 

PE ae C34:2 0.014 0.084 

PE ae C34:3 0.017 0.084 

PE ae C36:2 0.013 0.084 

PE ae C36:3 0.009 0.084 

PE ae C36:5 0.041 0.084 

PE ae C38:6 0.043 0.084 

PE ae C40:1 0.036 0.084 

PE ae C40:5 0.028 0.084 

PE ae C40:6 0.034 0.084 

Phosphatidylserine PS aa C42:1 0.048 0.216 
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Lipids with significant BMI effects were determined by general linear model controlling for 

gender. 

 

 

 

 

Sphingomyelin SM C16:0 0.017 0.239 

 SM C24:0 0.031 0.239 
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