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For gene expression in non-cancerous complex diseases, we 

systemically evaluated the sensitivities of biological 

discoveries to violation of the common normalization 

assumption. Our results indicated gene expression may be 

widely up-regulated in digestive system and musculoskeletal 

diseases. However, global signal intensities showed little 

difference in other four disease types. 

Gene expression analysis provides quantitative and systematic 

characterization about the population of transcriptome species in a 

tissue and cell.1 Monitoring the global transcriptome expression by 

microarray has had a tremendous influence on modern biological 

research.2-4 However, it is known that microarray experiments are 

subject to multiple sources of technical variations.5 Data 

normalization is supposed to adjust the global properties of 

measurements of individual samples so that they can be more 

appropriately compared by removing large technical variations.5 

Thus, data normalization plays a critical role in minimizing the 

impact of technical variations. 

The common normalization methods assume that most genes are 

not differentially changed and the numbers of up-and down-

regulated genes are roughly equal.6, 7 Thus the distributions of global 

signal intensities for each experiment should be similar and the 

signal intensities for different samples from different experiments 

should be scaled to have the same or similar median or average 

value.5, 8, 9 However, emerging evidences suggested this commonly 

used assumption may not hold true under some situations. Such as, 

based on 16 pair-matched normal and cancer samples gene 

expression datasets, previously we observed extensive increase of 

microarray signals in cancers datasets.10 Subsequently, Love´n, et al. 

also found that cells with high levels of c-Myc can amplify their 

gene expression program, producing two to three times more total 

RNAs and generating cells that were larger than their low-Myc 

counterparts.1 Thus, under above circumstances, normalization 

would distort the global data distribution and lead to erroneous 

interpretations of gene expression profile.1, 10 

With the widespread use of gene expression data, many 

researchers start to study non-cancerous complex disease by 

expression profiles, such as digestive system and musculoskeletal 

diseases.11, 12 It is not certain how prevalent transcription increases in 

diverse non-cancerous complex diseases and misinterpretation of 

genome-wide expression data. More importantly, for gene 

expression array generated from high throughput platforms, what are 

the global features in non-cancerous complex diseases compared to 

normal samples? These issues are fundamental questions and 

basically related to all subsequent data analysis and interpretations, 

but surprisingly they have not been systematically analysed until 

now. In this study, using the NCBI GEO database,13 we analysed the 

global gene expression distribution for unbiased collected 21 

Affymetrix single channel datasets for six non-cancerous complex 

disease types that each dataset must include at least eight samples for 

each state (normal or disease), including seven datasets for digestive 

system disease, three for female urogenital diseases and pregnancy 

complication, neuropsychiatric disorder, respiratory tract disease, 

skin disease, respectively, two for musculoskeletal disease (Table 1). 

Especially, four pair-matched datasets from the same individuals for 

female urogenital diseases and pregnancy complication, 

musculoskeletal disease, neuropsychiatric disorder and skin disease 

were included. For the signal intensities of these gene expression 

data, we only used perfect match (PM) probe intensities as signal 

intensities because it has been shown that ignoring the mismatch 

(MM) values is preferable for background correction.7, 14  

In our previous work, the results showed genes were extensive up-

regulated in a high proportion of cancers. Especially in digestive 

system cancer (colon, esophagus and pancreas, etc.), gene expression 

profiles were significantly extensive up-regulated in five of eight 

datasets.10 However, it is not certain how prevalent global signal 

intensities increased is as well as that in non-cancerous digestive 

system diseases. Thus, we conducted gene expression analysis on 

seven datasets from four types of digestive system diseases with 

normal and disease samples, collected from the Gene Expression 

Omnibus (GEO) database,13 including hepatitis B virus-associated 

acute liver failure(HBV-ALF), inflammatory bowel disease (IBD), 

irritable bowel syndrome (IBS), and ulcerative colitis (UC). For each 

dataset, we computed the median of the raw signal intensities in each 

sample and compared the medians between the normal and disease 

samples. As shown in Fig. 1, the median of raw signal intensities in 

the disease samples increased in six of the seven datasets. The 

increase in the median of the raw signal intensities in the disease 

state was significant (P<0.05) in one datasets and marginally 

significant (p<0.1) in another two datasets according to the 

Wilcoxon rank-sum test: HBV-ALF27 (P=4.50E-06), IBD58 

(P=0.069) and UC54 (P=0. 063) (Table 2). 
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Table 1 The microarray datasets that were analysed in this study. 

Dataset GEO 

Accession 

number 

Dataset GEO 

Accession 

number 

HBV-ALF26 GSE38941 AD20 GSE4757 

IBD23 GSE4183 Asthmatics86 GSE4302 

IBD58 GSE10616 COPD38 GSE37768 

IBS221 GSE36701 COPD54 GSE8545 

JIA27 GSE15645 Endometriosis20 GSE7305 

Tendinopathy46 GSE26051 PCOS23 GSE10946 

UC20 GSE22619 PCOS29 GSE6798 

UC26 GSE9452 PD20 GSE20146 

UC54 GSE13367 Psoriasis48 GSE41662 

  Psoriasis54 GSE14905 

  Psoriasis122 GSE13355 

  Schizophrenic51 GSE17612 
Each dataset is denoted using the following nomenclature: disease type 

followed by the total number of samples. 

 

Totally, the gene expression signals of disease samples tended to 

significantly or marginally significantly increase in nearly half of the 

seven datasets (3/7 =43%). Due to the low statistical power of 

detecting significant differences in small samples,15, 16 if we focused 

on the datasets with larger sample size (sample size at least 25), the 

percentage was up to 60% (3/5). Therefore, similarly with the 

normal and cancer samples, it might be also misleading that all of 

the arrays in digestive system disease should have the same or 

similar gene expression distribution regardless of the physiological 

state. Normalizing the expression data by common normalization 

methods would lead to erroneous results in gene expression analysis, 

especially for the large sample size datasets.1, 10 

Further, using the same criteria with digestive system datasets, we 

unbiased collected two single channel musculoskeletal disease 

datasets for human tendinopathy and polyarticular juvenile 

idiopathic arthritis (JIA). Similar results were observed that the 

median of the raw signal intensities in the disease samples increased 

in both of two datasets. Further, the increase in the medians of raw 

signal intensities between normal and disease samples was 

significant (P<0.05) in two musculoskeletal disease datasets by the 

Wilcoxon rank-sum test: Tendinopathy46 (P=0.030), JIA27 

(P=0.019). Especially in one of these two datasets (Tendinopathy46), 

the significantly increase was identified in disease samples compared 

to pair-matched normal samples from 23 patients. Hence, the gene 

expression signals of disease samples tended to extensive increase in 

musculoskeletal diseases, indicating a non-negligible adverse impact 

on gene expression analysis that simply pre-processing the 

expression data by common normalization methods (Fig. 1, Table 2). 

By focusing on the five datasets with significantly/marginally 

significantly increases in their probe intensities in diseases samples, 

we analyzed the effects of data normalization on the percentage of 

up- and down- regulated genes between raw signal intensities and 

normalized intensities. By using RMA normalization method, our 

results showed the percentage of up-regulated genes in raw signal 

intensities was 84%, 95%, 92%, 98% and 99% in HBV-ALF26, 

IBD58, JIA27, Tendinopathy46 and UC54, respectively, while it 

decreased around 50% (49%, 57%, 55%, 43% and 45%) in 

normalized samples, indicating expression data may be over-

normalized by common normalization methods. Then, we further 

analyzed the number of up- and down- regulated differentially 

expressed genes (DEGs) selected by SAM (FDR=0.1) between raw 

signal intensities and normalized intensities. Our results showed that 

in the raw signal intensities, the number of up-regulated DEGs was 

11068, 11089, 11657, 10844, and 11289 while the number of down-

regulated DEGs was 2174, 319, 9, 0, and 15 in HBV-ALF26, 

IBD58, JIA27, Tendinopathy46 and UC54, respectively, suggesting 

that the number of up- and down- regulated DEGs was asymmetry 

and a large fraction (more than half) of the overall number of genes 

showed differentially expressed in the raw signal intensities. 

However, after normalization, the number of up- and down- 

regulated DEGs was 7900 and 8290, 7603 and 3940, 1839 and 1780, 

830 and 1333, 1309 and 1003 in HBV-ALF26, IBD58, JIA27, 

Tendinopathy46 and UC54, respectively, suggesting that the number 

of up- and down- regulated DEGs shows no significant difference 

between samples and DEGs still were a big fraction of the overall 

number of genes in most of these five datasets.  

 
Fig. 1 The distributions of the raw signal intensities for the normal (white) 

and disease (grey) states in digestive system and musculoskeletal diseases. 

For each dataset, the raw signal intensities were averaged across all of the 
samples in each state. The datasets were ranked in descending order of the 

differences between the medians of the raw signal intensities of the normal 

and disease states. Three datasets with significant differences in the median 
are marked by (S), and two datasets with marginally significant differences 

are marked by (MS). 

 
Table 2 Comparison of the medians of raw signal intensities of gene 

expression in digestive system and musculoskeletal disease datasets. 

Disease Type Datasets Normal Disease P value 

digestive 

system disease 

HBV-ALF26 4.55 5.23 
4.50E-

06 

IBD23 7.35 7.58 0.64 

IBD58 6.12 6.66 0.069 

IBS221 5.06 5.04 0.51 

UC20 3.45 3.95 0.17 

UC26 5.21 5.29 0.16 

UC54 5.47 5.96 0.063 

musculoskeletal 

disease 

JIA27 5.12 5.64 0.019 

Tendinopathy46 5.66 5.93 0.030 
HBV-ALF, IBD, IBS and UC represent hepatitis B virus (HBV)-associated 

acute liver failure (ALF), inflammatory bowel disease, irritable bowel 
syndrome and ulcerative colitis respectively of digestive system diseases. JIA 

represents polyarticular juvenile idiopathic arthritis of musculoskeletal 
disease. 

 

Next, for other non-cancerous complex diseases, we collected a total 

of 12 datasets for female urogenital diseases and pregnancy 

complications, neuropsychiatric disorders, respiratory tract diseases 

and skin diseases, including Alzheimer’s disease (AD), asthmatics, 

chronic obstructive pulmonary disease (COPD), endometriosis, 

Parkinson’s disease (PD), polycystic ovary syndrome (PCOS), 
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psoriasis and schizophrenia. Especially, three pair-matched datasets 

from the same individuals were included (AD20, Psoriasis48 and 

Psoriasis20). On the contrary with digestive system and 

musculoskeletal diseases, we found non-significant differences in 

medians of the raw signal intensities between normal and disease 

samples for these 12 datasets (Table 3). Similar as the methylation 

datasets between normal and cancer samples, our previous results 10 

also demonstrated that, in all of the eight analysed methylation 

datasets, the medians of the raw signal intensities in the cancer 

samples were not significantly different (P>0.05) from those in 

normal samples. These results suggested that the common 

assumption normalization may bring more positive effects in 

reducing technical variations than negative effects in removing 

biological signal in these four disease types. 

 
Table 3 Comparison of the medians of raw signal intensities of gene 

expression in other non-cancerous disease datasets. 

Disease Type Datasets Normal Disease P value 

female 

urogenital 

disease and 

pregnancy 

complication 

Endometriosis20 4.83 4.86 0.52 

PCOS23 5.41 3.96 0.41 

PCOS29 5.52 5.66 0.73 

neuropsychiatric 

disorder 

AD20 4.37 4.48 0.97 

PD20 3.75 4.20 0.14 

Schizophrenic51 7.33 7.36 0.87 

respiratory tract 

disease 

Asthmatics86 6.18 6.12 0.67 

COPD38 4.86 5.11 0.16 

COPD54 5.49 5.35 0.95 

skin disease 

Psoriasis48 7.70 7.73 0.57 

Psoriasis54 5.13 5.09 0.78 

Psoriasis122 5.21 5.51 0.48 
PCOS represents polycystic ovary syndrome of female urogenital diseases 
and pregnancy complications. AD and PD represent Alzheimer's disease and 

Parkinson's disease of neuropsychiatric disorders. COPD represents chronic 
obstructive pulmonary disease of respiratory tract disease. 

 
Fig. 2 An illustration of normalization causing over-normalizing signals. (A) 

A gene is detected as a down-regulated differential expressed gene, after 
normalization, the raw signal intensities in disease samples are similar with 

those in normal samples. (B) A gene is detected as an up-regulated 

differential expressed gene in non-normalized data, after normalization, it 
shows the similar distribution in disease and normal samples as non-

differential expressed gene. The left parts of panels A and B show the raw 

signal intensities and the right parts show the normalized intensities. 

Our previous and subsequent researches exhibited extensive 

increasing of microarray signals in a high proportion of cancer 

datasets.1, 10 In this work, our results similarly showed that gene 

expression signals extensively up-regulated in five of nine digestive 

system and musculoskeletal disease datasets, indicating expression 

data may be over-normalized by common normalization methods. 

As shown in Fig. 2, normalizing all arrays to have the same 

distribution of signal intensities regardless of the disease state tends 

to result a non-negligible portion of falsely down-regulated 

differentially expressed genes while missing a number of truly up-

regulated differentially expressed genes. In Fig. 2A, one gene has 

little difference as non-differential expressed gene between normal 

and disease samples in raw signal intensities. After normalization, it 

could be identified as a down-regulated differential expressed gene. 

In the other situation (Fig. 2B), another gene has moderate difference 

as an up-regulated differential expressed gene between normal and 

disease samples in raw signal intensities. After normalization, it 

could not be identified as a differential expressed. Accordingly, 

normalizing should be more precautious in gene expression analysis 

of these diseases and thus produce more accurate assessments of 

changes in gene expression programs. Furthermore, because it has 

been suggested that the variability in the microarray data by 

technical noise might be lower than the biological variation and its 

role in statistical data analysis might not be critical17, we should pay 

more attention to optimizing experimental designs, stringently 

randomizing potential experimental artifacts across biological groups, 

using sufficient sample sizes or containing more RNA in diseased 

tissues and more conducive to probe hybridization. On the contrary, 

no significant differences were found in medians between normal 

and disease samples in other 12 non-cancerous complex diseases 

datasets, indicating that common normalization assumption may 

bring more positive effects on reducing technical variations than 

negative effects on removing biological signals. Also the spike-in 

controls, as suggested by Love´n, et al and others,1, 18-20 may be an 

indispensable, robust, cross-platform, quality control method to 

enable more accurate detection of disease-associated gene in 

transcriptome data.  

Along with the rapid spring-up of high-throughput technologies, 

high-throughput arrays as a potential biological tool have been 

increasingly used in the analysis of transcriptome and genome.2, 8, 21-

23 Gene and miRNA expression profiles offer quantitative 

information of RNA in a cell or tissue;2, 24 similarly, methylation 

arrays and SNP technology were developed for investigating the 

methylation status and copy number variations (CNVs) on a 

genome-wide scale. Hence, besides gene expression, for miRNA 

expression,25, 26 methylation27 and copy-number variations8 array 

data signals generated from high throughput platforms, how the raw 

signal intensities distribution in non-cancerous complex diseases 

also need to validate in a warrant future detailed studies. 
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