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Comparison of single- and multivariate calibration 

for determination of Si, Mn, Cr and Ni in high-

alloyed stainless steels by Laser-Induced Breakdown 

Spectrometry 

Sergey M. Zaytsev, Andrey M. Popov, Evgeny V. Chernykh, Raisa D. Voronina, 
Nikita B. Zorov and Timur A. Labutin  

The quantitative analysis of high-alloyed steels by LIBS is usually complicated by overlap of 

the analytical lines with iron lines due to the complex structure of the emission spectra of each 

component. To overcome this problem, we compared the two calibration strategies in the 

current research work. Univariate regression analysis was used for a number of analytical lines 

of Si, Mn, Ni, and Cr with and without strong spectral interferences with other lines. Several 

methods of data pre-processing (for example, by normalization using an internal standard or 

baseline correction) to compensate for matrix effects or the pulse to pulse deviations of the 

analytical signal have been compared with the calibration curves constructed with the use of 

peak intensities. As an alternative to the univariate strategy, multivariate calibration based on 

principal component regression (PCR) was used in this work. We examined two criteria 

separately to select the most predictive model. The minimal values of relative 

Root-Mean-Square Error of Cross-Validation (RMSECV, %) provided the best prediction 

accuracy while the use of the well-known F-criterion reduced the number of principal 

components up to 4 or 5 for each analyte without significant worsening of prediction 

capability. The measurements within four spectral windows (210-230 nm, 280- 300 nm, 

345-365 nm and 400-420 nm) were carried out on a set of 10 standard samples. Univariate 

calibration for Cr, Ni and Mn provided the best prediction (R2=0.996) if the appropriate 

reference line could be found and analytical lines were not overlapped with others. The best 

prediction for Si (R2=0.94) were obtained with the using of peak signal of Si 212.41 nm line 

without normalization. Otherwise, PCR provided good predictive capability (RMSECV, %=3, 

4, 5 and 9 of quantification of Mn, Cr, Ni and Si respectively) in the spectral ranges where 

numerous matrix lines strongly interfered with analytical lines. 

Introduction 

Laser-induced breakdown spectroscopy (LIBS) is an emerging 

technique for material analysis that is also advancing as a 

technology as new commercial instruments are becoming 

available.1 LIBS provides a non-contact sampling by focused 

laser radiation with simultaneous detection of radiation of laser-

induced plasma. This makes possible a real-time analysis of 

samples of different origin (aerosols, environmental samples, 

objects of cultural heritage, coating layers, composite materials, 

alloys etc) by a field-portable sensor,2 the elimination or only 

minimal sample preparation and extremely short analysis time. 

These advantages of LIBS give an opportunity for rapid direct 

analysis of materials during operation process, for example, 

inline LIBS control system of the steel fittings provides 4 

measurements per second.3 Chemical analysis of steels is 

focused on both impurities and doping components 

determination. However, numerous interferences typical for 

high alloyed stainless steel due to extremely complex spectra of 

main components (Fe, Cr, Ni) complicate analysis. In the field 

of control of metallurgy process, it is important to solve this 

problem for reliable and accurate analysis result.4 Here, we 

focused on searching the experimental conditions and the 

appropriate calibration strategy for LIBS determination either 

metal or non-metal components of high-alloyed steels. 

Since the content of components of interest in high-alloy steels 

is relatively high, the main focus is on the search conditions 

when one can detect individual emission lines or apply 

algorithms for their separation. To improve the accuracy of a 

conventional calibration in spectrochemical analysis, various 
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methods of spectral data preprocessing are usually employed 

such as a noise removal,5 the deconvolution of poor resolved 

emission lines on individual ones,6 and different normalization 

techniques with the use of background signal level, the overall 

intensity of spectra or the internal standard.7 It should be borne 

in mind that the deconvolution of the emission lines 

considerably complicates data processing, and increases the 

analysis time, in spite of special automatic deconvolution 

procedures.8 Moreover, the accuracy of LIBS determination of 

silicon in high-alloy steels is still poor without inter-element 

correction which takes into account the influence of chromium 

on the intensity of the observed peak.9 

Multivariate techniques of spectral data analysis applicable to a 

fast and direct prediction of the sample composition in case of 

overlapping analytical signals. In most cases, the multivariate 

data analysis in LIBS was successfully applied for qualitative 

analysis, e.g. classification of composite samples,10, 11 

explosives12,13 and organic substances,14,15 which speciation 

cannot be done directly by LIBS (polymers, micro-organisms, 

food, etc.). Spectral data are referred for quantification to as 

independent data X [k,l] where k and l are the number of 

samples and variables, respectively, while dependent variables 

Y present the elemental concentrations. Training set (a number 

of samples with known elemental concentrations) is used to 

create a calibration model relating Y to X for prediction of 

component content in the test set (unknown samples). To 

separate of data of analytical components and noises two most 

widespread multivariate algorithms for decomposition of matrix 

X are implemented: Principal Component Regression (PCR), 

and Partial Least Squares regression (PLS-1 or PLS-2). A few 

of papers describe the use of multivariate calibration for the 

LIBS analysis of steel, thus Stipe et al16 limited the 

quantification to main metallic components only, and in the 

paper of Sorrentino et al17 the results of the silicon content 

prediction showed a sufficient discrepancy with the certified 

values. In both cases, the multivariate calibration model was 

built with the use of PLS. At the same time, Thomas and 

Haaland18 demonstrated that the best results for content 

prediction with multivariate calibration model can be obtained 

for either PLS or PCR for different synthetic data sets. 

Moreover, Yaroshchyk et al19 reported that standard PLS and 

PCR models provided similar prediction accuracy, although 

there were notably less latent variables in the case of PLS. 

What method (multivariate or univariate) can be adjusted to 

obtain a better prediction? Usual univariate technique includes 

optimization of temporal conditions to achieve maximal 

separation from other spectral lines besides maximal signal-to-

noise ratio (SNR), while PCR may provide the same accuracy 

without clear distinguishing of individual signals. In this study 

we therefore focused on a comparison between several 

calibration approaches for precise determination of Si, Mn, Cr 

and Ni in high-alloyed stainless steel by means of LIBS. To 

allow for this, we estimated a prediction capability of PCR 

models with the use of different spectral regions containing 

analytical lines of interest as input data and various number of 

PC’s. It seems to be reasonable to use of PCR for development 

of a multivariate calibration model in order to eliminate spectral 

interferences. Several analytical lines for each element as well 

as the signals normalized by background, internal standard etc. 

are checked for univariate calibration strategies. 

 

Experimental 

For analytical measurements we used a typical LIBS setup. 

Radiation from Q-switched Nd:YAG (λ = 532 nm, 8 ns, 60 mJ 

per pulse) laser was directed by a group of right-angle prisms to 

an achromatic lens (air-spaced doublet, Thorlabs, USA) with F 

= 150 mm. A laser beam (d=6 mm) was focused 

perpendicularly onto the sample surface to be ablated in order 

to form laser plasma. The emission from the central part of 

laser-induced plasma was projected by two-lens condenser with 

the decrease of an image 2:1 onto the slit (25 µ) of the Czerny-

Turner spectrometer “HR 320” (ISA Instruments, USA). The 

center of the plasma plume, lenses, and slit were aligned 

coaxially. Spectrometer, equipped with ICCD camera 

“Nanogate-2V” (Nanoscan, Russia), provided resolving power 

of ~8000 at 400 nm. Synch output of the Q-switch triggered 

ICCD camera. The home-made software in LabVIEW® 

environment controlled the main parameters of the camera 

(delay, gate, gain). Data pre-processing (background removing, 

wavelength calibration, and correction for the sensitivity of the 

photocathode) was performed after the measurements. For these 

purposes, background was taken as the minimal intensity in the 

spectrum. To avoid any changes within spectral data, we did 

not perform de-noising of spectra. Nevertheless, usual 

procedure of spectra accumulation to decrease noises was also 

applied. Here and after, we will use a term of cleaned spectrum 

to designate the spectrum after the pre-processing instead of 

raw spectrum, obtained after measurements, as recommended 

by Engel et al.20 

The composition of the used high alloy stainless steel samples 

(BAM, Germany) is given in Table 1. 

Table 1. Composition of high-alloyed stainless steels (BAM, Germany), 

wt.%. 

CRM  No Ni Mn Cr Si 

462 C1 12.550 0.740 12.350 0.460 

461-1 C2 6.124 0.686 14.727 0.374 

462-1 C3 12.850 0.722 11.888 0.463 

463-1 C4 10.200 1.400 18.460 0.270 

464-1 C5 20.050 0.791 25.390 0.570 

465-1 C6 9.240 1.380 17.310 0.405 

466-2 C7 10.200 1.311 17.840 0.480 

468-1 C8 8.900 1.700 17.960 1.410 

475 C9 5.660 0.890 14.140 0.210 

284-2  C10 10.720 1.745 16.811 0.537 

We collected 20 spectra of each sample after 5 cleaning shots in 

one point of the sample. In compliance with the 

recommendations of Tognoni et al21 we optimized the main 

experimental parameters of LIBS measurements: laser fluence 

on a sample and temporal parameters of emission signal 
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registration (delay after a laser pulse and gate). We adjusted the 

gain of ICCD camera to avoid blooming. To choose optimal 

experimental conditions the measurements were performed for 

the sample C2. Fluence was changed by moving a focus 

position below the surface of the sample, ensuring the minimal 

fluctuation of peak signal of the silicon line Si I 212.41 nm. The 

best values of RSD (8%) and the signal-to-background ratio 

were obtained at 6 mm below the surface. Therefore, in further 

measurements we used this configuration. The diameter of the 

spot was ~400 µ, and the fluence was approximately 

5 GW/cm2. Optimal temporal parameters of Si I 212.41 nm 

signal registration, providing high signal-to-background and 

high SNR, were the delay after a laser pulse of 3.5 s and the 

gate of 1 s. The optimal temporal parameters for registration 

of Mn I 404.13 nm were delay after a laser pulse of 5 s and 

gate of 5 s. Spectra of the sample C2 in two spectral ranges 

are presented in Figures 1-3. 

 
Figure 1. a) Spectrum of the sample C2 in the range 210.1-231.9 nm: 

Fe I 211.31 nm (1), Ni I 212.14 nm (2), Si I 212.41 nm (3), Fe I 213.97 nm (4), 

Ni II 216.91 nm (5), Ni II 217.51 nm (6), and Fe I 217.26 nm (7). b-c) The detailed 

spectra of all studied samples within the ranges marked by red rectangles. 

Results and discussion 

Univariate calibration 

Since the number of silicon lines observed in the spectrum of 

the laser plasma much smaller than the ones of manganese, 

chromium and nickel, the main efforts were forwarded to 

analytical signal improvement for silicon determination. 

Initially, we examined the spectral ranges with often used 

silicon emission lines Si I 251.61 nm and Si I 288.16 nm. In the 

first case, the spectral interferences from main components of 

steels were extremely high, and there was no difference near 

the expected line of silicon in spectra of samples with the 

different content of Si. There was strong overlapping with the 

atomic and ionic lines of chromium in case of Si I line at 

288.16 nm. Thus, we accomplished an additional optimization 

in this range to obtain the maximal intensity ratio of the Si I 

288.16 nm line to sum of Cr II 288.09 and Cr I 288.11 nm lines. 

 
Figure 2. a) Spectrum of the sample C2 in the range 398.8-413.0 nm: 

Cr I 401.248 nm (1), Fe I 401.453 nm (2), Cr I 403.91 nm (3), and Mn I 404.13 nm 

(4) and Fe I 411.85 nm (5). b) Spectra of all studied samples in the range marked 

by blue rectangle. 

 
Figure 3. The spectrum of the sample C2 in the range 344.9 365.2 nm: Fe I 349.06 

nm (1), Ni I 349.26 nm (2), 350.08 nm (3), 359.77 nm (4). The spectral ranges 

used for multivariate calibration are marked by red rectangle.  

We studied the evolution of silicon and chromium emission 

lines during an evaporation of a non-alloy steel and high-purity 

chromium, respectively (gate was fixed to 2 µs, delay was 

varied from 2 to 36 µs with the step 2 µs). We found that 

emissivity of Cr lines decays faster than the ones of Si lines 

(see Figure 4,a). At the same time SNR of Si line was 

decreased from 16 at 26 µs to 4 at 36 us. Therefore, the delay 

time for spectra registration was chosen as late as far the signal 

of Si line was observed with the high SNR (delay 26 µs and 

gate 10 µs). Resulting SNR was equal to 84 for the sample with 

minimal Si content (C9). Spectra obtained for these temporal 

parameters in the range 287.5-288.5 nm are presented in Figure 

4,b. Additional optimization allowed obtaining a linear 
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calibration, however, the linearity was still insufficient (Table 

2) for quantitative determination of silicon. This is due to the 

influence of Cr lines even after optimization. 

 
Figure 4. a) The dependencies of Si I line and sum of Cr II 288.09 and Cr I 288.11 

lines on delay time. The parameters of exponential decay are given in a legend. 

b) Spectra of all samples  in the range 287.5-288.5 nm. 

Reducing the matrix effects with the use of an internal standard 

was impossible because there were no available individual lines 

of iron in this spectral window. We achieved the slight 

improvement of calibration by determining a baseline value as 

the value of the closest minimum in the blue region of the 

emission spectrum (see Table 2). The self-absorption was 

observed for the sample with the highest content of silicon 

(C8); therefore, we plotted a calibration curve without sample 

C8, and linearity was sufficiently better (R2=0.88). Since our 

attempts to improve the quality of univariate calibration with 

the use of Si I line at 288.16 nm did not lead to appropriate 

results, we considered the Si I line at 212.41 nm that had been 

previously used only as an internal standard in the LIBS 

quantification of phosphorus in ores22 and carbon in coal.23 

There were no spectral interferences from iron and chromium. 

Although there was some overlapping with the wings of Ni I 

line at 212.14 nm, two individual peaks can be easily 

distinguished (see Figure 1,b). This led to sufficient high 

linearity of the calibration curve for the determination of silicon 

in high-alloy steels (see Figure 5,a). We used some individual 

lines of iron available in this spectral range as the internal 

standard, but this did not improve the calibration curve (see 

Table 2). Similar to Si I line at 288.16 nm some improvement 

in calibration was achieved with the exclusion of the C8 sample 

and setting a baseline level (Figure 6). Thus, to construct 

conventional calibration for silicon determining in high-alloyed 

steels the use of Si I line at 212.41 nm provided the best result 

since it less affected by spectral interferences (see Figure 1,b). 

We chose the spectral range of 399-413 nm for the 

determination of manganese and chromium, where there are a 

number of their well-resolved lines as it was explicitly shown 

after modeling spectra within the range.24 We examined Mn I 

404.13 nm, Cr I 401.248 nm and Cr I 403.91 nm as analytical 

lines, and the resonance lines of manganese were not 

considered to avoid self-absorption. There was an interval 

within this spectral range without emission lines, where the 

light intensity corresponded to continuous background of the 

laser plasma. We have tried to use this value to reduce pulse-to-

pulse variations of the laser plasma, but no significant changes 

(or even a worsening) of the calibration curve were observed, 

the same result was received with the subtracting of the 

baseline intensity (see Table 2). Since the normalization by the 

background radiation worsened calibration, we did not use it 

further. Here and after, the baseline corrected signals were used 

for internal standardization. The use of iron line Fe I 411.85 nm 

as an internal standard allowed the correction of matrix effects 

and the improvement of the calibration curve, so in the case of 

the coordinates normalized intensity to the ratio of manganese 

and iron contents the square of the linear correlation coefficient 

was 0.996 (see Figure 5,d). Similarly to manganese 

determination (with the use of cleaned signal, baseline 

correction and normalization to the internal standard) 

calibration curves were plotted for selected analytical lines of 

chromium (see Table 2). The best calibration was provided for 

the chromium line Cr I 403.91 nm normalized by Fe I 411.85 

nm (see Figure 5,b). 

 
Figure 5. The best univariate calibration curves obtained for: a) Si , b) Cr, c) Ni, 

and d) Mn. 

In the case of Ni determination, there are a lot of strong 

overlapped lines of Ni I and Ni II in the spectral range 210-220 

nm. Only three nickel lines, which can be considered as isolated 

lines, e.g. Ni I 212.14 nm, Ni II 216.91 nm, and Ni II 217.51 

nm, were examined to build univariate calibration curves. The 

prediction capabilities of several techniques, which were used 

for calculation of the analytical signal, are compared in Table 
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2. Cleaned intensities at each line provided better prediction 

than the intensities normalized by several reference iron lines 

(R2~0.8–0.9 vs 0.4–0.8). Since the quality of the calibration 

curve for Ni determination was not sufficient for analytical 

measurements, we examined the range of 345-365 nm, 

containing several isolated lines of Ni. For univariate 

calibration we used Ni I 349.26 nm, 350.08 nm, 359.77 nm as 

analytical lines, and the Fe I 349.06 nm as an internal standard. 

These analytical lines provided good linearity of calibration 

curve after normalization by internal standard. The best 

calibration curve for Ni is shown in Figure 5,c (R2=0.996).

Table 2. The results for univariate calibration with the use of different normalization techniques. 

Analytical signal R2  Analytical signal R2 

Si  Ni 

Si I 212.41 nm (cleaned) 0.90  Ni I 212.14 nm – baseline 0.78 

Si I 212.41 nm - baseline 0.92  Ni I 212.14 nm / Fe I 211.31 nm 0.44 

Si I 212.41 nm / Fe I 211.31 nm 0.57  Ni I 212.14 nm / Fe I 213.97 nm 0.65 

Si I 212.41 nm / Fe I 213.97 nm 0.65  Ni II 216.91 nm – baseline 0.87 

Si I 212.41 nm / Fe I 217.26 nm 0.77  Ni II 217.51 nm (cleaned) 0.79 

Si I 288.16 nm (cleaned) 0.86  Ni II 217.51 nm / Fe I 213.97 nm 0.76 

Si I 288.16 nm - baseline 0.90  Ni I 349.26 nm (cleaned) & – baseline 0.82 

Si 212.41 (cleaned) without C8 0.94  Ni I 350.08 nm (cleaned) & – baseline 0.91 

Si 212.41 -baseline without C8 0.93  Ni I 359.77 nm (cleaned) 0.86 

Si I 288.16 nm (cleaned) without C8 0.79  Ni I 359.77 nm – baseline 0.92 

Si I 288.16 nm - baseline without C8 0.88  Ni I 349.26 nm / Fe I 349.06 nm 0.996 

Cr  Ni I 350.08 nm / Fe I 349.06 nm 0.994 

Cr I 401.248 nm - baseline 0.968  Ni I 359.77 nm / Fe I 349.06 nm 0.996 

Cr I 401.248 nm / Fe I 401.453 nm 0.994 
 Ni I 349.26 nm / Fe I 349.06 nm 

vs. c(Ni) / c(Fe) 
0.96 

Cr I 401.248 nm / Fe I 411.85 nm 0.966 
 Ni I 350.08 nm / Fe I 349.06 nm 

vs. c(Ni) / c(Fe) 
0.95 

Cr I 401.248 nm / Fe I 401.453 nm 

vs. c(Cr) / c(Fe) 
0.986 

 Ni I 359.77 nm / Fe I 349.06 nm 

vs. c(Ni) / c(Fe) 
0.94 

Cr I 401.248 nm / Fe I 411.85 nm 

vs. c(Cr) / c(Fe) 
0.993 

 
Mn 

Cr I 403.91 nm - baseline 0.970  Mn I 404.13 nm (cleaned) 0.985 

Cr I 403.91 nm / Fe I 411.85 nm 0.968  Mn I 404.13 nm (cleaned) / background 0.958 

Cr I 403.91 nm / Fe I 401.453 nm 0.975  Mn I 404.13 nm / Fe I 411.85 nm 0.959 

Cr I 403.91 nm / Fe I 411.85 nm 

vs. c(Cr) / c(Fe) 
0.996 

 
Mn I 404.13 nm / Fe I 411.85 nm vs. c(Mn)/c(Fe) 0.996 

Cr I 403.91 nm / Fe I 401.453 nm 

vs. c(Cr) / c(Fe) 
0.995 

 
Mn I 404.13 nm – baseline 0.991 

 

 

 
Figure 6. The improvement of univariate calibration curve for Si determination if 

sample C8 was dropped from a set of samples. 

Multivariate calibration 

We applied PCR algorithm to construct a multivariate model 

for prediction of Ni, Si, Cr and Mn concentration. The main 

idea of the approach is a special decomposition of the matrix of 

signals X: 

, 

where T is a matrix of scores and L is a matrix of loadings. The 

detailed description of the procedure may be found elsewhere.25 

The narrow spectral windows containing the analytical lines of 

analytes were cut from the whole spectral range in order to 

obtain X matrices. The main parameter of the model is the 
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number of principal components (PC’s, i.e. the number of 

significant column vectors in matrix T). It is necessary to 

determine the number of PC’s in order to avoid underfitting, 

which can lead to incorrect results of quantitative analysis. 

Leave-One-Out (LOO) cross-validation26 procedure was used 

for estimation of robustness of constructed models. We slightly 

modified the ordinary minimizing Root-Mean-Square Error of 

Cross-Validation (RMSECV) and replaced it with the relative 

RMSECV according to the expression: 

 

where  and  were the predicted concentration of component 

in the i-th sample and nominal ones, respectively, and n was the 

total number of samples under procedure LOO cross-validation. 

Two approaches to the determination of the optimal number of 

PC’s were performed. In the first case, we took the number of 

PC’s corresponding to the minimum of RMSECV, % parameter 

as an optimum. Second approach was used to reduce the 

number of PC’s in order to avoid an overfitting of the model. 

We applied F-criterion described in the paper26 to a set of the 

samples involved in cross-validation procedure. A simple 

metrics based on prediction error sum of squares (PRESS) 

representing a sum of squares  was used. The 

optimal number of PC’s (h) can be found from the metrics: 

 

where  was the number of PC’s corresponding to a minimum 

of the PRESS, and Fm, m, 1-α was the coefficient of Snedecor’s 

distribution with m=n-1 degrees of freedom and probability 1-

α. While the condition was true, h (h<h*) was reduced. We 

used α=0.25 in accordance with the recommendation of 

Haaland and Thomas26 to avoid underfitting. It meant that the 

parameters PRESS(h) and PRESS(h*) were differed with the 

probability (1-2α)×100%=50%. The results of our calculation 

are given in Table 3. 

To improve the robustness of constructed models, we 

investigated the changes of the RMSECV, % vs number of PC’s 

besides searching for the minimum of relative RMSECV and the 

use of F-criterion. The prediction capabilities of the constructed 

models were differed strongly between two training sets of 

samples with and without sample C8. Figure 7 illustrates both 

cases of Si prediction. For the complete set, the smooth trend of 

RMSECV, % (Figure 7,a) cannot be obtained in the range of 

212 nm, and unexpected minimum at 2 PC’s is observed for the 

range of 288 nm. Thus, we supposed that models were unstable. 

The self-absorption of Si I lines (212.41 nm and 288.16 nm) for 

the sample C8 with the highest content of Si seemed to be a 

reasonable explanation of such observation. Therefore, we 

excluded the sample C8 from the procedure of LOO 

cross-validation. The smooth trend of the RMSECV, % was 

obtained in the range of 212 nm (Figure 7,b). In the range of 

288 nm the unexpected minimum at 2 PC’s was remained. 

Since there were several strong resonance lines of Si I in the 

range of 220 nm, this range was examined as a separate model. 

The results for Si prediction without sample C8 in the range of 

220 nm (Table 3) were worsened significantly (R2 decreased 

from 0.88 to 0.55). Therefore, such model cannot be considered 

as a stable model too. Perhaps, the instability might be caused 

by two reasons: (i) the overlapping of many lines of Si with the 

lines of Ni and Fe, and (ii) relatively small signal of Si in 

comparison with other signals. Therefore, the most stable and 

best model for Si prediction was one constructed in the range of 

212 nm with excluding the sample C8. Figure 7,b demonstrates 

the selection of the optimal number of PC’s according to F-

criterion. Minimum of RMSECV, % in the right picture 

corresponds to 7 PC’s, but the application of F-criterion 

resulted in that 4 PC’s were enough. It means that the number 

of PC’s can be reduced from 7 to 4 without essential worsening 

of prediction accuracy for both spectral ranges (288 nm and 212 

nm). 

 
Figure 7. The evolution of RMSECV, % for prediction of Si for all samples 

represents unstable models (a). The case of stable models without sample C8 is 

shown on the right (b). 

It should be noted that the exclusion of sample C8 given 

slightly better results of the prediction of the Cr concentration 

in the range of 288 nm (see Table 3), but the models for Cr 

were also stable with sample C8. As opposite to Cr and Si 

cases, the prediction of Ni content for both spectral ranges was 

significantly worsened for sets without sample C8. However, 

exclusion of the sample C8 decreased twice the number of 

PC’s. In Figure 8, the evolution of RMSECV, % for Ni in the 

 
Figure 8. Selection of the stable model for prediction of Ni concentration and the 

optimal number of PC’s for Ni: a) the range 220 nm b) the range 345 and 356 nm 

range of 220 nm illustrates that the model without sample C8 

was stable. The best model for Ni prediction with 6 PC’s both F 

criterion restriction and without it was obtained in the range 

356.23 356.76 nm (Figure 8,b), which included several 

unresolved lines (Fe I 356.54 nm, Ni I 356.64 nm and a number 

Page 6 of 11Journal of Analytical Atomic Spectrometry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 Jo

ur
na

lo
fA

na
ly

tic
al

A
to

m
ic

S
pe

ct
ro

m
et

ry
A

cc
ep

te
d

M
an

us
cr

ip
t



Journal Name ARTICLE 

This journal is © The Royal Society of Chemistry 2012 J. Name., 2012, 00, 1-3 | 7  

of Cr I lines). But the model for Cr was unstable in this range 

for any number of PC’s. This fact may be explained by 

overlapping of Cr I lines with different transition probabilities 

and excitation conditions which violated the additivity of 

signals. We obtained a stable model with 4 PC’s for Mn 

prediction either with F-criterion or without it (see Figure 9). 

 

Table 3. The results of PCR prediction capabilities for Ni, Si, Cr and Mn concentations. 

Set of the 

samples 
Spectral range, nm 

No. of 

variables1 
F-criterion No. of PC's RMSECV RMSECV, % R2 

Ni 

C1 – C10 

212.02 – 212.68 43 
no 6 1.4 14 0.88 

yes 5 1.6 16 0.83 

220.42 – 221.26 55 
no 8 0.9 10 0.96 

yes 8 0.9 10 0.96 

C1 – C7, C9, 
C10 

212.02 – 212.68 43 
no 5 1.8 17 0.82 

yes 4 2.7 39 0.56 

220.42 – 221.26 55 
no 3 1.5 14 0.90 

yes 3 1.5 14 0.90 

C1 – C10 

345.14 – 345.49 25 
no 7 1.3 14 0.81 

yes 3 1.5 17 0.85 

356.23 – 356.76 37 
no 6 0.7 5 0.98 

yes 6 0.7 5 0.98 

Si 

C1 – C10 

212.02 – 212.68 43 
no 1 0.3 30 0.33 

yes 3 0.2 39 0.68 

220.42 – 221.26 55 
no 7 0.13 18 0.88 

yes 7 0.13 18 0.88 

287.55 – 288.49 64 
no 6 0.2 23 0.73 

yes 5 0.2 26 0.60 

C1 – C7, C9, 

C10 

212.02 – 212.68 43 
no 7 0.04 8 0.90 

yes 4 0.04 10 0.86 

220.42 – 221.26 55 
no 7 0.07 23 0.55 

yes 1 0.10 34 0.23 

287.55 – 288.49 64 
no 6 0.04 12 0.87 

yes 4 0.05 14 0.84 

Cr 

C1 – C10 

287.55 – 288.49 64 
no 8 0.6 3.4 0.975 

yes 5 0.6 4.0 0.971 

402.80 – 404.25 104 
no 4 0.8 4.3 0.957 

yes 4 0.8 4.3 0.957 

C1 – C7, C9, 

C10 
287.55 – 288.49 64 

no 7 0.5 3.1 0.987 

yes 4 0.6 4.0 0.978 

C1 – C10 345.14 – 345.49 25 
no 7 1.9 12 0.73 

yes 5 2.0 14 0.72 

Mn 

C1 – C10 402.80 – 404.25 104 
no 4 0.04 2.8 0.991 

yes 4 0.04 2.8 0.991 

1 the number of variables is the number of pixels in the wavelength region 

 

 

The best results for the prediction of the elements are presented 

in Figure 9. To plot these figures, we choose the most stable 

model for each element, and the number of PC’s corresponded 

to optimal ones with the use of the F-criterion. Procedures for 

Mn and Cr determination provide reliable prediction accuracy 

and can be recommended as the analytical techniques for 

determination of these elements in high-alloyed steel. Perhaps, 

looking for an appropriate spectral range for Ni determination 
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can improve the prediction accuracy. We can recommend the 

range of 212 nm for silicon prediction, however, the additional 

optimization of experimental condition is needed to avoid the 

self-absorption of Si I line. 

 

 

 
Figure 9. The best multivariate prediction plots obtained for Si, Mn, Ni, and Cr.  

Conclusions 

We compared two calibration strategies (univariate and 

multivariate) for determination of Ni, Cr, Mn and Si in 

high-alloyed stainless steels. The different types of peak signal 

(cleaned, baseline corrected, corrected to internal standard) 

were used for plotting common univariate calibration curves. 

PCR was implemented for multivariate calibration. The use of 

line 212.41 nm for Si determination was better because 

self-absorption and spectral interferences were less than for the 

line at 288.16 nm. The best results for Cr, Ni and Mn 

(R2=0.996) were obtained with the use of common calibration 

with appropriate internal standard lines of iron. We can 

conclude that if the analyte signal is isolated in a varying 

degree by temporal separation of emission lines in LIBS 

spectrum, the univariate calibration with the using of 

appropriate internal standard is preferable because it gives 

better results. Multivariate calibration seems to be preferable 

with respect to the better prediction in the case of impossibility 

to separate signals anyway. 
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Overcoming matrix effect on LIBS analysis of high-alloyed stainless steel by specifying the 

temporal parameters of signal registration and multivariate calibration based on principal 

component regression (PCR) have been evaluated. 
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