JAAS

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/jaas

 $\begin{array}{c} 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

1	Single-step separation scheme and high-precision
2	isotopic ratios analysis of Sr-Nd-Hf in silicate
3	materials
4	
5	Chao-Feng Li ^a * Jing-Hui Guo ^a Yue-Heng Yang ^a
6	Zhu-Yin Chu ^a Xuan-Ce Wang ^b
7	
8	^a State Key Laboratory of Lithospheric Evolution, Institute of Geology and
9	Geophysics, Chinese Academy of Sciences, Beijing 100029, China
10	^b The institute for Geoscience Research (TIGer), Curtin University, GPO Box U1987,
11	Perth, WA6845, Australia
12	
13	
14	
15	
16	
17	
18	
19	
20	*Corresponding author: Chao-Feng Li
21	E-mail address: cfli@mail.iggcas.ac.cn
22	Tel: +86-10-82998583

Journal of Analytical Atomic Spectrometry Accepted Manuscr

3 4 5 6 8

23 Abstrac	t:
------------	----

24	Thermal ionization mass spectrometry and multiple-collector inductively coupled
25	plasma mass spectrometry are considered "gold standards" for determining the
26	isotope ratios of Sr-Nd and Hf in geological samples because of the extremely high
27	precision and accuracy of these methods. However, the sample throughputs are
28	hindered by time-consuming and tedious chemical procedures. Three-step ion
29	exchange resin separation is traditionally employed to purify Sr-Nd-Hf from matrix
30	elements. In this study, a one-step Sr-Nd-Hf separation scheme is developed to
31	process geological samples. The separation scheme is based on the combined use of
32	conventional AG50W-X12 cation-exchange resin and LN Spec extraction
33	chromatographic material without any intervening evaporation step. The protocol not
34	only prevents cross-contamination during operation using multiple-stage ion exchange
35	resins but also significantly improves the efficiency of sample preparation. The
36	stability of our chemical procedure is demonstrated through replicate measurements
37	of ⁸⁷ Sr/ ⁸⁶ Sr, ¹⁴³ Nd/ ¹⁴⁴ Nd, and ¹⁷⁶ Hf/ ¹⁷⁷ Hf ratios in six international reference materials
38	of silicate rocks. The analytical results obtained for these standard rocks well agree
39	with the published data. The external reproducibility (2 SD, $n = 10$) of a BCR-2
40	standard sample was \pm 0.000018 for $^{87}\text{Sr}/^{86}\text{Sr},$ \pm 0.000010 for $^{143}\text{Nd}/^{144}\text{Nd},$ and \pm
41	0.000014 for 176 Hf/ 177 Hf.
42	

Keywords: Sr-Nd-Hf isotope ratios; Single-step separation; TIMS; MC-ICP-MS

2
3
4
5
6
7
0
ð
9
10
11
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
38
39
40
40 //1
10
42
43
44
45
46
47
48
49
50
51
52
53
5/
54
55
56
57
58
59
60

45 **1. Introduction**

46	⁸⁷ Sr/ ⁸⁶ Sr, ¹⁴³ Nd/ ¹⁴⁴ Nd and ¹⁷⁶ Hf/ ¹⁷⁷ Hf ratios, which show variations by
47	radioactive decay of long half life isotopes of ⁸⁷ Rb, ¹⁴⁷ Sm and ¹⁷⁶ Lu, respectively, are
48	routinely used for geochemistry as petro-genetic tracers, yielding information on
49	time-integrated elemental fractionation through processes of melting, crystallization,
50	metasomatism, and contamination. ¹ In particular, the combination of radiogenic
51	Sr-Nd-Hf isotope systems has become a more powerful tool for understanding
52	fundamental Earth processes as well as the Earth's evolution. Thus, conducting
53	multi-isotopic analyses (e.g., Sr-Nd-Hf) is critical on the same sample.
54	Thermal ionization source mass spectrometry (TIMS) and multiple-collector
55	inductively coupled plasma mass spectrometry (MC-ICP-MS) both possess high
56	accuracy, excellent sensitivity, and low memory. The methods are regarded as
57	benchmark techniques for Sr-Nd and Hf isotopic ratio analysis and widely used in
58	Earth science. ²⁻¹² However, to obtain stable and high intensity of ion signals during
59	TIMS and MC-ICP-MS measurements, Sr-Nd-Hf elements must be separated from
60	sample matrices and be as clean as possible. Purification of Sr-Nd-Hf prior to mass
61	spectrometric measurement is traditionally accomplished by using at least
62	three-column chromatography after a single sample digestion. ¹³⁻¹⁴ The first stage
63	involves the separation of Hf from other elements using an anion resin ¹⁵ or a special
64	resin column, such as LN resin ^{13, 16} , U-TEVA resin ^{12, 14} , TEVA ^{8, 17} , or TODGA
65	resin. ¹⁰ The discard from the first column is then dried and dissolved using HCl or
66	HNO ₃ . Subsequently, Sr and rare earth elements (REEs) are separated from the matrix

Journal of Analytical Atomic Spectrometry Accepted Manuscr

Journal of Analytical Atomic Spectrometry

1
2
3
4
5
Э
6
7
8
0
9
10
11
40
12
13
14
15
15
16
17
10
10
19
20
21
21
22
23
24
27
25
26
27
20
20
29
30
21
51
32
33
3/
04
35
36
37
00
38
39
40
14
41
42
43
11
44
45
46
17
40
48
49
50
51 51
51
52
53
51
54
55
56
57
57
58
59
60

67	elements using a second cation exchange resin column, such as a AG50W resin
68	column. ^{2, 5-7, 11, 13, 14, 18, 19} Finally, Nd is separated from the REEs using a third resin
69	column, such as HDEHP resin column, ^{2, 4-6, 11, 13, 14, 18-20} HEHEHP resin column ⁷ , A25
70	resin column and A27 resin column. ²¹ Traditional three-step separation procedures
71	involve tedious pre-cleaning of the column and fraction evaporation. The traditional
72	multi-step chemical procedure takes at least three days to complete and large amounts
73	of reagents upon completion of column chemistry for a batch of geological samples
74	(e.g., 20~30 samples). Thus, the separation efficiency is low for traditional methods
75	and the sample throughput is impeded. In addition, traditional methods increase the
76	probability of contamination from cross-operation in column chemistry associated
77	with complex operation steps.
78	To the best of our knowledge, no available literature has reported the use of
79	analytical protocols to concomitantly separate Sr-Nd-Hf fractions from a single
80	sample digest using a one-step separation method. Yang ²² and Li ²³ recently presented
81	a method to precisely determine Nd isotopic ratios from the REEs using MC-ICP-MS
82	and TIMS. Based on this method, the traditional two-step Nd separation method was
83	simplified to a one-step procedure. More importantly, the method allowed Sr-Nd-Hf
84	isotopic determination using TIMS and MC-ICP-MS so long as high-purity Sr,
85	REE-enriched Nd, and Hf could be achieved. To this end, we present a one-column
86	separation procedure based on optimization of mixed cation resins (AG50W-X12 +
87	LN Spec).
88	The present study aims to reduce their rather extensive and costly cleaning and

1	
2	
3	
4	
5	
6	
0	
1	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
20	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
27	
31	
38	
39	
40	
41	
42	
43	
44	
15	
40	
40	
47	
48	
49	
50	
51	
52	
52	
53	
54	
55	
56	
57	
58	
59	
60	
111	

89	separation procedures for resin and columns without negatively affecting the data
90	quality. This one-step separation route of obtaining Sr-Nd-Hf from a single
91	dissolution enables higher throughput for data acquisition by TIMS and MC-ICP-MS.
92	To verify the robustness of the new separation protocol for Sr-Nd-Hf, six certified
93	reference materials (CRMs) of silicate rocks, encompassing a wide range of matrix
94	compositions and analyte concentrations, were analyzed.
95	
96	2. Experimental
97	2.1 Reagents, chemicals materials and standards

Re ribbon: 0.035mm thick, 0.77 mm wide and 99.98% pure, H.Cross Company.

Acids and water: All AR grade acids (hydrochloric acid, nitric acid and hydrofluoric
acid) were further purified using SavillexTM DST-1000 sub-boiling distillation system
(Minnetonka, USA). Phosphate acid was purified using chromatographic method of
AG50W-X12 resin manufactured by the Bio-Rad company. Ultrapure water with a
resistivity (18.25 MΩ.cm⁻¹) was obtained from a Milli-Q Element system (Millipore,
USA) and used throughout this work for diluting concentrated acids.

Journal of Analytical Atomic Spectrometry Accepted Manuscrip

- Sr-Nd-Hf standard solutions: A stock solution of 100 ppm Sr and Nd was
 gravimetrically prepared to monitor a Triton Plus TIMS instrument using NIST NBS987 and JNdi-1 reference materials. A JMC 475 Hf international standard solution of
 108 100 ppb was used to monitor the stability of a Neptune Plus instrument.
- Resin: Commercially available cation (AG50W-X12, 200-400 mesh size) and LN
 Spec resin (100-150 μm) were obtained from Bio-Rad company and Eichrom

111 company.

Column: The cation-exchange polypropylene column was 7 cm long and had a 6 mm i.d. and 5 mL reservoir. The column was packed with 1.5 mL of Bio-Rad AG50W-X12 resin and 0.45 mL of LN Spe resin. Rock standard samples: Rock powders of the CRMs were obtained from the United States Geological Survey (USGS) and Geological Survey of Japan (GSJ). These CRMS included USGS BCR-2 (basalt), BHVO-2 (basalt), W-2 (diabase), BIR-1(basalt), GSJ JA-1(andesite), and JA-3 (andesite). Labwares: The labware used included 15 and 7.0 mL PFA Teflon vials with screw top lids (Savillex Corporation, USA). The vials were used for sample digestion, solution collection, and evaporation and cleaned prior to use with a degreasing agent followed

- 122 by sequential washing in AR grade HNO_3 , HCl, and ultra-pure H_2O .

2.2 Sample digestion

It was critical to achieve full recovery of Sr-Nd-Hf. Especially for Hf isotopic ratio analysis, a critical point was the common occurrence of Zr + Hf-rich refractory minerals, such as zircon, baddelevite and garnet, which might host a major proportion of the hafnium contained in the bulk rock. In previous studies, two digestion methods were widely used in digestion geological samples:HF-HNO₃-HClO₄ mixture dissolutions based on high-pressure PTFE bomb devices^{8, 11, 13, 15} and Lithium metaborate or Na₂O₂ flux melting methods.^{10, 12, 24} The flux melting method had the advantages of being rapid and ensuring full sample digestion regardless of mineralogy

Journal of Analytical Atomic Spectrometry

1
2
3
4
5
6
7
1
8
9
10
11
12
13
14
15
16
17
18
19
20
21
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
27
20
30 20
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52
53
04 55
55
56
57
58
59
60

133	or composition. However, the procedural blanks were high especially for Nd (~ 0.37
134	ng^{24} , ~1.5 ng^9). The HF-HNO ₃ -HClO ₄ mixture dissolutions based on high-pressure
135	PTFE bomb devices had the advantages of lower blanks. Furthermore, most isotope
136	laboratories had all the necessary equipments and experiences to immediately initiate
137	this method. It has the disadvantages of being slow (2~3 days). Considering the
138	potential blank effect from flux reagents, we adopt the dissolutions of
139	HF-HNO ₃ -HClO ₄ mixture in this study.
140	All chemical preparations were conducted on special class 100 work benches
141	inside a class 1000 clean laboratory. Approximately 50~60 mg of rock powder
142	materials were weighed into a steel-jacketed acid-washed high-pressure PTFE bomb.
143	The samples were dissolved on a hotplate at 190 °C using an acid mixture of 3 mL of
144	29 M HF, 0.3 mL of 14 M HNO ₃ , and 0.3 mL of 11.8 M HClO ₄ for 5 days. Usually, 2
145	\sim 3 days digestions were sufficient for most silicate samples. To obtain perfect sample
146	digestion, we prolonged the digestion time to 5 days in this study. All samples were
147	completely digested in this study. Digested samples were dried on a hotplate
148	overnight at $\sim 120^{o}\text{C}$ and then reconstituted in 3 mL of 6 M HCl. This solution was
149	again dried at ~ 160 °C. Finally, the samples were re-dissolved with 1.1 mL of 2.5 M
150	HCl on a 100 °C hotplate overnight before commencing ion exchange chemistry.
151	Clear solutions of all sample fractions were obtained and no insoluble fluoride
152	compounds were found in this study.
153	
154	2.3 Column chemistry

Journal of Analytical Atomic Spectrometry Accepted Manuscr

Journal of Analytical Atomic Spectrometry

1
י ר
2
3
4
5
6
7
1
8
9
10
11
10
12
13
14
15
16
10
17
18
19
20
21
21
22
23
24
25
20
26
27
28
29
20
30
31
32
33
34
25
35
36
37
38
20
10
40
41
42
43
11
44
45
46
47
48
-10 10
49
50
51
52
52
55
5 4
55
56
57
50
00
59
60

155	The solutions obtained from previous steps were centrifuged at 5000 rpm for
156	8 min. Then, as shown in Figure 1, 1 mL of the supernatant solution was passed
157	through a two-layered mixed-resin column (70 mm length \times 6 mm diameter), with the
158	upper layer containing 1.5 mL of AG50W-X12 (200-400 mesh) resin and bottom
159	layer containing 0.45 mL of LN Spec resin (100–150 μ m). Before sample loading for
160	separation of Sr-Nd-Hf from the sample matrix, the mixed resin column was
161	pre-washed with 18 mL of 6 M HCl, 8 mL of 3 M HF, and 4 mL of H_2O in turn.
162	As shown in Table 1 and Figure 2, after sample loading and rinsing four times
163	with 0.5 mL of 2.5 M HCl, the column was washed with 13.5 mL of 2.5 M HCl. Most
164	matrix elements (K, Ca, Na, Mg, Al, Fe, Mn, Ti) and Rb were removed during this
165	step. Some Sr (~ 27 %) was also washed out in this step. Then, the Sr fraction,
166	containing of ~71 % Sr, was stripped with 5.5 mL of 2.5 M HCl. Part of the HREEs
167	(~ 2 % Dy, ~ 5 % Ho, ~ 14 % Er, ~ 23 % Tm, ~ 11 % Yb, ~ 2 % Lu) and ~ 10 % of
168	Ba were then washed out with 3 mL of 2.5 M HCl. Next, the REEs fraction-enriched
169	Sm+Nd (\geq 96%) was then stripped with 8 mL of 6 M HCl. Sr and the REEs
170	fraction-enriched Sm+Nd were dried on a hotplate at 120 °C to dryness and readied
171	for TIMS analysis. Residual of Ti on the LN Spec resin was completely washed out
172	using 15 mL of 3 M HCl +0.75 % H_2O_2 mixture. Finally, Hf, Zr, Nb, and Ta were
173	extracted from the column with 5 mL of 3.0 M HF. The resulting Hf fraction,
174	containing of ~ 93.4 % Hf, was evaporated on a hotplate at 120° C to dryness, taken up
175	in 0.05 mL of 0.5 M HF + 0.8 mL 2.0 M HNO ₃ , and then readied for MC-ICP-MS
176	analysis. The complete separation procedure, including pre-cleaning of the column,

1	
2	
3	
4	
5	
6	
7	
8	
a	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
20	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
27	
3Z	
33	
34	
35	
36	
37	
38	
39	
40	
/1	
יד ⊿י	
+∠ ⁄\?	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
53	
54	
55	
56	
57	
58	
59	
60	

177	takes only approximately 9 h for 20 samples or about 70 % less time compared with
178	conventional three-step column chemistry.

- 179
- 180 **2.4 TIMS for Sr and Nd isotopic analysis**

181The isotopic compositions of Sr and Nd were measured using a Triton Plus182TIMS instrument (ThermoFisher) at the Institute of Geology and Geophysics, Chinese183Academy of Sciences (IGGCAS) in Beijing, China. Single and double Re filament184geometries were used to obtain Sr⁺ and Nd⁺ ion beams, respectively. All Sr and Nd185data were acquired by static multi-collection. The collector array is illustrated in Table1862.

Journal of Analytical Atomic Spectrometry Accepted Manuscrip

For Sr isotope ratio measurements, the evaporation filament was heated at 500 187 mA/min until the ⁸⁸Sr signal reached ~ 20 mV. The beam was centered and roughly 188 189 focused, and the evaporation filament was slowly heated to obtain a signal ~ 4 V of ⁸⁸Sr. Data acquisition was begun when the signal intensity of ⁸⁸Sr had reached ~ 5 V. 190 A peak-center routine was performed prior to data acquisition, and then the baseline 191 192 was measured by deflecting the beams using the x-symmetry lens. The measurement 193 run consisted of 8 \sim 10 blocks of data with 20 cycles per block. The integration time per cycle was 4 s. Before mass fractionation correction, the ⁸⁷Sr signal intensity was 194 corrected for the potential interference caused by the remaining isobaric overlap of 195 ⁸⁷Rb on ⁸⁷Sr using an ⁸⁷Rb/⁸⁵Rb value of 0.385041.²⁵ After column chemistry, the 196 85 Rb/ 86 Sr ratios obtained were $\leq 1 \times 10^{-5}$ in natural silicate sample analysis, showing 197 negligible isobaric interference. Finally, the ⁸⁷Sr/⁸⁶Sr ratio data were normalized to 198

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
20
24
20
20
21
28
29
30
31
32
33
34
35
36
37
38
39
40
41
-⊤ 10
42 12
40 11
44 15
40
40
47
48
49
50
51
52
53
54
55
56
57
58
59
60

199	88 Sr/ 86 Sr = 8.375209 for mass fractionation correction using exponential law. Most of
200	Sr isotopic data were obtained at an internal precision of $\leq \pm 0.000010$ (2 SE).
201	For Nd isotope ratio measurements, the ionization filament was first heated at a
202	rate of 450 mA/min to 4.5 A. The evaporation filament was then heated at 400 mA
203	/min until the ¹⁴⁶ Nd signal reached 20 mV. Subsequently, the beam was centered and
204	roughly focused, and the evaporation filament was slowly heated to obtain a $\sim 1~V$
205	intensity of ¹⁴⁶ Nd. Data acquisition was begun once the intensity of ¹⁴⁶ Nd had reached
206	~ 1.2 V. Before the commencement of the analysis, a peak-center routine was run, and
207	then, the baseline was measured. Data were collected for 8~10 blocks with each block
208	containing 20 cycles, which, in turn, consisted of 4 s of integration time. The typical
209	intensity of ^{147}Sm was about ~ 0.4 V during the period of data acquisition. Isobaric
210	interference from ¹⁴⁴ Sm can be accurately subtracted following our previously
211	reported method. ²³ After correction of the isobaric interference, the ¹⁴³ Nd/ ¹⁴⁴ Nd ratio
212	data were normalized to 146 Nd/ 144 Nd = 0.7219 for mass fractionation correction using
213	exponential law. Most of Nd isotopic data were obtained at an internal precision of \leq
214	\pm 0.000010 (2 SE), which was corrected using our off-line program. ²³
215	Standards NBS-987 and JNdi-1 were analyzed during the sample measurement
216	period to monitor instrument status. The NBS-987 standard gave a mean ⁸⁷ Sr/ ⁸⁶ Sr of
217	$0.710245 \pm 11(2 \text{ SD}, n = 6)$, and the JNdi-1 standard gave a mean ¹⁴³ Nd/ ¹⁴⁴ Nd of
218	0.512109 ± 8 (2 SD, n = 6). Both NBS-987 and JNdi-1 standards were good
219	agreement with previous reported values. All measured ⁸⁷ Sr/ ⁸⁶ Sr and ¹⁴³ Nd/ ¹⁴⁴ Nd
220	ratios of silicate samples were normalized to the well-accepted NBS-987 value of

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
30 26	
30 27	
30 30	
30	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54 55	
00 56	
57	
58	
59	
60	

221 0.710248 ¹¹ and JNdi-1 value	of 0.512115. ²⁶
---	----------------------------

2.5 MC-ICP-MS for Hf isotopic analysis 223

224	Hf isotope ratio determinations were carried out using a Thermo Scientific
225	Neptune Plus MC-ICP-MS at the IGGCAS in Beijing, China. Detailed descriptions of
226	this instrument were previously reported. ^{13, 15} Analyses were performed in the static
227	mode and cup configurations were shown in Table 2. Typical operating parameters for
228	Hf measurement using Neptune Plus were presented in Table 3. A JMC-475 Hf
229	standard solution of 100 ppb was used to evaluate the reproducibility and accuracy of
230	the instrument during analytical sessions. Each run consisted of a baseline
231	measurement and collections of 135~165 cycle that were divided into 9~12 blocks.
232	The integration time of the signals was set to 4 s, and the typical time of one
233	measurement lasted for ~ 15 min. A typical sample size used for most samples except
234	BIR-1 (30~35 ng) was 100~250 ng. Isobaric interferences of ¹⁷⁶ Yb and ¹⁷⁶ Lu on ¹⁷⁶ Hf
235	were monitored by ¹⁷² Yb, ¹⁷³ Yb, and ¹⁷⁵ Lu. The effects of these interferences were
236	corrected on-line using the following values for the stable ratios: 176 Yb/ 173 Yb =
237	0.79323 and ${}^{176}Lu/{}^{175}Lu = 0.026528$. After one-step column chemistry, Lu/Hf and
238	Yb/Hf ratios were generally $\leq 1 \times 10^{-5}$ in natural silicate samples, showing no
239	significant difference in ratios before and after interference correction.
240	After subtraction of the isobaric interferences, the 176 Hf/ 177 Hf ratio data were
241	directly normalized to ${}^{179}\text{Hf}/{}^{177}\text{Hf} = 0.7325$ for mass bias correction using exponential
242	law. ^{13,15} To examine the accuracy of Hf measurement by MC-ICP-MS, samples

Journal of Analytical Atomic Spectrometry Accepted Manuscr

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

243	presented here were interspersed with analyses of the JMC-475 Hf standard. In this
244	study, 100 ppb of JMC-475 yielded a value of 0.282148 ± 9 (2 SD, n = 6), which was
245	slightly lower than that previously reported. Hence, all measured ¹⁷⁶ Hf/ ¹⁷⁷ Hf ratios of
246	silicate samples were normalized to the well-accepted JMC-475 value of 0.282160. ¹⁷
247	Last year, 84 analyses of JMC-475 yielded a 176 Hf/ 177 Hf value of 0.282154 ± 18 (2
248	SD), which was identical to the recommended the well-accepted JMC-475 value of
249	0.282160, ¹⁷ and within the measurement uncertainties.
250	
251	3. Results and discussion
252	3.1 Validation of the method and final results
253	To assess the analytical reproducibility and feasibility of our procedure for
254	silicate samples, six CRMs were selected to encompass a wide range of matrix
255	compositions, and analyte concentrations were determined. Because the silicate
256	samples used in the present study had high Sr contents ($\geq 100 \text{ mg.L}^{-1}$), one fifth of the
257	purified Sr fractions and all Nd fractions were loaded on the filament. The sample size
258	of Sr and Nd in TIMS analysis varied significantly, 0.8~3.4 μg for Sr and 0.12~1.6 μg
259	for Nd. For Hf isotope analysis using MC-ICP-MS, the sample consumption was
260	0.03~0.28 μ g. Sample sizes were estimated according to the sample weight, recovery
261	of the chemical procedure, and published Sr, Nd, and Hf concentration data. ²⁷⁻²⁹
262	During Sr and Nd isotope analyses, as shown in Tables 4 and 5, the ⁸⁷ Sr/ ⁸⁶ Sr and
263	¹⁴³ Nd/ ¹⁴⁴ Nd ratios of all analyzed USGS and GSJ reference materials were obtained
264	with an internal precision better than 0.000013 (2 SE). Average values of 87 Sr/ 86 Sr and

Journal of Analytical Atomic Spectrometry

265	¹⁴³ Nd/ ¹⁴⁴ Nd in the present study as well as previous published data are plotted in Figs.
266	3a and 3b. The 87 Sr/ 86 Sr and 143 Nd/ 144 Nd data presented in the figures agree well with
267	the previously published data obtained through TIMS or MC-ICP-MS. ^{2, 4, 7, 9, 11, 13, 18-20,}
268	22, 30-32

269	During ¹⁴³ Nd/ ¹⁴⁴ Nd ratio determination, the analyzed objects were REEs instead
270	of high-purity Nd. Thus, to further examine whether ¹⁴⁴ Sm can be accurately
271	subtracted from mixed signals of $144(^{144}Sm+^{144}Nd)$ or not, the $^{145}Nd/^{144}Nd$ ratio of
272	silicate samples was also measured and corrected following the previously reported
273	method. ²³ As shown in Table 5 and Figure 4, the corrected 145 Nd/ 144 Nd value is
274	0.348413 ± 0.000008 (2 SD, n = 20) in actual silicate samples, which agrees well with
275	reported values of 0.348405 \sim 0.348419. The obtained data implied that ¹⁴⁴ Sm isobaric
276	interference can be accurately subtracted. ^{22, 23, 33-35}
277	For Hf isotope analysis, as shown in Table 6, the ¹⁷⁶ Hf/ ¹⁷⁷ Hf ratios of most
278	standard samples except BIR-1 were achieved with an internal precision better than
279	0.000012 (2 SE). The internal precision (0.000016~0.000018, 2 SE) of BIR-1 was
280	worse than 0.000012 because the Hf concentration of BIR-1 was only 0.6 ppm, ²⁷ and
281	60 mg of BIR-1 materials yielded a small sample size (~ 32 ng) of Hf. The internal
282	precision of BIR-1 could be improved further by digesting larger amounts of material
283	(~ 120 mg). Subsequently, the digested sample could be divided into two aliquots.
284	Each aliquot should be lower than 60 mg and individually separated so that the
285	purified amalgamated Hf could be obtained sufficient sample sizes (\geq 50 ng). The
286	average values of ¹⁷⁶ Hf/ ¹⁷⁷ Hf in this study and previously published data are plotted in

287	Figure 3c. As shown in Figure 3c and Table 6, the ¹⁷⁶ Hf/ ¹⁷⁷ Hf ratios of all CRMs,
288	except JA-3 that was slightly lower than the published data, agreed well with
289	previously published data. ^{10, 12, 13, 15-17, 36, 37}
290	The BCR-2 CRM possesses an excellent homogeneousness and is widely used to
291	monitor the quality of the chemical procedure and the instrumental status in most
292	geochemical laboratories. Hence, we employ BCR-2 to verify our chemical procedure.
293	The reproducibility of our procedure was demonstrated by ten different dissolutions of
294	BCR-2 powder materials. As shown in Tables 4, 5, and 6, ten replicate measurements
295	of BCR-2 yielded a 87 Sr/ 86 Sr value of 0.705010 ± 0.000018 (2 SD), a 143 Nd/ 144 Nd
296	value of 0.512634 ± 0.000010 (2 SD), and a ${}^{176}\text{Hf}/{}^{177}\text{Hf}$ value of 0.282885 ± 0.000014
297	(2 SD). The external reproducibility of 87 Sr/ 86 Sr, 143 Nd/ 144 Nd, and 176 Hf/ 177 Hf ratios of
298	BCR-2 were better than \pm 0.000018 (2 SD), \pm 0.000010 (2 SD), and \pm 0.000014 (2
299	SD), respectively.
300	In general, the data reproducibility and precision of the proposed method were
301	satisfactory and completely fitted the demands of geochemistry and petrology.
302	Practical silicate samples further demonstrated the usefulness and feasibility of our
303	method.
304	
305	3.2 Separation protocol
306	To avoid isobaric interferences and matrix effects, good chemical separation of
307	Sr-Nd-Hf from the silicate samples is required. Previous studies have revealed that the
308	AG50W cation resin showed an excellent performance in separating Sr and REEs

2	
3	
Δ	
-	
5	
6	
7	
8	
õ	
9	
10	
11	
12	
13	
10	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
<u>~~</u>	
23	
24	
25	
26	
27	
21	
28	
29	
30	
21	
31	
32	
33	
34	
35	
00	
30	
37	
38	
30	
40	
40	
41	
42	
43	
11	
44	
45	
46	
47	
18	
40	
49	
50	
51	
52	
502	
23	
54	
55	
56	
57	
ວ/	
58	
59	
60	

309	from silicate matrix solutions. ^{2, 11, 18-20} Similarly, the selectivity of LN spec resin for
310	Hf allows efficient separation of Hf from silicate matrix solutions. ¹³ Further
311	optimization and setup of both LN Spec and AG50W resins are crucial for our
312	one-step separation procedure. Our proposed procedure features three key points as
313	follows:
314	First, the order of the resin setup is a crucial consideration. As shown in Figure 1,
315	1.5 mL and 0.45 mL of AG50W-X12 and LN Spec resins are used as the top and
316	bottom layers, respectively. Reversing the setup order of the AG50W-X12 and LN
317	Spec resins, Ti and Hf will be re-distributed on the AG50W-X12 resin after removal
318	of the matrix elements and collection of Sr and REEs, resulting in failure of separation
319	between Ti and Hf.
320	Second, 2.5 M HCl is the most suitable acid to rinse out matrix elements before
321	collection of Sr, REEs, and Hf. Several HCl concentrations (e.g., 3~4 M) were tested
322	to determine the concentration that best removes the matrix elements. However, the
323	sample purity obtained was unsatisfactory because yellow residues in both the Sr and
324	REE fractions were observed.
325	Third, the selection of cross-linking degree of AG50W should be carefully
326	considered. In previous studies, medium cross-linked resin (X8) was preferred
327	because this resin allowed high separation speeds and low experimental costs to
328	purify Sr and REEs. However, for our short column, a more highly cross-linked cation
329	exchange resin (X12, 200-400 mesh) was preferred. The performances of
330	AG50W-X8 and AG50W-X12 were carefully compared prior to the confirmation of

Journal of Analytical Atomic Spectrometry Accepted Manuscrip

Journal of Analytical Atomic Spectrometry Accepted Manuscri

Journal of Analytical Atomic Spectrometry

331	the final separation procedure. As the sample loading size increased, the sample purity
332	of Sr and REEs deteriorated significantly if AG50W-X8 resin was used for separation.
333	In particular, when the loading sample size was larger than 35 mg of silicate material,
334	e.g., BCR-2, minor matrix elements tailed into the Sr and REE fractions and strongly
335	suppressed the intensities of Sr and Nd signal during TIMS measurement. The sample
336	loading size would increase to 60 mg and the sample purity of Sr and REEs remained
337	acceptable if a cross-linked (X12) AG50W cation exchange resin was employed.
338	
339	3.3 Purity, recovery, and blank
340	To investigate the behavior of matrix and trace elements retained on the column,
341	a basalt standard material (BCR-2) was employed. A 50 mg of BCR-2 was dissolved
342	in 1 mL of 2.5 M HCl. Six successive fractions were collected, and corresponding
343	eluting messages were shown in Table 1 and Figure 2. Distribution curves of the
344	matrix and semi-quantitative trace element analyses were determined using a Thermo
345	Fisher Element-XR ICP-MS instrument.
346	As shown in Figure 2, most matrix elements (K, Na, Ca, Mg, Al, Fe, Ti), Rb,
347	some Sr (~ 27%), and HREEs were rinsed in fraction 1 before collecting the Sr
348	fraction. Several residual elements in the Sr fraction (fraction 2), Ba, Er, Tm, and Yb,
349	were found. The yield of Sr in fraction 2 was about 71.0 %. Unwanted elements,
350	including some HREEs and small amounts of Ti and Sr, were washed out in fraction 3
351	using 3 mL of 2.5 M HCl. Most of the REEs and partly of the Yb (~ 11.4 %) were
352	stripped in Nd fraction (fraction 4). Most of the Lu (~ 98 %) and Yb (~ 83 %) were

2	
3	
4	
5	
6	
7	
2 2	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
20	
21	
21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
11	
77 15	
40	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
52	
50	
59	
bÜ	

353	also rinsed out in fraction 4. Generally, few residual elements were observed in the
354	Nd fraction (fraction 4).
355	Ti must be completely removed from the sample. The use of H_2O_2 , which raises
356	the oxidation state of Ti and forms the yellow-tinted peroxytitanyl compound
357	$Ti(O-O)^{2+}$ and results in a satisfactory separation of Hf and Ti. ³⁸ In the present study,
358	15 mL of 0.075 % H_2O_2 + 3 M HCl was employed to remove Ti. All of the Ti
359	residues were washed out in fraction 5, and most of the Hf +Zr+Ta mixture was rinsed
360	out in fraction 6. The yield of Hf in fraction 6 was \sim 93.4 %, which was within the
361	range reported by other investigators. ^{9, 10, 13, 38} In summary, the removal efficiency of
362	major elements (Al, Fe, Ca, Mg, K, Na, Ti) was higher than 99.9 % in the Hf fraction
363	(fraction 6).
364	Procedural blanks are crucial for accurate Sr-Nd-Hf isotope analysis. Blank
365	values of 170~200, 70~80, and 55~65 pg are obtained for Sr, Nd, and Hf, respectively.
366	For Sr, Nd, and Hf analyses, the blanks are negligible relative to the amount of
367	analytes contained in a 50~60 mg silicate aliquot.
368	
369	4. Conclusions
370	A rapid and robust one-step chemical separation procedure was developed for
371	measuring ⁸⁷ Sr/ ⁸⁶ Sr, ¹⁴³ Nd/ ¹⁴⁴ Nd, and ¹⁷⁶ Hf/ ¹⁷⁷ Hf isotope ratios in the same sample
372	digest. Sr, Nd, and Hf were sequentially separated from the same rock matrix solution

Journal of Analytical Atomic Spectrometry Accepted Manuscrip

- 373 using a single column without intervening evaporation. The chemical separation
- 374 scheme was based on the enhanced elemental selectivity permitted by the combined

Journal of Analytical Atomic Spectrometry Accepted Manusc

Journal of Analytical Atomic Spectrometry

375	use of AG50W-X12 cation-exchange and LN Spec resins. This scheme allowed the
376	use of relatively small columns. The proposed separation procedure achieved the
377	satisfactory and rapid separation of Sr, Nd, and Hf and reduced cross-contamination
378	risk, thereby offering significant advantages over existing methods in terms of
379	simplicity, separation efficiency, miniaturization, and waste reduction. The potential
380	fractionation of Sr-Nd-Hf isotopes existed in the chemical resin column could be
381	corrected by using the traditional internal correction methods. The bottleneck
382	associated with sample preparation prior to thermal ionization mass spectrometric
383	measurements can be significantly reduced with the new protocol. An alternative
384	approach to the measurement of these isotope ratios using MC-ICP-MS could be
385	considered. In the present investigation this would involve modifications of the
386	column protocols, especially in the case of Sr.

388 Acknowledgements

This work was jointly supported by the National Natural Science Foundation of
China (grants 41273021 and 41373020) and the State Key Laboratory of Lithospheric
Evolution (grant 11301520), Institute of Geology and Geophysics, Chinese Academy
of Sciences.

397	
398	References:
399	1. J.P. Davidson, D.J. Morgan, B.L.A. Charlier, R. Harlou, J.M. Hora, Annu. Rev.
400	Earth Planet Sci., 2007, 35, 273-311.
401	2. C. Na, T. Nakano, K. Tazawa, M. Sakagawa, T. Ito, Chem.Geol., (Isotope
402	Geoscience Section)., 1995, 123, 225-237.
403	3. C. Pin, D. Briot, C. Bassin, E. Poitrasson, Anal. Chim. Acta., 1994, 298, 209-217.
404	4. C. Pin, J. Francisco, S. Zalduegui, Anal. Chim. Acta., 1997, 339, 79-89.
405	5. Y. Arakawa, Geochem. J., 1992, 26, 105-109.
406	6. C. F. Li, F. K. Chen and X. H. Li, Int. J. Mass Spectrom., 2007, 266, 34-41.
407	7. Z. Y. Chu, F. K. Chen, Y. H. Yang, J. H. Guo, J. Anal. At. Spectrom., 2009, 24,
408	1534-1544.
409	8. X.J. Yang, C. Pin, Anal. Chem., 1999, 71, 1706-1711.
410	9. B. Lefvre, C. Pin, Anal. Chim. Acta., 2005, 543, 209-221.
411	10. J.N. Connelly, D.G. Ulfbeck, K. Thrane, M. Bizzarro, T. Housh, Chem.Geol.,
412	2006, 233, 126-136.
413	11. D. Weis, B. Kieffer, C. Maerschalk, J. Barling, J. D. Jong, G. A. Williams, D.
414	Hanano, W. Pretorius, N. Mattielli, J. S. Scoates, A. Goolaerts, R. M. Friedman
415	and J. B. Mahoney, Geochem. Geophys. Geosyst., 2006, DOI:
416	10.1029/2006GC001283.
417	12. B. Lefvre, C. Pin, Anal. Chem., 2001, 73, 2453-2460.
418	13. Y.H. Yang, H.F. Zhang, Z.Y. Chu, L.W. Xie, F.Y. Wu, Int. J. Mass Spectrom.,

 $\begin{array}{c} 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

419	2010, 290, 120-126.
420	14. A. Makishima, E. Nakamura, Geochem. J., 2008, 42, 199-206.
421	15. Y.H. Yang, F.Y. Wu, S.A. Wilde, L.W. Xie, Int. J. Mass Spectrom., 2011, 299,
422	47-52.
423	16. N.C. Chu, R.N. Taylor, V. Chavagnac, R.W. Nesbitt, R.M. Boella, J.A. Milton,
424	C.R. German, G. Bayon, K. Burton, J. Anal. At. Spectrom., 2002, 17, 1567-1574.
425	17. M. Bizzarro, J.A. Baker, D. Ulfbeck, Geostand. Newslett., 2003, 27, 133-145.
426	18. Y. Orihashi, J. Maeda, R. Tanaka, R. Zeniya, K. Niida, Geochem. J., 1998, 32,
427	205-211.
428	19. T. Miyazaki, K. Shuto, Geochem. J., 1998, 32, 345-350
429	20. C.F. Li, X.H. Li, Q.L. Li, J.H. Guo, X.H. Li, T. Liu, Anal. Chim. Acta., 2011,
430	706, 297-305.
431	21. M. Griselin, J.C.V. Belle, C. Pomies, P.Z. Vroon, M.C.V. Soest, G.R. Davies,
432	Chem. Geol., 2001, 172, 347-359.
433	22. Y.H. Yang, F.Y. Wu, L.W. Xie, Y.B. Zhang, Anal. Lett., 2010, 43, 142-150.
434	23. C.F. Li, X.H. Li, Q.L. Li, J.H. Guo, X.H. Li, J. Anal. At. Spectrom., 2011, 26,
435	2012-2022.
436	24. I.C. Kleinhanns, K. Kreissig, B.S. Kamber, T. Meisel, T.F. Nagler, J.D. Kramers,
437	Anal. Chem., 2002, 74, 67-73.
438	25. B.L.A. Charlier, C. Ginibre, D. Morgan, G.M. Nowell, D.G. Pearson, J.P.
439	Davidson, C.J. Ottley, Chem.Geol., 2006, 232, 114-133.
440	26. T. Tanaka, S. Togashi, H. Kamioka, H. Amakawa, H. Kagami, T. Hamamoto, M.

1		
2 3	4.4.1	Vuhara V. Orikashi S. Vanada, U. Shimizu T. Kunimaru K. Takabashi T.
4 5	441	Yunara, Y. Orinashi, S. Yoneda, H. Shimizu, I. Kunimaru, K. Takanashi, I.
6 7	442	Yanagi, T. Nakano, H. Fujimaki, R. Shinjo, Y. Asahara, M. Tanimizu and C.
8 9	443	Dragusanu, Chem.Geol., 2000, 168, 279-281.
10 11	444	27. P. Dulski, Geostand. Newslett., 2001, 25, 87-125.
12 13 14	445	28. M. Willbold, K.P. Jochum, Chem.Geol., 2005, 29, 63-82.
15		
16 17	446	29. R. L. Korotev, Geostand. Newslett., 1996, 20, 217-245.
18 19 20	447	30. C.F. Li, X.H. Li, Q.L. Li, J.H. Guo, X.H. Li. L.J. Feng, Z.Y. Chu, Anal.
20 21 22	448	Chem., 2012, 84, 6040-6047.
23 24	449	31. C.F. Li, X.H. Li, Q.L. Li, J.H. Guo, X.H. Li, Y.H. Yang, Anal. Chim. Ac
25 26 27	450	2012, 727, 54-60.
28 29	451	32. Y.H. Yang, F.Y. Wu, Z.C. Liu, Z.Y. Chu, L.W. Xie, J.H. Yang, J. Anal. At.
30 31 32	452	Spectrom., 2012, 27, 516-522.
32 33 34	453	33. B. Luais, P. Telouk and F. Albarede, Geochim. Cosmochim. Acta., 1997, 61,
35 36	454	4847-4854.
37 38 20	155	34 G. Caro, R. Bourdon, I.L. Birck, S. Moorbath, Geochim Cosmochim Acta, 2
39 40	455	54. G. Caro, D. Dourdon, J.L. Direk, S. Moorbath, Geochini.Cosmochini.Acta., 2
41 42	456	70,164-191.
43 44	457	35. G. J. Wasserburg, S. B. Jacobsen, D. J. DePaolo, M. T. McCulloch and T. W
45 46 47	458	Geochim. Cosmochim. Acta., 1981, 45, 2311-2323.
48 49	459	36. T. Hanyu, S. Nakai, R. Tatsuta, Geochem. J., 2005, 39, 83-90.
50 51	460	37. Y.H. Lu, A. Makishima, E. Nakamua, J. Anal. At. Spectrom., 2007, 22, 69-7
52 53 54	461	38 C Munker S Wever E Scherer K Mezger Geochem Geophys Geosyst
55 56	460	DOI: 2 10 1020/2001CC000183
57 58	402	DOI. 2.10.1027/20010C000163.
59 60		20

P. Dulski, Geostand. Newslett., 2001, 25, 87-125. M. Willbold, K.P. Jochum, Chem.Geol., 2005, 29, 63-82. R. L. Korotev, Geostand. Newslett., 1996, 20, 217-245. C.F. Li, X.H. Li, Q.L. Li, J.H. Guo, X.H. Li. L.J. Feng, Z.Y. Chu, Anal. Chem., 2012, 84, 6040-6047. C.F. Li, X.H. Li, Q.L. Li, J.H. Guo, X.H. Li, Y.H. Yang, Anal. Chim. Acta., 012, 727, 54-60. H. Yang, F.Y. Wu, Z.C. Liu, Z.Y. Chu, L.W. Xie, J.H. Yang, J. Anal. At. pectrom., 2012, 27, 516-522. B. Luais, P. Telouk and F. Albarede, Geochim. Cosmochim. Acta., 1997, 61, 847-4854. G. Caro, B. Bourdon, J.L. Birck, S. Moorbath, Geochim.Cosmochim.Acta., 2006, 0,164-191. G. J. Wasserburg, S. B. Jacobsen, D. J. DePaolo, M. T. McCulloch and T. Wen, Geochim. Cosmochim. Acta., 1981, 45, 2311-2323. ¹. Hanyu, S. Nakai, R. Tatsuta, Geochem. J., 2005, 39, 83-90. Y.H. Lu, A. Makishima, E. Nakamua, J. Anal. At. Spectrom., 2007, 22, 69-76. C. Munker, S. Weyer, E. Scherer, K. Mezger, Geochem. Geophys. Geosyst., 2001,

Journal of Analytical Atomic Spectrometry Accepted Manuscril

Figure captions

- **Fig 1.** Single-step separation scheme in this study compared with the traditional
- 466 three-step separation procedure.
- 467 Fig 2. Distribution curve of all eluted fractions of BCR-2 in the mixed AG50W-12 +
- 468 LN Spec resin column.
- 469 Fig 3. Comparison of Sr-Nd-Hf values obtained by the present study and previous
- 470 data.
- **Fig 4.** Corrected ¹⁴⁵Nd/¹⁴⁴Nd ratios for silicate rock from USGS and GSJ.

- and the start of								
Procedure Eluting re		g reagent	Eluting volume (mL)	Eluting Fraction				
Loading sample	2.5M	HC1	1.0	1				
Rinsing	2.5M	HC1	2.0 (0.5 x 4)	1				
Rinsing	2.5M	HC1	13.5	1				
Eluting Sr	2.5M	HCl	5.5	2				
Rinsing	2.5M	HC1	3.0	3				
Eluting Nd	6.0M	HC1	8.0	4				
Rinsing	3.0M H	$HCl + 0.75 \% H_2O_2$	15.0	5				
Eluting Hf	3.0M	HF	5.0	6				

Journal of Analytical Atomic Spectrometry Accepted Manuscrip

Page 24 of 35

Table 2.Cup configuration for Sr-Nd isotope analysis using Triton plus TIMS and for Hf isotope analysis using

Neptune plus MC-ICP-MS

Element	L4	L3	L2	L1	CC	H1	H2	H3	H4
Sr			⁸⁴ Sr	⁸⁵ Rb	⁸⁶ Sr	⁸⁷ Sr	⁸⁸ Sr		
Nd	¹⁴³ Nd	144 Nd+ 144 Sm	¹⁴⁵ Nd	¹⁴⁶ Nd	147 Sm	¹⁴⁹ Sm			
Hf	¹⁷² Yb	¹⁷³ Yb	¹⁷⁵ Lu	¹⁷⁶ Hf	¹⁷⁷ Hf	¹⁷⁸ Hf	¹⁷⁹ Hf	¹⁸⁰ Hf	^{182}W

Table 3.Typical operating parameters for Hf measurement using

Neptune Plus MC-ICP-MS

Neptune Plus MC-ICP-MS	Setting
RF forward power	1300 W
Cooling gas	15.5 L/min
Auxiliary gas	0.7 L/min
Aerosol carrier gas	~ 1.10 L/min (optimized daily)
Extraction	- 2000 V
Focus	- 645 V
Detection system	Nine Faraday collectors
Acceleration voltage	10 kV
Interface cones	Nickel
Spray chamber	Glass cyclonic
Nebulizer type	Micromist PFA nebulizer
Sample uptake rate	50 µL/min
Uptake mode	Free aspiration
Instrument Resolution	~ 400 (Low)
Typical sensitivity on ¹⁸⁰ Hf	~ 16 V/ppm ($10^{11} \Omega$ resistors)
Sampling mode	9~12 blocks of 15 cycles
Integration time	4 sec
Analytical time	~ 660 sec
Baseline	ca.1 min on peak in 2% HNO ₃

Table 4. Analytical results of ⁸⁷Sr/⁸⁶Sr ratios for CRMs determined by Triton Plus TIMS

CRMs	Raw ⁸⁷ Sr/ ⁸⁶ Sr	Corrected ⁸⁷ Sr/ ⁸⁶ Sr	2 SE	Reported value	Rb/Sr ratio
BCR-2	0.702128	0.705018	0.000012	$0.705019^{11}; 0.705023^{13}$	0.1395 ²⁸
BCR-2	0.705617	0.705002	0.000012	0.705026^{31} ; 0.704998^{32}	
BCR-2	0.708509	0.705004	0.000012		
BCR-2	0.702479	0.705005	0.000009		
BCR-2	0.708523	0.704999	0.000010		
BCR-2	0.703277	0.705018	0.000011		
BCR-2	0.705146	0.705023	0.000010		
BCR-2	0.701334	0.705015	0.000011		
BCR-2	0.702338	0.705002	0.000009		
BCR-2	0.701511	0.705021	0.000010		
Mean ± 2 SD		0.705010	0.000018	0.705017	
W-2	0.707856	0.706983	0.000009	$0.706966^{13}; 0.706973^{31}$	0.1010^{27}
W-2	0.712276	0.706997	0.000010		
Mean		0.706990		0.706970	
BHVO-2	0.704378	0.703470	0.000011	$0.703487^{11}; 0.703479^{31}$	0.0217^{28}
BHVO-2	0.711143	0.703488	0.000010	$0.703468^{32};$	
Mean		0.703479		0.703478	
JA-1	0.703465	0 703543	0 000008	$0.703533^2 \cdot 0.703557^{18}$	0.044^{29}
VI X I		0.700010	2.000000		0.011

	0.70(042			10	
JA-1	0.706042	0.703529	0.000009	0.703543 ¹⁹	
Mean		0.703536		0.703544	
JA-3	0.705905	0.704172	0.000010	0.704160 ¹⁹ ; 0.704177 ³¹	0.1232
JA-3	0.707787	0 704169	0.000008		
Mean		0.704171	0.000000	0.704169	
DID 1	0 705128	0 702117	0.00010	0.703130^{31} . 0.703108^{32}	0 0033
DIN-1	0.704220	0.703117	0.000010		0.00000
BIK-I	0.704220	0.703114	0.000011	0.702110	
Mean		0./03116		0.703119	
NBS-987	0.706769	0.710246	0.000011		
	0.706296	0.710254	0.000010		
	0.708337	0.710244	0.000009		
	0.706772	0.710249	0.000009		
	0.705853	0.710241	0.000010		
	0.707506	0.710238	0.000010		
Mean ± 2 SD		0.710245	0.000011		

						Reported Values	
CRMs	Raw ¹⁴³ Nd/ ¹⁴⁴ (Nd+Sm)	Corrected ¹⁴³ Nd/ ¹⁴⁴ Nd	2 SE	¹⁴⁵ Nd/ ¹⁴⁴ Nd	2 SE	¹⁴³ Nd/ ¹⁴⁴ Nd	Sm/Nd
BCR-2	0.497824	0.512631	0.000008	0.348413	0.000006	0.512632 ⁶ ; 0.512641 ⁷	0.224 ²⁸
BCR-2	0.501391	0.512640	0.000006	0.348412	0.000004	$0.512634^{11}; 0.512640^{13}$	
BCR-2	0.504291	0.512636	0.000006	0.348414	0.000004	$0.512630^{20}; 0.512638^{22}$	
BCR-2	0.500965	0.512629	0.000005	0.348414	0.000003	$0.512630^{23}; 0.512638^{30}$	
BCR-2	0.471586	0.512642	0.000008	0.348414	0.000005	0.512636 ³¹	
BCR-2	0.510027	0.512635	0.000005	0.348411	0.000003		
BCR-2	0.495168	0.512633	0.000005	0.348411	0.000003		
BCR-2	0.491770	0.512630	0.000004	0.348411	0.000002		
BCR-2	0.502585	0.512635	0.000005	0.348411	0.000002		
BCR-2	0.501244	0.512627	0.000008	0.348414	0.000004		
Mean ± 2 SD		0.512634	0.000010	0.348413	0.000003	0.512635	
W-2	0.478999	0.512525	0.000010	0.348416	0.000008	0.512510 ⁴ ; 0.512537 ⁷ ; 0.512516 ¹³	0.254 ²⁷
W-2	0.488623	0.512521	0.000012	0.348415	0.000008	0.512511^{22} ; 0.512528^{30}	
Mean		0.512523		0.348416		0.512520	
BHVO-2	0.463961	0.512971	0.000006	0.348409	0.000005	0.512989 ⁶ ; 0.512951 ⁷ ;0.512981 ¹¹	0.247 ²⁸
BHVO-2	0.494408	0.512981	0.000008	0.348409	0.000005	$0.512984^{22}; 0.512985^{23}; 0.512983^{30}$	
Mean		0.512976		0.348409		0.512979	

Journal of Analytical Atomic Spectrometry

TA 1	0 489061	0 513080	0.000012	0 348406	0 000009	0.512066^2 , 0.512107 ⁹	0.2
JA-1	0.490259	0.513080	0.000012	0.348406	0.000009	0.513000; $0.5131070.512078^{18}; 0.512003^{19}$	0.5
Mean	0.190239	0.513094	0.000010	0.348406	0.000009	0.513078 , 0.513092	
JA-3	0.487184	0.512841	0.000012	0.348413	0.000008	0.512835 ⁶ ; 0.512859 ¹⁹	0.24
JA-3	0.495082	0.512851	0.000012	0.348414	0.000010	$0.512840^{23}; 0.512859^{30}$	
Mean		0.512846		0.348414		0.512848	
BIR-1	0.425078	0.513106	0.000012	0.348425	0.000008	0.513107^7 ; 0.513108^9	0.4
BIR-1	0.463980	0.513095	0.000014	0.348417	0.000010	$0.513093^{20}; 0.513084^{23}$	
Mean		0.513101		0.348421		0.513098	
JNdi-1	0.512576	0.512110	0.000008				
	0.512662	0.512117	0.000007				
	0.511807	0.512107	0.000008				
	0.511720	0.512106	0.000008				
	0.512935	0.512109	0.000009				
	0.512539	0.512107	0.000007				
Mean ± 2 SD		0.512109	0.000008				

Table 6. Analytical results of ¹⁷	^{/6} Hf/ ¹⁷⁷ Hf ratios for	CRMs determined by	Neptune Plus MC-ICP-MS
v			L

CRMs	Raw ¹⁷⁶ Hf/ ¹⁷⁷ Hf	Corrected ¹⁷⁶ Hf/ ¹⁷⁷ Hf	2 SE	Reported Value	Lu/Hf	Yb/Hf
BCR-2	0.279622	0.282883	0.000006	$0.282869^{10}; 0.282884^{12}; 0.282877^{13}$	0.106 ²⁸	0.709^{28}
BCR-2	0.279592	0.282877	0.000006	$0.282859^{16}; 0.282875^{17}; 0.282895^{36}$		
BCR-2	0.279581	0.282879	0.000006			
BCR-2	0.279608	0.282895	0.000006			
BCR-2	0.279576	0.282880	0.000008			
BCR-2	0.279608	0.282884	0.000010			
BCR-2	0.279606	0.282895	0.000006			
BCR-2	0.279621	0.282888	0.000010			
BCR-2	0.279623	0.282877	0.000010			
BCR-2	0.279599	0.282888	0.000012			
Mean ± 2 SD		0.282885	0.000014	0.282875		
W_2	0.279652	0 282742	0 000008	0.282715^{12} 0.282724^{13}	0.133^{27}	0.871 ²⁷
W 2	0.279632	0.202742	0.000008	0.202715^{15}	01100	0.071
W-2	0.279025	0.282725	0.000008	0.282713		
wiean		0.282733		0.282718		
BHVO-2	0.279880	0.283101	0.000012	0.283094 ¹⁵ ; 0.283116 ¹⁷	0.061 ²⁸	0.454 ²⁸
BHVO-2	0.279874	0.283097	0.000013			
Mean		0.283099		0.283105		
TA 1	0.270041	0.282260	0.000012	0.282250^9 , 0.282258^{12}	0.160 ²⁹	1 1 4 2 9
JA-1	0.2/9941	0.283269	0.000012	$0.283250; 0.283258^{-1}$	0.169	1.14
JA-1	0.279911	0.283247	0.000013	0.283292 ³⁰ ; 0.283264 ³⁷		

Mean		0.283258		0.283266		
JA-3	0.279773	0.283046	0.000010	0.283084^{36} : 0.283063^{37}	0.461 ²⁷	0.566
JA-3	0.279778	0.283057	0.000008	····· , ·····		
Mean		0.283052		0.283074		
BIR-1	0 280145	0 283292	0.000016	$0.283247^9 \cdot 0.283291^{12}$	0.417^{27}	2.73^{2}
BIR-1	0.280138	0.283283	0.000018	$0.283277^{17} \cdot 0.283265^{36}$	0,	2.70
Mean	0.200130	0.283288	0.000010	0.283270		
JMC-475	0.278803	0.282154	0.000008			
	0.278901	0.282151	0.000008			
	0.278815	0.282145	0.000008			
	0.278804	0.282143	0.000007			
	0.278808	0.282144	0.000006			
	0.278874	0.282148	0.000006			
Mean ± 2 SD		0.282148	0.000009			

Journal of Analytical Atomic Spectrometry Accepted Manus

Figure 1 131x86mm (600 x 600 DPI)

Figure 2 154x119mm (600 x 600 DPI)

0.706800 0.706800 0.705800 0.7048

0.28280

0.282600

0.282600

0.282800

0.283000 0.283200 0.283400

This study

2 Con

0.702800 0.703800 0.704800 0.705800 0.706800 This study

values of ⁸⁷Sr/⁸⁶Sr

Reported average

0.7038

Figure 3 55x15mm (600 x 600 DPI)

0.51266

0.512860

This study

0.513060

0.512

0.512460

Report

