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An effective linear method, ZUPLS, was developed to improve the accuracy and speed of 

prokaryotic essential gene identification problems. ZUPLS only uses the Z-curve and other 

sequence-based features. Such features can be calculated readily from the DNA/amino acid 

sequences. Therefore, no well-studied biological networks knowledge is required in using ZUPLS. 

This significantly simplifies essential gene identification, especially for newly sequenced species. 

ZUPLS can also select necessary features automatically by embedding the uninformative variable 

elimination tool into the partial least squares classifier. No optimized modelling parameters are 

needed. ZUPLS has been used, herein, to predict essential genes of 12 remotely related prokaryotes 

to test its performance. Comparing our method with the best existing approaches, the improvements 

were quite significant. The combined superior feature extraction and selection power of ZUPLS 

enable it to give reliable prediction of essential genes for both Gram-positive/negative organisms 

and rich/poor culture media. 
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ABSTRACT 

An effective linear method, ZUPLS, was developed to improve the accuracy and speed of 

prokaryotic essential gene identification problems. ZUPLS only uses the Z-curve and 

other sequence-based features. Such features can be calculated readily from the 

DNA/amino acid sequences. Therefore, no well-studied biological networks knowledge 

is required in using ZUPLS. This significantly simplifies essential gene identification, 

especially for newly sequenced species. ZUPLS can also select necessary features 

automatically by embedding the uninformative variable elimination tool into the partial 

least squares classifier. No optimized modelling parameters are needed. ZUPLS has been 

used, herein, to predict essential genes of 12 remotely related prokaryotes to test its 

performance. The cross-organism predictions yielded AUC (Area Under the Curve) 

scores between 0.8042 to 0.9319 by using E. coli genes as the training samples. 

Similarly, ZUPLS achieved AUC scores between 0.8111 to 0.9371 by using B. subtilis 

genes as the training samples. We also compared it with the best available results of the 

existing approaches for further testing. Comparing our method with the best existing 

approaches, the improvement of the AUC score in predicting B. subtilis essential genes 

using E. coli genes was 0.13. Additionally, in predicting E. coli essential genes using P. 

aeruginosa genes, the significant improvement was 0.10. Similarly, the exceptional 

improvement of the average accuracy of M. pulmonis using M. genitalium and M. 

pulmonis genes was 14.7%. The combined superior feature extraction and selection 

power of ZUPLS enable it to give reliable prediction of essential genes for both 

Gram-positive/negative organisms and rich/poor culture media. 

Key words: essential genes; Z-curve features; partial least squares classifier; 

prokaryotic genome; uninformative variable elimination 
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INTRODUCTION  

Essential genes (EGs) are genes which are indispensable to support an organism and 

therefore constitute a minimal gene set. They encode foundational functions required for 

a living cell under certain conditions
1
. The identification of EGs in bacteria allows us to: 

understand the underlying mechanism of cellular life, identify potential targets for 

antimicrobial drug development 
2
, reveal bacterial relationships during evolution 

3
 and 

provide simplified ‘chassis’ for biological engineering purposes 
4
.  

To circumvent the expense and difficulty of experimentally identifying EGs, 

researchers attempt to use in silico methods to resolve the problem. Saha and Heber used 

a modified simulated annealing algorithm for feature selection and variable weighting. 

Then they used the weighted KNN (k-nearest neighbour) and SVM (support vector 

machine) algorithms in the EG classification for bacteria, fungi, Ascomycota, plants, and 

mammals. In the case of fungi, Ascomycota was excluded, and in the case of Ascomycota, 

Saccharomyces cerevisiae was excluded
5
. Seringhaus et al. identified 14 features of the 

genome and measured the relationships between them and the essentiality of genes. They 

used the S. cerevisiae as an example. Their 14 features included localization signals, 

codon adaptation, GC content, and overall hydrophobicity 
6
. Gustafson et al. assessed the 

relationships of some features with genes’ essentiality. Experimental and genomic 

features such as phyletic retention, protein interaction degree, protein size and codon bias 

were included. They subsequently utilized a machine learning method to construct an 

integrated classifier of EGs in both S. cerevisiae and E. coli 
7
. Hwang et al. developed an 

approach combining the protein-protein interaction network and sequence information to 

predict EGs in both genomes 
8
. Plaimas et al. used a broad variety of metabolic network 

features and sequence characteristics. They trained hundreds of SVM classifiers to 

identify 35 EGs in Salmonella typhimurium. They assumed the enzymes encoded by 

these genes to be the potential drug targets 
9
.  

Deng et al. focused on four bacterial species (E. coli, B. subtilis, Acinetobacter 

baylyi and Pseudomonas aeruginosa) and tested the accuracy of the EG predicting 

models among them. They achieved cross-organism prediction AUC (Area Under the 

Curve) scores between 69% and 89%. Their approach proved that gene essentiality can 

be reliably predicted using models trained and tested in a remotely related organism 
10
. 

Lin and Zhang developed an algorithm integrating the information of biased distribution 

and homology of genes. In predicting EGs, their algorithm performed a self-consistence 

test which resulted in an average sensitivity and specificity of 80.8% for the Mycoplasma 

pulmonis genome. They also performed cross-validation tests showing an average 

accuracy of 78.9% and 78.1% for Staphylococcus aureus and Bacillus subtilis genomes 

respectively. Accordingly, they predicted 5880 putative EGs of 16 Mycoplasma 

organisms 
11
.  
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Although these attempts sometimes offered increased accuracy, the improvements 

may not justify the heavy computational requirements they impose for training classifiers. 

More importantly, experimental genome-wide data or metabolic networks are often 

limited for newly sequenced or under-studied genomes. This precludes the application of 

the above mentioned methods in the issue of identifying EGs.  

The ability to recognize EGs for newly sequenced genomes lacking in genetic or 

metabolic network information is of added importance. To accomplish this recognition, 

we developed a simple but useful linear method, named ZUPLS. Our study is the first to 

use the 93’ Z-curve features to resolve the EG recognition problem 
12
. ZUPLS also 

combined several other easily obtained sequence-based features. These included gene 

size, the frequencies of amino acids, codon adaptation index, etc. ZUPLS can identify 

necessary features according to their stability and contributions by utilizing the 

uninformative variable elimination (UVE) technique 
13
. We then used the selected 

features as input variables to the partial least squares (PLS) classifier for further 

classification. ZUPLS does not require well-studied biological characteristics or 

optimized modelling parameters. For example, it does not require information about 

genome annotation or genetic or metabolic networks. Thus, ZUPLS has an advantage 

over other existing approaches in predicting newly-sequenced species EGs.  

We used ZUPLS to predict EGs of 12 remotely related prokaryotic organisms to test 

its prediction performance. The tests yielded AUC scores of the cross-organism 

predictions between 0.8042 and 0.9319 (E. coli scenario) and 0.8111 and 0.9371 (B. 

subtilis scenario) depending on the superiority of ZUPLS in feature extraction and 

selection.  

We also compared it with other existing methods for further testing:  

� Compared with the results obtained by the method presented by Deng et al. 
10
, 

ZUPLS improved the AUC scores maximally by 0.13 in predicting B. subtilis 

EGs using E. coli genes. The precision of the prediction values in this case was 

also improved by 19%. 

� Comparing our results with those obtained by the approach proposed by Lin and 

Zhang (2011) 
11
, the average of specificity and sensitivity (AVE) in predicting 

M. pulmonis EGs was improved 14.7%. Similarly, the AVE of predicting E. coli 

EGs was improved 6.1% and the AUC score was improved from 0.813 to 0.896. 

In addition, the AVE of predicting S. aureus EGs was improved from 78.9% to 

83.0% and the AUC score was improved from 0.778 to 0.904. In this 

comparison, we used the M. genitalium and M. pulmonis genes as the training 

samples as Lin and Zhang did. 

� The accuracy of predicting EGs of P. aeruginosa using E. coli genes when 

compared with the methods developed by Plaimas et al. (2010) 
9
 was improved 
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7%. The accuracy of predicting EGs of E. coli using P. aeruginosa genes was 

improved 8%.  

This is the first study to report that gene essentiality can be reliably predicted by only 

using sequence-based features and a linear model trained and tested in remotely related 

organisms. 

RESULTS AND DISCUSSION 

Cross-organism EG prediction results using the E. coli and B. subtilis genomes as the 

training samples 

 It is acknowledged that E. coli (EC) and B. subtilis (BS) represent Gram negative and 

Gram positive bacteria, respectively. These well-studied genomes are often used to 

demonstrate the performance of in silico methods. The EGs of EC and BS were identified 

by single gene knockout/inactivation experiments
1a, 14

. Such experiments can identify 

EGs with comparatively higher accuracy. We chose EC and BS as the basic training 

genomes to test the hypothesis that EG annotations can be cross-predicted between 

distantly related organisms. For brevity, we denoted the studies in which the EC genome 

was used as the training set in the EC scenario. Additionally, the BS genome was used as 

the training set in the BS scenario. 

The self-consistence test could not assess the generalization ability of a model for 

new genomes. Therefore, we selected the cross-organism tests on ZUPLS. We also used 

10 other prokaryotic genomes as testing samples to do verifications. The details of these 

data are shown in Table S1 in the Supplementary data. For brevity, we introduced the 

symbol “→” used by Deng et al. 
10
. For example: EC → AB is intended to predict EGs of 

AB using the classifier trained by the known essential/non-essential genes in EC. The 

AVE, PPV and ACC measurements used to determine the accuracy of the prediction of 

EGs for these 10 genomes are shown in Table 1 and 2, respectively. 

The influence of the numbers of common EGs on cross-organism prediction 

performance of ZUPLS 

For cross-organism prediction, high accuracy may be due to the large number of 

common EGs between the training genome and the query genome rather than the 

performance of the prediction model. The ratios between the number of common EGs 

and the number of query EGs are listed in Table 1 and 2, respectively. Accordingly, we 

were able to evaluate the influence of the numbers of the common EGs on the 

cross-organism prediction results. 

Only about 27% of the EGs of MT are common with the EGs of BS. Even with this 

low ratio, the AUC score was still as high as 0.8111. The scores of AVE, ACC and PPV 
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were 74.68%, 87.53% and 71.23%, respectively. These results sufficiently prove that the 

prediction accuracy was due to the performance of our method. 

The influence of different kinds of culture media on prediction performance 

The genes essentially required for a given prokaryote to grow on a minimal medium 

should be more than that required on a rich medium. In our study, the EGs of training 

organisms, BS and EC, were both restricted to genes required for viability under 

favorable conditions (rich media). Therefore it is necessary to test whether ZUPLS could 

accurately predict EGs required on a minimal medium.  

The EGs of the candidate AB were obtained under a minimal medium 
15
.  

∗ In the case of EC→AB, the AUC score was as high as 0.8595, the ACC was 89.99%, 

the PPV was 79.37%, and the trade-off between Sn and Sp was 7.54%. 

∗ In the case of BS→AB, the AUC score was as high as 0.8972, the ACC was 89.72%, 

the PPV was 73.67%, and the trade-off between Sn and Sp was 6.33%. 

The results support the proposed method as a reliable model for prediction of EGs 

required for different kinds of culture media. This model is convenient for researchers to 

use in either minimal or rich medium conditions. 

The influence of the Gram staining properties on cross-organism prediction 

performance 

Gram-negative bacteria and Gram-positive bacteria have many distinguishable 

properties. Gram-positive bacteria have a thick mesh-like cell wall made of 

peptidoglycan (50-90% of cell envelope) which is stained purple by crystal violet. On the 

contrary, Gram-negative bacteria have a thinner layer (10% of cell envelope) which is 

stained pink by the counter-stain
16,17

. Consequently, it is very hard to predict the EGs of a 

Gram-positive bacterium using the EGs of a Gram-negative bacterium as the training 

samples. The same is true for using a Gram-negative bacterium to predict a 

Gram-positive bacterium. 

Notwithstanding the difficulty mentioned above, using our method, the AUC score of 

EC→BS yielded a result as high as 96.02%. BS→SE also possessed the highest AUC 

score (0.9371) and the highest ACC value (95.11%).  

Additionally, the minimum AUC score of predicting the Gram-positive genomes in 

EC scenario is still as high as 0.8596 (EC→MP
∗
). The minimum AUC score of predicting 

the Gram-negative genomes in BS scenario is also as high as 0.8124 (BS→FN).  

                                                 
∗ Although mycoplasmas (MP) lack cell walls, they are phylogenetically related to Gram-positive bacteria with 

genomes of low GC-content, from French, Lao, Loraine, Matthews, Yu and Dybvig, Large-scale transposon 

mutagenesis of Mycoplasma pulmonis. In Molecular microbiology, 2008; Vol. 69, pp 67-76. 
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MT has an unusual waxy coating on its cell surface, which makes the cells 

impervious to Gram staining. There are different opinions about MT’s Gram-staining 

property 
19
. No matter whether MT is a Gram-positive bacterium or a Gram-negative one, 

the AUC score is still as high as 0.8042 (EC→MT) and 0.8111 (BS→MT), respectively. 

Comparisons with other existing methods 

Evaluating the performance of the proposed method requires comparisons with other 

available methods. Because different methods use different sample sets and different 

features, only rough comparisons are possible. We therefore compared ZUPLS to the 

methods with the best available results. We also used the same measurements that the 

chosen methods used. The comparison results were shown in Table 3-5, respectively. 

Comparing the prediction results between three pairs, i.e., EC, BS and AB 

Deng et al. presented an integrative approach based on machine learning methods. 

Their study focused on predicting EGs of four bacterial species, EC, BS, AB and PA
10
. 

We could only give the comparisons of three prokaryotic organisms since there was no 

way to acquire the EG dataset of PA. The results are shown in Table 3. ZUPLS not only 

yielded higher AUC scores but also higher PPV values compared to Deng et al. results. 

The AUC scores largest improvement was as high as 0.13 (EC→BS). 

There was only one exception to improved PPV values. In the case of EC → AB, our 

calculated PPV was 0.79 compared to Deng et al. 0.81, a negligible difference. 

Contrarily, there were significant improvements in other cases obtained by ZUPLS. 

The PPV value was improved 0.21 in AB→EC, 0.19 in EC → BS and 0.16 in BS → EC.  

Such comparison results consequently confirmed the significantly improved 

performance utilizing our proposed method. 

Comparing the prediction results of EC, BS and MP using the MG and MP genomes as 

the training samples 

The study of Lin and Zhang combined 379 EGs of MG and 310 EGs of MP as the 

positive training set and the non-essential genes (NEGs) of MP were used as the negative 

training set. For comparison, we used similar data as Lin and Zhang did 
11
. We denoted 

the prediction case studies of EC, BS and MP using such training samples as 

MG+MP→EC, MG+MP→BC and MG+MP→MP, respectively. The results are shown in 

Table 4.  

The case MG+MP→MP is a kind of self-consistence test whose accuracy represents 

the highest prediction accuracy that an algorithm can reach. In this case, ZUPLS yielded 

an exceptional AVE of 95.5% and PPV of 97.0%. Both the values of Sn and Sp were 

higher than 90%. Even the tradeoff between Sn and Sp was only 5.1%. The minimum 

improvement of the Sn measurement was a significant 14.6%. Sn obtained by our method 

was 93.0% while that of Lin and Zhang was only 78.4%. Additionally, the improvement 

of the AUC score reached 0.155. 
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Using ZUPLS, the AVE score for MG+MP→EC improved from 78.1% to 84.2%, 

while the AUC score improved from 0.813 to 0.896. The difference in value between Sn 

and Sp was 9.6%, much smaller than the 21.2% obtained by Lin and Zhang.  

Using ZUPLS, the AVE score for MG+MP→SA315 improved from 78.9% to 83.0%, 

while the AUC score improved from 0.778 to 0.904. The trade-off between Sn and Sp in 

our study was only 9.0%, which was much smaller than the 17.4% obtained by Lin and 

Zhang.  

These two cross-genome tests confirmed that our method is superior in both the 

prediction accuracy and the trade-off between Sn and Sp in comparison with the method 

proposed by Lin and Zhang. 

Comparing the prediction results between EC and PA 

Plaimas et al. used two data sets of PA (paeJ and paeL) and two data sets of EC 

(ecoB and ecoG) to test their EG prediction method 
9
. The best prediction results 

obtained by them were the results between paeL and ecoB. We compared the prediction 

results of this pair and listed them in Table 5.  

Using ZUPLS, in the case of PA→EC, the AUC score was improved by as much as 

0.1, the ACC was improved by 8% and the Sn was surprisingly improved from 0.27 to 

0.72. 

In the case of EC→PA, the Sn obtained by Plaimas et al. was only 0.07 while the Sn 

obtained by ZUPLS was 0.47. Although the PPV value of 47% obtained by using ZUPLS 

was smaller than the 67% obtained by Plaimas et al., PPV is not recognized as a 

comprehensive measurement. Accordingly, most researchers use ACC or AUC to 

quantify the prediction performance of their proposed methods. Our application of 

ZUPLS improved ACC by 7% in this case. This demonstrates the superiority of our 

method in comparison with that of Plaimas et al.. 

MATERIALS AND METHODS 

Databases 

We obtained the information of the essential protein-coding genes of 12 prokaryotic 

genomes from the DEG 6.5 database
∗
 and the corresponding references. All of the 

protein-coding gene sequences of the genomes were retrieved from NCBI GenBank 
20
. 

Since these two databases had been updated asynchronously, a protein-coding gene was 

taken as a positive sample so long as it met at least one of the following conditions: 

a) The sequence of a protein-coding gene given by DEG 6.5 was identical with that 

given by NCBI GenBank; 
                                                 
∗ http://tubic.tju.edu.cn/deg/ 
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b) The start location of a protein-coding gene given by DEG 6.5 was identical to 

that given by NCBI; 

c) The end location of a protein-coding gene given by DEG 6.5 was identical to that 

given by NCBI. 

The remaining protein-coding genes were then taken as negative samples.  

Several EGs may be incorrectly treated as being non-essential; similarly, others may 

be incorrectly treated as essential. Such incorrectly classified genes were purposely used 

as noise to test the robustness of our method. We showed the details of the 12 organism 

datasets in Table S1 in the Supplementary data. 

Procedure of training EG predicting model 

All EGs (positive samples) and NEGs (negative samples) of the training genome 

were randomly arranged and divided into two equal subsets. One was used as the training 

set and the other was used as the testing set. The goal of the training step was to 

maximize the AVE value of the testing set as well as to make a good trade-off between 

Sn and Sp. The trained models were then applied to predict EGs of the query genomes. 

The genes of the query genomes were not considered useful to train the models for 

testing the generalization power of ZUPLS. 

The training and predicting step of each pair of training and query genomes was run 51 

times to alleviate the effect of local optima. Each time it was started by randomly 

re-arranging training samples. The outputs of the 51 rounds were used as a voting score 

that represented the propensity of a gene to be essential for the query genome. A high 

number of instances of essentiality led to a high specificity, ACC and PPV, while a low 

number of instances led to a high sensitivity. In our Matlab codes, we used “Propensity” 

as the score to qualify the propensity of a gene to be essential for the query genome. If 

Propensity(i)=1, then the possibility of gene i to be an essential gene is 100%. On the 

contrary, if Propensity(i)=0, then the possibility of gene i to be an essential gene is 0%. 

The corresponding programs in Matlab Codes are available in the Supplementary data 

and our lab website (http://www.csssk.net). The BS→EC case was used as an example 

and the demo file was named as: testbsecoli_for_demo.m. 

The flow chart of training and predicting procedures is shown in Fig. 1.  

Measurements for evaluating the performance of EG prediction 

To evaluate the performance of the classifier exhaustively, we included AVE, ACC, 

PPV and AUC as the measurements. Their definitions are: 

Sensitivity:                    
TP

Sn
TP FN

=
+

                             (1) 

Specificity:                   
TN

Sp
TN FP

=
+

                               (2) 
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Average accuracy:              
2

Sn Sp
AVE

+
=                              (3) 

Precision:                     
TP

PPV
TP FP

=
+

                             (4) 

Accuracy:                 
TP TN

ACC
TP FN TN FP

+
=

+ + +
                         (5) 

where TP, TN, FP and FN are fractions of true positive, true negative, false positive and 

false negative predictions, respectively. The sensitivity, Sn, is the proportion of essential 

genes that has been correctly predicted as essential genes. The specificity, Sp, is the 

proportion of nonessential genes that has been correctly predicted as nonessential genes. 

The accuracy AVE is defined as the average of Sn and Sp. The precision of the prediction 

(PPV) is the ratio of correctly predicted essential genes and all predicted essential genes. 

ACC is the amount of correctly predicted genes as a percent of all predicted genes. 

A receiver operator characteristics curve (ROC-curve) is used to measure the 

performance for a classifier system with various thresholds. In the ROC-curve the 

sensitivity is plotted against 1-specificity. The area under the curve (AUC) yields a 

performance estimate across the entire range of thresholds.  

Features 

The features used in our study can be broadly classified into three categories, i.e. the 

93’ Z-curve features, orthologs, and other DNA or amino acid sequence based features.  

93’ Z-curve features 

The regular Z-curve method originally proposed by Zhang is a powerful tool for 

visualizing and analyzing DNA sequences
21
. For convenience here, we briefly introduced 

the phase-specific mononucleotide Z-curve parameters. The details of Z-curve are 

available in the Supplementary data and in Refs. 22 and 12.  

Z-curve parameters derived from the frequencies of phase-specific mononucleotides. 

The frequencies of the bases A, C, G, and T occurring in a fragment of DNA sequence at 

the first, second, and third codon positions are denoted by ai, ci, gi, and ti, where i=1, 2, 3, 

respectively. These frequencies, ai, ci, gi, and ti, are mapped onto a point Pi in a 

three-dimensional space Vi. Pi can be denoted by xi, yi, zi, where i=1, 2, 3. 
22
 

( ) ( )

( ) ( )

( ) ( )

, , [ 1, 1], 1,2,3

i i i i i i i

i i i i i i i

i i i i i i i

i i i

x a g c t R Y

y a c g t M K

z a t c g S W

x y z i

= + − + = −
 = + − + = −


= + − + = −
 ∈ − + =

                           (6). 

In the above equations, Ri is defined as the frequencies of bases A and G at the ith codon 

positions. Yi defines the frequencies of bases C and T at the ith codon positions and Wi 

defines the frequencies of bases A and T at the ith codon positions. Si is defined as the 

frequencies of bases C and G at the ith codon positions, and Mi defines the frequencies of 
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bases A and C at the ith codon positions. Ki defines the frequencies of bases G and T at 

the ith codon positions.  

A DNA sequence therefore can be represented by a selective combination of n 

(n∈[1..252]) variables derived from the Z-curve methods in the n-dimensional space V. 

Genes with a high number of thymine at the third codon positions were found more 

likely to be essential for cell viability. Base compositions at such positions are therefore 

used as features in EG recognition problems. They are denoted as, T3s, C3s, A3s and G3s, 

respectively
9
. From Eq. (6), it can be seen that the Z-curve parameters at the third codon 

positions (i=3) are linear combinations of T3s, C3s, A3s and G3s. 

GC-content and other sequence-based features were also used as features in EG 

recognition
6
 and promoter analyses

23
. Z-curve parameters were also used to calculate the 

GC-content and display its distribution 
24
. 

Accordingly, Eq. (6) clearly illustrates that Z-curve parameters can evaluate a given 

DNA sequence from three main components, i.e. distributions of purine/pyrimidine, 

amino/keto and strong/weak H-bonds 
25
.  

Z-curve parameters can consequently extract useful information as effectively as 

possible and therefore allow the prediction of EGs with a high degree of accuracy. 

Unfortunately, there is strong multi-colinearity among Z-curve variables. In our 

previous study to recognize short coding sequences of human genes, we selected 93’ 

Z-curve variables from all 252 Z-curve variables to eliminate the multi-colinearity. We 

thereby successfully improved the performance of ordinary data-driven techniques
12
. 

93’ Z-curve variables were used here considering their proved superiority in both 

feature extraction and time consumption. This is the first time that 93’ Z-curve variables 

have been used in prokaryotic EG recognition problems. The descriptions of the 93’ 

Z-curve variables are shown in Table S2. 

Other sequence-based features 

The following easily-obtained features were also adopted as input variables for 

further improving the prediction accuracy. All such features could be extracted from 

DNA sequences or amino acid sequences. More details are available in the 

Supplementary data. 

∗ Orthologs: Orthologs are genes of different species that evolved from a common 

ancestral gene by speciation. Previous studies have proven that EGs tend to be 

evolutionarily more conserved than NEGs in bacterial species 
3b, 7, 26

. Therefore, we used 

orthologs between the query genome and the other 183 control genomes as features. In 

addition, we also used the mean values and their standard deviations as features. We 
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introduced a Reciprocal Best Hit (RBH) 
10 
method to identify the orthologs between 

training and target genomes. 

∗ Gene size: There is a trend for proteins to become larger throughout evolution 
7
. 

∗ Strand bias: EGs are more likely to be encoded on the leading strand of the circular 

chromosomes 
11, 27

. The strand information of genes was used as a feature in our 

study. 

∗ Codon Adaptation Index (CAI): a measurement of the relative adaptability of the 

codon usage of a given gene towards the codon usage of highly expressed genes 
28
.  

∗ Frequency of optimal codons (Fop): the ratio of optimal codons to synonymous 

codons (genetic code dependent) 
7
.  

∗ Frequency of all encoded amino acids: Lin et al. found that rather than all essential 

genes, only those with the COG functional category of information storage and 

process (J, K and L), and subcategories D, M, O, C, G, E and F were preferentially 

situated at the leading strand 
11
. Where: 

� D is cell cycle control  

� M is cell wall biogenesis  

� O is posttranslational modification  

� C is energy production and conversion  

� G is carbohydrate transport and metabolism  

� E is amino acid transport and metabolism  

� F is nucleotide transport and metabolism  

Therefore, we used the frequency of encoded amino acids as features.  

∗ Close_stop_ratio: The number of codons that are one-third base mutation removed 

from a stop codon 
6, 8

 is used as a feature.  

∗ Paralogs: Paralogs are genes related by duplication within a genome.  

∗ DES (Domain enrichment score): Domain enrichment score reflects the conservation 

of the local sequence rather than the entire gene 
10
.  

The ZUPLS method 

The methodology of the used features indicates there are strong multi-collinear 

relationships among them. For example: the frequencies of all kinds of amino acids are 

definitely strongly related to Z-curve features. Although PLS could exclude the 

multi-colinearity among features to some extent by itself, the prediction results were far 

from satisfactory. Hence, we introduced the uninformative variable elimination (UVE) 

method to further improve the recognition performance. 
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Accordingly, we named our proposed method ZUPLS, using the 93’ Z-curve features 

while embedding UVE as the feature selection method and executing PLS as the 

classifier. 

Partial least squares algorithm 

Partial least squares (PLS) algorithm is a key technique for modeling linear 

relationships between a set of output variables and a set of input variables. In the PLS 

model, it is assumed that the investigated pattern is influenced by a few underlying 

variables, called Latent Variables (LVs). Thus the original variable space is projected to a 

much lower LV space to eliminate the interference of the noise and missing data. The 

multi-colinearity among the original variables is then excluded by the orthogonality 

among the LVs
29
. Fig. 2 gives the geometric representation of PLS algorithm. For more 

detailed mathematical descriptions of the PLS algorithm, please refer to the 

Supplementary data. 

Uninformative variable elimination method 

UVE was originally developed to eliminate uninformative variables for calibration of 

NIR (Near-infrared spectroscopy) data 
13, 30

. Here, one simple but useful UVE-PLS 

method was introduced.  

In linear models, the reliability (or score) of each variable j can be quantitatively 

measured by the stability, which is defined as: 

mean( )
, 1,2,...,

std( )

j

j

j

b
S j n

b
= =

                             

(7). 

Where mean(bj) and std(bj) are the mean value and standard deviation of the regression 

coefficients bj of variable j. Here, bj is calculated in cross-validation or voting method. 

The regression coefficient vector B= [b1, . . ., bn]
T
 can be calculated through the PLS 

algorithm.  

In our case, the recognition of essential genes is a typical two-class supervised pattern 

analysis problem. The two-class supervised pattern analysis can be handled as a 

univariate regression problem in which the dependent variables are defined as l∈{-1,+1}. 

For univariate regression problems, the absolute value of the regression coefficient of 

each variable is a reasonable measurement of its contribution. To consider the stability of 

each variable, we introduced the reliability to quantify its importance. Generally, the 

absolute value of the coefficient bj represents the contribution of the feature j to the 

established model and std(bj) indicates the stability of such contribution in each round of 

cross-validation or voting procedure. It is clear that the larger the mean(bj) and the 

smaller the std(bj) are, the larger and more stable the contribution of variable j is to the 

model. The variable j is therefore more important. So the reliability can be used as the 

score or the prioritization of the features. The variables having too small stability values 
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should be eliminated as the uninformative noises thus improving the performance of the 

model. 

In the ZUPLS method, considering the large number of variables, the iterative 

feature elimination should be processed to identify the real key features. That is to say, in 

each round of ZUPLS:  

1. Getting initial PLS prediction model using all features.  

2. Sorting variables in descending order according to their stability values calculated 

from Eq. (7). 

3. Eliminating given number of features with the minimum stability values. 

4. Using a cross-validation procedure to assess the prediction performance of the 

model.  

5. Repeating steps 2-4 until the prediction average accuracy converges. 

We used the ZUPLS method to select important features from 93’ Z-curve features, 

orthologs and other sequence-based features separately to avoid the cross interferences 

among them. We then exploited the ZUPLS on the selected features to get the final 

prediction models. The corresponding programs in Matlab Codes are available in the 

Supplementary data and our lab website, http://www.csssk.net.  

We used BS→EC case as an example and named the demo file as: 

testbsecoli_for_demo.m. In this case, there are 4146 genes in BS genome and 4176 genes 

in EC genome. Except for feature extraction procedures, the whole training and 

predicting procedure took 870.84 seconds. The parameters of the computer properties 

are: DELL Optiplex, Intel Core I7-3770, 3.4 GHz, 16 GB memory and 64-bit Operation 

System.  

CONCLUSIONS 

Our study identified an effective linear method, named ZUPLS, to recognize prokaryotic 

EGs. Only Z-curve features and other easily obtained sequence-based features were used 

in ZUPLS. ZUPLS can also successfully eliminate unimportant features by embedding 

the uninformative variable elimination tool into the partial least squares classifier. Much 

more accurate predicting results can be obtained thereby. ZUPLS is very practical for 

predicting EGs of newly-sequenced species because neither well-studied biological 

features nor optimization modelling parameters are needed. ZUPLS was utilized to 

predict EGs of 12 remotely related prokaryotic organisms. Regardless of the Gram 

staining properties of the organisms, ZUPLS can yield cross-organism prediction with a 

significantly high accuracy. Whichever kinds of EGs are required by different types of 

culture media, ZUPLS can predict them accurately. Our analysis also compared ZUPLS 

with the best available results of other existing methods. The AUC score in predicting B. 

subtilis essential genes using E. coli genes was improved by 0.13. Additionally, in 

predicting E. coli essential genes using P. aeruginosa genes, AUC score was improved 
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by 0.10. The average accuracy of M. pulmonis using M. genitalium and M. pulmonis 

genes was also improved by 14.7%. These results confirmed the significant improvement 

of utilizing ZUPLS. 
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Figure Legends 

Fig. 1. The flow chart of training and predicting procedures  

Fig. 2. The geometric representation of PLS (Partial Least Squares) algorithm 
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Table 1. EG prediction results of the target genomes in the EC scenario
‡ 

No. Genome Gram
 
Ratio(%) Sn(%) Sp(%) AVE(%)DIF(%) AUC ACC(%) PPV(%)

1. AB - 44 77.51 85.05 81.28 7.54 0.8595 89.99 79.37 

2. CC - 42 77.08 87.43 82.26 10.35 0.8936 91.80 77.95 

3. FN - 53 73.08 84.12 78.60 11.04 0.8068 84.18 66.86 

4. PA14 - 44 60.90 90.08 75.49 29.18 0.8133 93.92 46.55 

5. SE - 73 86.93 92.63 89.78 5.70 0.9113 92.60 52.97 

6. BS + 62 86.14 87.08 86.61 0.94 0.9319 96.02 73.49 

7. MP
§
 + 42 70.55 87.53 79.04 16.98 0.8596 81.33 94.19 

8. SA315 + 46 79.80 83.82 81.81 4.02 0.8800 91.91 73.85 

9. SA8325 + 48 68.95 90.55 79.75 21.60 0.8636 92.04 78.05 

10. SS + 65 86.24 87.43 86.83 1.19 0.9008 92.47 59.44 

11. MT N 27 69.19 77.83 73.51 8.64 0.8042 87.68 77.45 
‡DIF: the absolute value of the difference between Sn and Sp; ‘-’: Gram-negative bacterium; ‘+’: Gram-positive 

bacterium; Ratio: the percentage of the EGs in common between the training and target genomes. §Although 

mycoplasmas lack cell walls, they are phylogenetically related to Gram-positive bacteria with genomes of low 
G+C content 18. 
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Table 2. EG prediction results of the target genomes in the BS scenario
 ‡ 

No. Genome Gram Ratio(%) Sn(%) Sp(%) AVE(%) DIF(%) AUC ACC(%) PPV(%) 

1. AB - 39 78.11 84.44 81.28 6.33 0.8545 89.72 73.67 

2. CC - 39 82.50 86.22 84.36 3.72 0.8983 91.33 69.89 

3. EC - 56 84.46 91.43 87.94 6.97 0.9052 94.84 63.67 

4. FN - 46 76.41 80.66 78.54 4.25 0.8124 84.00 70.04 

5. PA14 - 36 67.76 83.14 75.45 15.38 0.8143 93.70 43.48 

6. SE - 51 85.51 91.09 88.30 5.58 0.9371 95.11 73.42 

7. MP
§
 + 53 73.14 90.27 81.71 17.13 0.8782 83.50 93.55 

8. SA315 + 56 84.77 81.81 83.29 2.96 0.8825 91.60 65.45 

9. SA8325 + 61 80.06 86.50 83.28 6.46 0.8592 90.49 59.60 

10. SS + 75 90.37 86.50 88.43 3.87 0.9106 91.98 55.96 

11. MT N 27 67.71 81.65 74.68 13.94 0.8111 87.53 71.23 
‡DIF: the absolute value of the difference between Sn and Sp; ‘-’: Gram-negative bacterium; ‘+’: Gram-positive 

bacterium; Ratio: the percentage of the EGs in common between the training and target genomes. §Although 

mycoplasmas lack cell walls, they are phylogenetically related to Gram-positive bacteria with genomes of low 

G+C content 18.  
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Table 3. Comparing the prediction results among EC, BS and AB
‡
 

 Our study Deng et al. (2011) 
10
 

Genome AUC PPV AUC PPV 

EC→AB 0.86 0.79 0.80 0.81 

EC→BS 0.93 0.73 0.80 0.54 

BS→EC 0.91 0.64 0.86 0.48 

AB→EC 0.91 0.64 0.89 0.43 
‡ Deng et. al also predicted EGs of P. aeruginosa PAO1. Now it’s impossible for us to get the same data set of P. 

aeruginosa PAO1 as that of Deng et al. 201110, we only gave the prediction result comparisons of other three 

prokaryotic organisms.  
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Table 4. Comparing the prediction results of EC, BS and MP at the basis of MG 

and MP
 ‡
 

 Our study Lin and Zhang (2011) 
11
  

 Sn(%)Sp(%) AVE AUC PPV(%) Sn(%) Sp(%) AVE AUC PPV(%)

MG+MP→EC 79.4 89.0 84.2 0.896 / 67.5 88.7 78.1 0.813 / 

MG+MP→ 

SA315 

78.5 87.5 83.0 0.904 / 70.2 87.6 78.9 0.778 / 

MG+MP→ MP 93.0 98.1 95.5 0.967 97.0 78.4 83.3 80.8 0.812 75.5 
“/”: the corresponding measurements were not given by Lin and Zhang (2011) 11, therefore we did not calculate. 
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Table 5. Comparing the prediction results between EC and PA
‡
 

 Our study Plaimas et al. (2010) 
9
 

 Sn AUC ACC PPV Sn AUC ACC PPV 

PA→EC 0.72 0.91 0.95 0.62 0.27 0.81 0.87 0.61 

EC→PA 0.47 0.81 0.94 0.47 0.07 0.80 0.87 0.67 
‡Plaimas et al. used two data sets of PA (paeJ and paeL) and two data sets of EC (ecoB and ecoG). We only 

compared the prediction results for paeL and ecoB in consideration of the fact that Plaimas et al. (2010) obtained 

the best results for them . 
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Feature   selection 
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Feature   selection 
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Model training process 

Genes of training organism 

Genes of query organism 

n=51? 
No 

Yes 

n=1 

Initiation 

Feature extraction 

Essential genes 
Yes 

Eindex=1 

Eindex=0 

Prediction model 

All features 

Final features of query genes 

n=n+1 

Feature  extraction 

Majority Voting 

End 
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