This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Ag–Fe₃O₄ Nanocomposites@Chitin Microspheres Constructed by in Situ One-pot Synthesis for Rapid Hydrogenation Catalysis

Bo Duan, Feng Liu, Meng He, Lina Zhang*

Department of Chemistry, Wuhan University, Wuhan 430072, China,

Ag–Fe₃O₄@chitin microspheres was developed as a retrievable catalysts and a potential chromatography column packing materials for organic synthesis.

* To whom correspondence should be addressed. Phone: +86-27-87219274.
Fax: +86-27-68754067. E-mail: zhangln@whu.edu.cn, linazhangwhu@gmail.com

(L. Zhang).
Ag–Fe₃O₄ Nanocomposites @ Chitin Microspheres

Constructed by in Situ One-pot Synthesis for Rapid Hydrogenation Catalysis

Bo Duan, Feng Liu, Meng He, Lina Zhang*

Department of Chemistry, Wuhan University, Wuhan 430072, China

* To whom correspondence should be addressed. Phone: +86-27-87219274.
Fax: +86-27-68754067. E-mail: zhangln@whu.edu.cn, linazhangwhu@gmail.com

(L. Zhang)
Abstract

The fabrication of reusable and biodegradable materials from the renewable resources such as chitin is essential for a sustainable world. In the present work, chitin was dissolved in 11 wt% NaOH/4 wt% urea aqueous solution via freezing/thawing, and then chitin microspheres (RChS) were prepared by sol-gel transition method. Subsequently, novel magnetic Ag–Fe₃O₄@chitin microspheres (MRChS) were constructed successfully by in situ one-pot synthesis of Ag–Fe₃O₄ nanoparticles onto the RChS surface. The magnetic chitin microspheres displayed spherical shape with 3D-mesh structure, and had a narrow size distribution (150-400 μm). There were many micro- and nano-pores existed in MRChS, and the Ag-Fe₃O₄ nanoparticles were immobilized through anchoring with the acetyl amine groups of chitin in these pores. The MRChS microspheres were used as chromatography column packing material for “catalytic reaction column”, and exhibited highly effective catalysis activity in the rapid transformation from 4-nitrophenol to 4-aminophenol. Moreover, the microspheres displayed a small hysteresis loop and low coercivity, as well as high turnover frequency (at least 10 times) without any loss of catalysis activity. Thus, MRChS could be fast removed out from the water under the magnetic field, leading to the easy recycle and reuse. Therefore, this is an environmentally friendly process, and would be highly beneficial to address the industrial requirements.

Keywords: silver nanoparticles, magnetic chitin microspheres, recycle catalysts, rapid catalytic reaction, environmentally friendly process
Introduction

Nowadays, the energy, resources and climate problems have drawn serious attention in view of the sustainability.1,2 Enhanced environmental consciousness has promoted the fusion of green chemistry with nanotechnology.3-5 The purpose to improve the efficiency and lighten the environmental burden has made the nanoscience and nanotechnology one of the most burning issues. In the over-expanding field of nanomaterials research, noble metallic nanoparticles (Au, Ag, Pt, etc.) have garnered extensive attention due to their fascinating properties and applications in catalysis,6,7 sensors,8,9 imaging,10,11 photonics.12,13 Undoubtedly, catalysis is certainly among the most intensely studied problems.14 Recently, the efficiency of the noble metallic catalysts in organic synthesis have been significantly improved by employing nano-sized catalysts due to their high ratio of surface area to volume, leading to the dramatic enhance in the contact between reactants and catalysts during the catalysis.15,16 However, the difficult recovery and reuse of the expensive nano-sized catalysts from the catalytic reaction systems by using traditional methods such as filtration and centrifugation results in the environmental and economic barriers.17,18 To overcome this issue, many efforts have been made to synthesize the magnetically retrievable nanocatalysts which possess high activity, selectivity, as well as meet the requirements of high accessibility with improved reusability.19,20 Unfortunately, they are very easy to aggregate to minimize their surface, leading to a remarkable reduction in their catalytic activities.21,22 To solve the problem of agglomeration, the immobilization of magnetic nanocatalysts on a solid
support has been regarded as one of the most efficient ways to overcome this
drawback.23, 24 Moreover, many solid supported catalysts have been successfully
utilized for catalytic applications.25 The materials with high surface area and good
mechanical stability, such as carbon-based materials (carbon nanotubes,26 graphene
oxide,27 and carbon-based nanofibers28), soluble and insoluble polymers,29, 30
mesoporous silica,31 metal oxide,32 titania33 etc, have been proved to be popular
candidates for nanocatalysts supports. On the other hand, as far as concerned the call
of the world for energy and sustainability, bio-inspired templating techniques using
nature polymers (protein,34 chitosan,35 cellulose,36, 37 etc) for catalysts supporters has
become a valuable strategy.

It is worth noting that chitin is the second most abundant nature biopolymer after
cellulose, existing mainly in the exoskeletons of crabs and shrimps.38 Chitin has been
reported to be a nature polysaccharide with significant biofunction.39, 40 However,
chitin remains perhaps the least exploited biomass source due to its intractable
molecular structure which results in its recalcitrance to dissolution in most common
solvent system.41 To date, only a few solvents have been employed for chitin
dissolution to prepare materials, including hexafluoroisopropanol (HFIP),42
dimethylacetamide (DMAc)-LiCl mixture,43 CaCl\textsubscript{2}-MeOH44 and ionic liquids.45 In
our laboratory, chitin was dissolved in an 11 wt\% NaOH–4 wt\% urea aqueous
solution by using freezing (\(-30 ^\circ\)C)/thawing cycles to prepare chitin hydrogels,46
aerogels47 and films.48 However, the chitin microspheres fabricated directly from the
chitin solution have been scarcely reported. Noticeably, chitin has been extensively
investigated as adsorbents for the metal extraction due to its large amount of acetyl amino groups, which serves as the chelation sites for metal ions. Therefore, the chitin microspheres are a potential supporter for binding metal ions as well as for fabricating and stabilizing the metal nanocatalysts. Thus, we attempted to construct an easily retrievable chitin microsphere through a low-cost and energy-effective pathway by using the sol-gel transition (SGT) method. Subsequently, Ag-Fe₃O₄ nanocomposites were in situ one-pot synthesized onto the chitin microspheres to construct magnetic nanocatalysts. Furthermore, catalysis activity and retrievable properties of the nanocomposite microspheres were measured to evaluate their application in adsorption and catalyst fields. It is not hard to imagine that the regenerated chitin microspheres with external and internal surface area, porosity, hydrophilicity, and acetyl amino groups make it easy to fabricate and stabilize the functional nanoparticles for separation or catalysis thus showing potential applications in chromatographic separation and nanocatalysts fields. The utilizing of chitin from renewable resource to directly construct new microsphere via an environmentally friendly process would be meaningful on chemistry for a sustainable world.

Experimental Part

Materials

Chitin powder was purchased from Golden-Shell Biochemical Co. Ltd. (Zhejiang, China). The chitin powder was purified by a procedure described previously. Firstly, 100 g chitin powder was treated with 400 g 5 wt% NaOH solution for 10 h under vigorous stirring. This suspension was then filtered and
washed with distilled water. Subsequently, the resulted chitin powder was treated with 400 g 7% (v/v) hydrochloric acid aqueous solution for 1 day to remove the residual protein. After filtration and rinsing with distilled water, the treated sample was dispersed in a 400 g 5 wt% NaOH solution for 1 day. The pigments were then removed from the sample by using 1.7 wt % of sodium chlorite in 0.3 M sodium acetate buffer (400 g) for 6 h at 80 °C, followed by washing with distilled water and drying to obtain purified chitin powder. The degree of acetylation (DA) of the original and purified chitin was calculated to be 90% and 94%, respectively, from the FT-IR spectra according to

\[\frac{A_{1560}}{A_{2875}} = 0.0125 \times DA + 0.2 \]

Where \(A_{1560}/A_{2875} \) is the ratio of the absorption bands at 1560 cm\(^{-1}\) and 2875 cm\(^{-1}\).\(^{50}\)

The weight-average molecular weight \((M_w) \) was determined to be \(53.4 \times 10^5 \) in 5% (w/v) LiCl/DMAc by dynamic light scattering (DLS, ALV/GGS-8F, ALV, Germany).

All of the chemical reagents were purchased from commercial sources in China, and were of analytical-grade.

Fabrication of regenerated chitin microspheres

Sol-gel process means the transition of a system from a liquid ("sol") into a solid ("gel") phase. In a colloidal suspension, the microspheres can aggregate into a new phase to form the gel.\(^{51,52}\) In this work, the regenerated chitin microspheres were fabricated by sol-gel transition method as follows. 7 g purified chitin powder was dispersed into a 93 g mixture of NaOH, urea, and distilled water (11:4:85) by weight with stirring to obtain a suspension. Subsequently, the suspension was frozen at -30
°C for 4 h, and then thawed at room temperature. The freezing/thawing cycle was repeated twice to obtain a transparent chitin solution, with chitin concentration 7 wt%. The chitin solution was degassed by centrifugation at 7200 rpm for 15 min at 0 °C. A well-mixed suspension containing 100 mL of paraffin oils, 1.5 g of Tween 80 and 0.5 g of Span 80 were dispersed in a reactor. The resulting suspension was stirred at 500 rpm for 30 min, and then 20 mL of the chitin solution was dropped into the suspension within 5 min. The suspension was kept stirring for 2 h at the same stirring speed at 0 °C, and then was heated to 25 °C with the same stirring speed for 0.5 h to form regenerated chitin gels. Subsequently, 2 mL epichlorohydrin (ECH) was dropped into the suspension within 10 min, and then was stirred at the same speed and temperature for additional 1.5 h to completely crosslink the chitin gel. To the resultant suspension, the dilute hydrochloric acid (10%) was added until pH = 7. After removing the liquid paraffin, about 20 mL regenerated chitin microspheres in the substratum were obtained, coded as RChS. The RChS microspheres were washed with deionized water, and then ethanol successively for three times to remove the residual paraffin oils, Tween 80 and Span 80. Finally, the microspheres were freeze-dried or stored in 20% ethanol at 5 °C for characterizations.

Fabrication of Ag-Fe₃O₄ / chitin nanocomposite microspheres

Magnetic nanocomposite chitin microspheres were in situ one-pot synthesized by redox reaction between Ag₂O and Fe(OH)₂ in the RChS microspheres as follows. Desired amounts of FeCl₂·4H₂O were dissolved in 140 mL water, to which 15 mL hydrated RChS (water content 80 wt%) was added, and then the suspension was
stirred for 1h with the protection of nitrogen at room temperature. Subsequently, the mixture was heated to 90 °C and a certain amount of 1M NaOH aqueous solution were mixed with the solution rapidly. The mixture was maintained at 90 °C in air with stirring after the addition of 10 mL aqueous solution containing desired amount of AgNO₃ for 2 min to obtain magnetic chitin microspheres, coded as MRChS. The MRChS microspheres were coded as M15, M30 and M45, according to the different concentrations of FeCl₂ at 15 mmol, 30 mmol, 45 mmol, corresponding to the amounts of 1 M NaOH/AgNO₃ to be 10 mL/0.212 g, 20 mL/0.424g and 30 ml /0.636 g, respectively. The MRChS microspheres were washed with deionized water until pH = 7. Finally, the MRChS microspheres were freeze-dried or stored in 20% ethanol at 5 °C for characterizations. The optical photomicrographs of the chitin microspheres were observed using a biological microscope (EX20, Sunny, China).

Characterization

Fourier-transform infrared (FT-IR) spectra of the microsphere samples were recorded on a Perkin-Elmer FT-IR spectrometer (model 1600, Perkin–Elmer Co. USA). The tested samples were prepared by the KBr-disk method. The wide-angle X-ray diffraction (XRD) was carried out on a XRD instrument (XRD-6000, Shimadzu, Japan) with Cu-Kα radiation (λ=0.154 nm). The XRD data were collected from 20 = 10 to 90° at a scanning rate of 2°/min. X-ray photoelectron spectra (XPS) were recorded on a Kratos XSAM800 X-ray photoelectron spectrometer, using Mg Kα radiation as the excitation source. Thermo-gravimetric analysis (TGA) of the dry samples was carried out on a Pyris TGA linked to a Pyris diamond TA Lab System.
(Perkin-Elmer Co., USA) at a heating rate of 10 K min\(^{-1}\) from 30 to 700 °C under air atmospheres. Scanning electron microscopy (SEM) was performed on a FESEM (SEM, SIRION TMP, FEI) by using an accelerating voltage of 12 kV. The microspheres in the wet state were frozen in liquid nitrogen and freeze-dried under vacuum. The freeze-dried microspheres were sputtered with gold before observation. The high-resolution transmission electron microscopy (HRTEM) image was taken on a JEOL JEM 2010 FEF (UHR) microscope at 200 kV. The imbibed water of MRChS was exchanged to acetone, and then the microspheres were embedded with epoxy resin Epon812 (Shanghai Bioscience, Shanghai, China). After that, the embedded specimen was sectioned by a Leica Ultracut-E using a diamond knife to prepare approx.80 nm-thick sections. These samples were sputtered with carbon before HRTEM test. The definite size distribution of RChS and MRChS was determined with a Mastersizer 2000 laser particle size analyzer (Malvern, UK). Nitrogen physisorption measurements at 77 K were performed by a Micrometerics AsAp2020 (USA), and Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halender (BJH) analyses were done by software. The microspheres were degassed at 105 °C in vacuum to remove all the adsorbed species. BET analysis was performed for relative vapor pressures of 0.05-0.3. The BJH analysis was performed from the desorption branch of the isotherms.

The magnetic properties of the composite microspheres were measured with a vibrating sample magnetometer (VSM, Lake Shore, 7304, USA) at 25 °C, and the hysteresis loop was obtained in a magnetic field that varied from -0.6 to +0.6 T.
Catalytic Activity Assays

The microspheres used for catalytic reduction were obtained via exchanging the water in hydrated microspheres to acetone and then drying under vacuum at ambient temperature for 24 h. The catalytic activity of Ag-Fe₃O₄/chitin microspheres was evaluated by using the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in a quartz cell at 25 °C, monitored using UV–visible spectroscopy (UV-6, Shanghai Meipuda instrument Co., LTD., Shanghai, China). More specifically, 0.75 mL of fresh NaBH₄ aqueous solution (0.4 M) was mixed with 1.5 mL aqueous dispersion of MRChS (Ag-Fe₃O₄@chitin) microspheres at 50 mg/L. Subsequently, 0.75 mL of 4-NP aqueous solution (4× 10⁻⁴ M) was added. As a result, the concentration of 4-NP and NaBH₄ in the reaction solution was 1 × 10⁻⁴ and 0.1 M, respectively. The catalytic reaction was monitored at decided time intervals. The control experiment was carried out under identical condition except that the Ag-Fe₃O₄@chitin microspheres aqueous dispersion was replaced with 50 mg/L chitin microspheres. At the end of the reaction, the catalyst was separated from the reaction system using an external magnet, washed three times with ethanol and dried at room temperature for the next cycle. Additionally, the RChMS microspheres suspended in distilled water were packed in an injector (1 ml) which acted as a reaction column to form a 1.5 cm long gel bed. The column was equipped with a glass collector, and a piece of cotton wool was placed at the bottom of the injector to prevent the outflow of the MRChS. The mixture solution of NaBH₄ (0.1 M) and 4-NP (1× 10⁻⁴ M) was added in the injector from the top and squirted through the MRChS packing. The product was gathered in the glass collector.
Results and Discussion

Green process of the preparation for the magnetic chitin microspheres

The process for the preparation of the chitin microspheres (RChS) was described in Scheme S1. Firstly, the chitin solution was prepared by using the aqueous NaOH/urea via freezing/thawing method, which is an environmental friendly solvent. Moreover, it was very easy to give a sol-gel transition for chitin solution directly through heating up to 20 °C.47 Secondly, the chitin droplets were heated to 25 °C to proceed the “sol-gel” transition. Unfortunately, the chitin microspheres regenerated directly with heating displayed a non-homogeneous distribution and nonspherical shape (See Fig S1a). It might result from its poor mechanical properties. To construct the chitin microspheres with a stronger network structure, a further crosslink was performed. As expected, the chitin microspheres crosslinked with ECH (see Scheme S2) displayed a perfectly well-defined spherical shape with porous structure (see Fig. S1b and S2). The preparation of RChS was a green process, which included the direct utilization of the renewable resource, the dissolution in the environmental friendly NaOH-urea aqueous solvent, no evaporation of any chemical agents, as well as low cost and clean emulsification pathway. It was noted that the dissolution and regeneration of the chitin was a physical process through non-covalence, and the DA value hardly changed.48

The FTIR spectra of the regenerated chitin microspheres (see Fig. S3) showed there were large amounts of acetyl amino groups (DA=91%, calculated with eqn 1), which could serve as anchoring sites for the metal ions.49 Thus, the Fe$^{2+}$ can be easily
absorbed and stabilized onto the chitin microspheres through the strong interaction with these acetyl amino groups of chitin. Moreover, by adding alkaline and AgNO₃, the Fe(OH)₂ reacted with Ag₂O to give magnetic Ag-Fe₃O₄ nanocomposites in the chitin microspheres, leading to the formation of the magnetic MRChS microspheres. Herein, the entire preparation of the MRChS composite in aqueous solution was finished under clean and moderate condition, which was also an environmentally friendly method. Moreover, the original feature (such as metal ions absorbent) of chitin was maintained in the magnetic microspheres, leading to the excellent candidate for the nanoparticle supporters.

Structure and morphology of the magnetic chitin microspheres

The optical photomicrographs and size distribution observed with the laser particle size analyzer for the RChS and MRChS microspheres are shown in Fig. 1. RChS and MRChS (M30) at the swollen state had average diameters about 251 μm and 253 μm, respectively, and displayed the narrow size distribution which fitted the Gaussian distribution on the whole (Fig. 1b, d). It was noted that both RChS and MRChS exhibited the same spherical shape and size distribution. This could be explained that the synthesis reaction of Ag-Fe₃O₄ occurred in the pores of the chitin microspheres, so the morphology of the composite microspheres changed hardly, compared to the original one. From the analysis of the XRD patterns (See Fig. S4), the Ag-Fe₃O₄@chitin composite microspheres displayed a typical α-chitin structure. Distinct peaks of MRChS at 2θ of 38.1, 44.3, 64.4, 77.5 and 81.6° were assigned to the (111), (200), (220), (311) and (222) planes of Ag, whereas the 2θ = 30.2, 35.6,
57.2, and 62.6° to (220), (311), (511) and (440) were ascribed to planes of Fe₃O₄, respectively. The diffraction peaks of Ag appeared to be much stronger than those of Fe₃O₄, suggesting that the crystallization of Fe₃O₄ nanoparticles was not so perfect as that of Ag.¹⁷ In view of the results in Fig.1 and S4, the MRChS were consisted of chitin, Ag and Fe₃O₄.

To clarify the morphology of the chitin microspheres and the distribution of Ag-Fe₃O₄ nanoparticles on their surfaces, the microspheres were observed by SEM. The SEM images of the surfaces of RChS and MRChS are shown in Fig. 2, S2 and S5. The morphology of RChS and MRChS displayed the spherical shape (Fig. 2) and 3D network structure with interconnecting pores (see Fig. S2 and S5). Obviously, there was no essential change for the MRChS morphology during the growth of Ag-Fe₃O₄ nanoparticles compared with RChS. The surface of RChS exhibited microporous structure with an apparent mean diameter of 3-20 μm for the micropores (measured from the Fig. 2). The pore formation was a result of the phase separation induced by the occupying H₂O during sol-gel process, where the solvent-rich regions contributed to the pore formation.⁵³ However, as shown in Fig. 2b, c and d, the MRChS composite microspheres (M15, M30 and M45) exhibited relatively denser surfaces than that of RChS. It was further confirmed that Ag-Fe₃O₄ nanoparticles could be readily impregnated into the pores and/or channels of the chitin matrix through bounding to the chitin macromolecules as a result of the chelation of acetyl amino groups. The Ag-Fe₃O₄ nanoparticles were extensively and homogeneously dispersed on the surface of the chitin microspheres (See Fig. S5b, c and d). This suggested that the unique 3D-
porous structure and abundant acetyl amino groups of RChS provided a good platform for the immobilization of Ag-Fe₃O₄ nanoparticles, which were deposited and anchored in the chitin matrix during the redox reaction process between Fe(OH)₂ and Ag₂O through being immersed in salt and alkaline aqueous solution.

The SEM could only be used to confirm the micro-sized porous structure appeared on the surface of the chitin microspheres. Thus, the surface area and corresponding nano-sized porous structure of the Ag-Fe₃O₄ nanocomposites@chitin microspheres were determined by using N₂ adsorption-desorption method. Fig. 3 shows nitrogen adsorption and desorption isotherms and Barrett-Joyner-Halendar (BJH) pore size distribution of RChS, M15, M30, and M45. Both RChS and MRChS exhibited a type I H3 hysteresis loop according to the IUPAC and BDDT classification, as the adsorption branch is parallel to the P/P₀ over a large extent.

The BET surfaces area, pore volume and pore size of RChS and MRChS were calculated, and the data are summarized in Table 1. The result revealed that inner of the microspheres exhibited the nano-sized pores, and the most probable values of pore size ranged from 10 to 50 nm (Fig. 3b), indicating that MRChS maintained its initial nanoporous structure after the immobilization of Ag-Fe₃O₄ nanoparticles. The decrease in surface area and pore volume of MRChS compared with RChS indicated that the Ag-Fe₃O₄ nanoparticles occupied in the pores of the chitin microspheres.

TEM and high resolution TEM (HRTEM) were used to study the microstructure of the magnetic chitin microspheres in more detail. Fig. 4 shows TEM and HRTEM images of the magnetic microspheres of M10 (a), M20 (b) and M30 (c). The
Ag-Fe₃O₄ nanocomposites with spherical shape and mean diameter of 10-40 nm were
dispersed uniformly in the chitin matrix. The size of the Ag-Fe₃O₄ nanoparticles in
these microspheres changed slightly with an increase of the Ag-Fe₃O₄ content (see Fig
4a, b, c, and Fig. S6). This could be explained that the acetyl amino groups on the
RChS surface captured a certain amount of the Fe²⁺, which could terminate the
reduction action between Fe(OH)₂ and Ag₂O, and the micro- and nano-sized pores of
the chitin matrix acted as micro-chambers to limit the growth of the Ag-Fe₃O₄
nanoparticles. In our findings, the preparative chitin microspheres could be used as an
excellent metallic nanoparticle supporter. From the HRTEM image and the
corresponding energy-dispersive spectrum (EDS) in Fig. 4d, e, the clear crystalline
lattices were attributed to (111) (d=0.235 nm), (200) (d=0.203 nm) phases of Ag, and
(311) (d=0.251 nm), (511) (d=0.162 nm) phases of Fe₃O₄. The results confirmed the
successful synthesis of Ag-Fe₃O₄ nanoparticles in this manner. Interestingly, there
were some rod-like crystals of Fe₃O₄ around the spherical Ag-Fe₃O₄ nanoparticles.
This could be explained that from the EDS curve for the rod-like crystal (see Fig.
S7b), there were only C (sputtered carbon), O and Fe elements in this crystal, so these
nanocrystals were made of Fe₃O₄, which should result from the oxidation of
Fe(OH)₂.⁵⁵

More detailed information regarding the chemical and bonding environment of
the chitin microspheres and Ag-Fe₃O₄ nanoparticles were ascertained using X-ray
photoelectron spectroscopy (XPS). Fig. 5a shows the fully scanned spectra in the
range of 0-800 eV. These results from overview spectra demonstrated that C, O, N ,
Ag and Fe existed in the magnetic microsphere of M30, while only C, O and N appeared in RChS. Fig. 5b shows the XPS spectrum in Ag 3d region of M30. Two peaks at 373.8 eV and 367.8 eV were well corresponded with Ag3d$_{5/2}$ and Ag3d$_{3/2}$ binding energies, respectively, in good consistent with the reported data of Ag0. On the other hand, the binding energies at 724.6 and 711.1 eV in Fig. 5c were attributed to 2p$_{1/2}$ and 2p$_{3/2}$ of Fe, which was a typical core level spectrum of Fe$_3$O$_4$ with broad peaks, confirming the formation of Fe$_3$O$_4$. Interestingly, all peaks of Ag and Fe were shifted to lower binding energies compared with the reported characteristic metallic Ag0 peaks at 374.1 and 368.1 eV and Fe$_3$O$_4$ peaks at 725.0 and 711.5 eV. However, the peak of N in M30 was shifted obviously to the higher binding energy (398.8 eV) compared with RChS (398.3 eV) (Fig. 5d). These results indicated that the N in acetyl amino groups acted as the anchorage and stabilization for Ag-Fe$_3$O$_4$ nanoparticles, leading to their immobilization on MReChS. This might be explained that the transformation of the coordination electronic from N to Ag-Fe$_3$O$_4$ nanoparticles resulted in a decrease of the binding energy for Fe and Ag, but an increase for N. The high resolution XPS spectra for the C1s region around 285 eV is shown in Fig. 5e. The three types of peak at 286.8 eV, 285.4 eV, and 283.7 eV were assigned to the each carbon atoms of the C=O group, the C-O or C-N group and C-C or C-H in chitin, respectively. The similar three peaks of the C1s for RChS and M30 suggested that the Ag-Fe$_3$O$_4$ nanoparticles did not attach the C atoms of chitin. Fig. 5f shows the spectra of O1s for the bare RChS and the Ag-Fe$_3$O$_4$/chitin composite microspheres (M30). The shape of a wide and asymmetric peak of O1s spectrum for
both RChS and M30 indicated that there was more than one chemical state according to the binding energy. Three peaks of RChS O1s spectrum were identified: at 532.2 eV, assigned to O-C=O; at 531.3 eV, assigned to C–O-H and C-O-C; 530.2 eV assigned to N-C=O, respectively.\(^{60}\) For the M30, the O1s peak can be generally regarded as a joint contribution of the RChS and Ag-Fe\(_3\)O\(_4\) nanocomposites, indicating a clear difference with that of RChS in its lower tails. The peak at 530.4 eV was ascribed to the anionic oxygen in Fe\(_3\)O\(_4\) (Fe-O or Fe=O).\(^{61}\) Interestingly, the N-C=O peak at 529.4 eV of M30 obviously shifted to lower binding energy compared with that of RChS (530.2 eV), suggesting that the O atom of N-C=O group served as anchoring sites together with N atom for Ag-Fe\(_3\)O\(_4\) nanoparticles. Namely, the acetyl amino groups were the anchoring sites for the Ag-Fe\(_3\)O\(_4\) nanoparticles.

Formation mechanism of Ag-Fe\(_3\)O\(_4\)@chitin microspheres

On the basis of the above experimental results and theory analysis, a possible mechanism for the construction of Ag-Fe\(_3\)O\(_4\)@chitin microspheres is proposed in Scheme 1. There were many micro- and nano-pores in the chitin microspheres, as shown in Fig 2 and 3. The large amounts of acetyl amino groups existed in the pores of chitin microspheres (Scheme 1a), supported by the results in Fig. 5 and S3. Thus, Fe\(^{2+}\) was absorbed and stabilized quickly into the pores through binding with acetyl amino groups. Subsequently, the Fe(OH)\(_2\) particles were generated with the addition of alkalinity (Scheme 1b). When AgNO\(_3\) was added into the alkaline suspension, the redox reaction between Ag\(_2\)O and Fe(OH)\(_2\) took place rapidly, leading to the in situ one-pot synthesis of the Ag-Fe\(_3\)O\(_4\) nanoparticles in the micro- and nano-sized pores.
(Scheme 1c), supported by the results in Fig. 3, 4, 5 and S4.

The Ag-Fe$_3$O$_4$@chitin nanocomposites was fabricated through the redox reaction between Fe(OH)$_2$ and Ag$_2$O as follows.55

$$\text{Fe}^{2+} + 2\text{OH}^- \rightarrow \text{Fe(OH)}_2 \quad (2)$$

$$2\text{Ag}^+ + 2\text{OH}^- \rightarrow \text{Ag}_2\text{O} + \text{H}_2\text{O} \quad (3)$$

$$2\text{Ag}_2\text{O} + 6\text{Fe(OH)}_2 \rightarrow 2\text{Fe}_3\text{O}_4 + 4\text{Ag} + 6\text{H}_2\text{O} \quad (4)$$

In our findings, the pores in the chitin microspheres served as microreacters for the synthesis and growth of Ag-Fe$_3$O$_4$, leading to the formation of the Ag-Fe$_3$O$_4$ nanoparticles with narrow size distribution. The acetyl amino groups as an anchoring sites captured the Ag-Fe$_3$O$_4$ nanoparticles (Scheme 1c), supported by the results in Fig. 5. All of these results gave the insight that (1) the heterostructures were composed of Ag-Fe$_3$O$_4$ nanocomposites and chitin; (2) the acetyl amino groups on chitin microspheres acted as the anchoring sites for the Ag-Fe$_3$O$_4$ nanoparticles; (3) the porous microspheres were used as micro-reactors to supply not only cavities for the construction of the nanoparticles, but also a shell to protect the nano-structure and catalysis activity.

Magnetic properties

The magnetic properties of these materials are critical to ensure their applications. Fig. 6a shows the magnetization of M15, M30 and M45 as a function of the magnetic field at 298 K. The magnetization of these MRChS microspheres increased considerably with an increase of the Ag-Fe$_3$O$_4$ nanocomposites. Though, the magnetization of the composite microspheres in each sample was weak and showed a
lack of saturation, they exhibited a small hysteresis loop and low coercivity, suggesting a superparamagnetic behavior. The saturation magnetization of M15, M30, M45 obtained from the hysteresis loop was 2.41, 2.81 and 3.42 emu/g, respectively, depending on the effective mass of the Fe$_3$O$_4$ nanoparticles. To further investigate the magnetic response of the MRChS, the magnet was used to attract the microspheres in water. Fig. 6b, c and d show photographs of the MRChS dispersion in water and the attraction behaviors induced by the magnet. As shown in Fig. 6b, the MRChS were drawn rapidly to attach on the surface of the magnet within 5 sec, and were completely attracted to collect from the water in the jar within 13 sec (Fig. 6c and Video 1). Obviously, the magnet can be employed efficiently to recycle the MRChS. Moreover, the magnetism of the MRChS was not only strong enough to separate themselves out from the action system with the help of an external magnetic field, but also beneficial for the easy redispersion for reuse (see Video 1). Therefore, MRChS could be fast removed out from the water under the magnetic field, leading to the easy recycling and reuse. The convenient recycle of the magnetic microspheres conformed to the call of the green chemistry.

Catalytic activity

It is well-known that metallic silver nanostructures are excellent catalysts with high activity and selectivity. Thus, the silver immobilized on a porous microspheres support could serve as a practical recyclable catalyst and chromatograph packing materials towards many reactions. In our findings, the reduction of 4-nitrophenolate (4-NP) to 4-aminophenolate (4-AP) in the presence of NaBH$_4$ was chosen as model
reactions to evaluate the catalytic activity of the as-prepared Ag-Fe₃O₄@chitin catalyst. Usually, the 4-NP aqueous solution has a maximum absorption at 317 nm in the UV-vis spectrum which is remarkably red-shifted to 400 nm when it has been treated with an aqueous solution of NaBH₄, corresponding to a color change from light yellow to bright yellow. The absorption at 400 nm reflects the formation of 4-nitrophenolate ions, owing to an increase in solution alkalinity, caused by the addition of NaBH₄. The reaction conversion can be calculated from C/C_0, which is measured from the relative intensity of UV-vis absorbance (A/A_0) at 400 nm.

Herein, C is the concentration of the 4-NP at the reactant and C_0 is the initial concentration. Fig. 7a shows the catalytic efficiency of the reduction reaction of MRChS on 4-NP as a function of time. After the addition of Ag-Fe₃O₄@chitin into the system, the absorption intensity of 4-NP at 400 nm decreased rapidly with time, and a new peak at 295 nm appeared, indicating the formation of 4-AP, which was accompanied with its perceptible color change. For comparison, the control experiment was conducted with a mixture of 4-NP, NaBH₄ reducing agent and chitin microspheres without Ag-Fe₃O₄@chitin (Fig. 7b). The solution remained bright yellow with a constant absorption peak at 400 nm for the control experiment, indicating that the catalytic reduction of 4-NP did not occur. However, when the Ag-Fe₃O₄@chitin microspheres were added into the reaction mixture such as M15, M30 and M45, the C/C_0 values or the peak intensity at 400 nm of 4-NP rapidly decreased with an increase of the reaction time. In this experiment, the NaBH₄ was used in large excess to 4-NP, and can be considered as constant during the reaction.
period. So the pseudo-first-order kinetics can be applied to evaluate the reaction rate constants. The reaction kinetics can be described as

$$\ln(C/C_0) = -kt, \quad (5)$$

Where k is the apparent first-order rate constant (min$^{-1}$), t is reaction time. Fig. 7c shows a linear relationship for $\ln(C/C_0)$ against t in the reduction catalyzed by the heterostructures following the pseudo-first-order kinetics. The reaction rate constants were calculated to be k~0.3139 min$^{-1}$ for M45, k~0.2621 min$^{-1}$ for M30 and k~0.2236 min$^{-1}$ for M15. This indicated that the catalytic efficiency was enhanced with the increasing content of silver nanoparticles in the Ag-Fe$_3$O$_4$@chitin microspheres (see Fig. S9).

Stability and recyclability of catalysts are of great importance for the practical applications. Fig. 7d shows the catalytic activity of M30 (50 mg/L) for the reduction of 4-NP with 10 successive times of cycling uses. The results for the different times of cycling uses were very similar and the catalytic activity changed hardly, indicating MRChS possessed high turnover frequency (at least 10 times) without any loss of catalysis activity. The recyclability of the catalyst may result from the highly efficient stabilization of the Ag-Fe$_3$O$_4$ nanoparticles immobilized in the chitin microsphere. Interestingly, considering the high recycled frequency, favorable size (150-400 µm) and porous structure of the magnetic microspheres, it would greatly promote the application of the MRChS in the catalysis field.

The photograph for the MRChS acting as chromatographic packing materials in injector for rapid catalysis is shown in Fig. 8. When the yellow solution (4-NP and
NaBH₄) was syringed through the MRChS packing, the Ag immobilized on the MRChS efficiently catalyzed the reduction of 4-NP to 4-AP, and immediately, the colorless product of 4-AP appeared in the collector (also seen in Video 2). The highly efficient catalytic activity and the facile application of the MRChS are important in the catalysis field. Moreover, all samples had adequate thermal stability because the decomposition did not occur below 200 °C (see Fig. S9). This is important for the huge potential application of the nanocomposite catalysts because thermal stability of catalysts is necessary for many catalytic reactions. Therefore, this work would supply a broad pathway to immobilize the noble metallic nanocatalysts for the further industrial application. It was worth noting that chitin could be biodegraded in the soil, and could serve as plant growth regulator to promote the plant growth even after they had been discarded.⁶⁵

Conclusion

Chitin microspheres having acetyl amino groups were prepared successfully in an aqueous system by sol-gel transition method via a green pathway. The Ag-Fe₃O₄ nanoparticles with mean size 10-40 nm were in situ one-pot synthesized in the micro- and nano-pores of the microspheres through strong interaction between Ag-Fe₃O₄ and chitin. The porous microspheres were used as micro-reactors to supply not only cavities for the formation of the nanoparticles, but also a shell to protect the nano-structure and catalysis activity. Moreover, the acetyl amino groups of chitin served as anchoring and stabilizing agent to trap the Ag-Fe₃O₄ nanoparticles to immobilize in the chitin microspheres. The magnetic composite chitin microspheres
were proved to be not only highly efficient for the catalytic reaction from 4-NP to 4-AP, but also an easily recyclable and reusable catalyst. The chitin microspheres containing Ag-Fe₃O₄ nanoparticles would have great potential in industry as a broad platform for metallic nanoparticle immobilization and for rapid catalysis. Both the fabrication and use of the magnetic composite microspheres were very simple and convenient. Therefore, this is an environmental friendly material and process, which is accorded to the sustainability.

ACKNOWLEDGMENTS. This work was supported by National Basic Research Program of China (973 Program, 2010CB732203), the Major Program of National Natural Science Foundation of China (21334005) and the National Natural Science Foundation of China (20874079).

References

2010, 49, 4962-4966.

612 18314-18320.

Figure captions

Table 1 Surfaces properties of RChS and MRChS.

Scheme 1 Schematic depiction for in situ synthesis of Ag-Fe₃O₄ nanocomposites on the chitin microspheres: “living” chitin microspheres with surface-bound acetyl amine groups in nano-sized pores (a); Fe(OH)₂ (b) and Ag-Fe₃O₄ (c) nanoparticles anchored with the acetyl amine groups of chitin microspheres.

Fig. 1 Optical photomicrographs of the RChS (a) and MRChS (c), the scale bar is 300 µm and the size distribution of RChS (b) and M30 (d) observed with the laser particle size analyzer.

Fig. 2 SEM images of the RChS (a), M15 (b), M30 (c) and M45 (d). The scale bar is 50 µm.

Fig. 3 Nitrogen adsorption and desorption isotherms (a) and Barrett-Joyner-Halender (BJH) pore size distribution (b) of RChS, M15, M30, and M45.

Fig. 4 TEM images of the magnetic microspheres of M15 (a), M30 (b) and M45 (c). HRTEM of an individual particle and the lattice fringes marked (d). Typical EDS spectrum of the particle from HRTEM (e).

Fig. 5 XPS fully scanned spectra of RChS and M30 (a); XPS spectra of Ag 3d (b) and Fe 2p (c) for M30; XPS spectrum of N1s (d), C1s (e) and O1s (f) for RChS and M30, respectively.

Fig. 6 Magnetic hysteresis loops and enlarged view (inset) of the central portion of M15, M30 and M45 (a), and photographs of the MRChS dispersion in water (b), and
the attraction behaviors induced by the magnet immersed in the water for 5 sec (c), 13 sec (d).

Fig. 7 Catalytic performances of the MRChS on 4-NP: UV–vis absorption spectra during the catalytic reduction of 4-NP over M30 (50 mg/L) (a); the inserts are the reaction scheme associated color change from bright yellow of 4-NP to colorless 4-AP; Plots of the absorbance at 400 nm for ln(C/Co) (b) and C/Co (c) versus the reduction reaction time for 4-NP, M15, M30 and M45 at the concentration of 50 mg/L, the control experiment (50 mg/L chitin microspheres); Catalytic activity of the sample M30 (50 mg/L) for 4-NP with 10 times of cycling uses as a function of time (d).

Fig. 8 Optical photograph of the preparative chromatography column packed with MRChS for the catalytic reaction from 4-nitrophenol to 4-aminophenol.
Table 1 Surfaces properties of RChS and MRChS.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Structural parameters</th>
<th>Surface area (m²/g)</th>
<th>Pore volume (cm³ g⁻¹)</th>
<th>Pore size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RChS</td>
<td></td>
<td>34.6</td>
<td>0.252</td>
<td>22.3</td>
</tr>
<tr>
<td>M15</td>
<td></td>
<td>33.1</td>
<td>0.124</td>
<td>14.1</td>
</tr>
<tr>
<td>M30</td>
<td></td>
<td>32.5</td>
<td>0.157</td>
<td>15.3</td>
</tr>
<tr>
<td>M45</td>
<td></td>
<td>18.8</td>
<td>0.084</td>
<td>26.2</td>
</tr>
</tbody>
</table>
Scheme 1 Schematic depiction for in situ synthesis of Ag-Fe₃O₄ nanocomposites on the chitin microspheres: “living” chitin microspheres with surface-bound acetyl amine groups in nano-sized pores (a); Fe(OH)₂ (b) and Ag-Fe₃O₄ (c) nanoparticles anchored with the acetyl amine groups of chitin microspheres.
Fig. 1 Optical photomicrographs of the RChS (a) and MRChS (c), the scale bar is 300 μm and the size distribution of RChS (b) and M30 (d) observed with the laser particle size analyzer.
Fig. 2 SEM images of the RChS (a), M15 (b), M30 (c) and M45 (d). The scale bar is 50 μm.
Fig. 3 Nitrogen adsorption and desorption isotherms (a) and Barrett-Joyner-Halender (BJH) pore size distribution (b) of RChS, M15, M30, and M45.
Fig. 4 TEM images of the magnetic microspheres of M15 (a), M30 (b) and M45 (c).

HRTEM of an individual particle and the lattice fringes marked (d). Typical EDS spectrum of the particle from HRTEM (e).
Fig. 5 XPS fully scanned spectra of RChS and M30 (a); XPS spectra of Ag 3d (b) and Fe 2p (c) for M30; XPS spectrum of N 1s (d), C 1s (e) and O 1s (f) for RChS and M30, respectively.
Fig. 6 Magnetic hysteresis loops and enlarged view (inset) of the central portion of M15, M30 and M45 (a), and photographs of the MRChS dispersion in water (b), and the attraction behaviors induced by the magnet immersed in the water for 5 sec (c), 13 sec (d).
Fig. 7 Catalytic performances of the MRChS on 4-NP: UV–vis absorption spectra during the catalytic reduction of 4-NP over M30 (50 mg/L) (a); the inserts are the reaction scheme associated color change from bright yellow of 4-NP to colorless 4-AP; Plots of the absorbance at 400 nm for ln(C/Co) (b) and C/Co (c) versus the reduction reaction time for 4-NP, M15, M30 and M45 at the concentration of 50 mg/L, the control experiment (50 mg/L chitin microspheres); Catalytic activity of the sample M30 (50 mg/L) for 4-NP with 10 times of cycling uses as a function of time (d).
Fig. 8 Optical photograph of the preparative chromatography column packed with MRChS for the catalytic reaction from 4-nitrophenol to 4-aminophenol.