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When biomass is exposed to high temperatures in torrefaction, pyrolysis or gasification treatments, the 

enrichment of carbon in the remaining ‘green coal’ is correlated with the temperature. Various other 

properties, currently measured using wet chemical methods, which affect the materials’ quality as a fuel, 

also change. The presented study investigated the possibility of using NIR spectrometry to estimate 

diverse variables of biomass originating from two sources (above-ground parts of reed canary grass and 10 

Norway spruce wood) carbonised at temperatures ranging from 240 to 850 ˚C. The results show that the 

spectra can provide excellent predictions of its energy, carbon, oxygen, hydrogen, ash, volatile matter and 

fixed carbon contents. Hence NIR spectrometry combined with multivariate calibration modeling has 

potential utility as a standardized method for rapidly characterising thermo-treated biomass, thus reducing 

requirements for more costly, laborious wet chemical analyses and consumables. 15 
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Introduction 

The world's population has exceeded seven billion and the 
world’s cumulative anthropogenic carbon dioxide (CO2) 
emissions have now passed half of its first trillionth tonne.1,2 The 20 

emission rate has risen by more than 3% annually during the last 
decade and despite an on-going global economic depression, CO2 
emissions reached all-time record levels in 2013.3,4 This increases 
risks of the Earth’s atmospheric system inducing rapid, 
irreversible climatic, environmental and ecological changes.5 25 

Further, critical thresholds of maximum safe cumulative 
emissions may already have been exceeded5-8, although such 
thresholds may not be reached for some time9. Thus, sustainable 
socio-economic activity requires the rapid development (and 
implementation) of large-scale technological systems based on 30 

sustainable, CO2-neutral energy sources. One such source, for 
both energy generation and the manufacture of diverse products, 
is biomass. 
 The transition from using mainly fossil fuels to relying more 
on biomass in the energy sector has been initiated. Today, 35 

renewable energy meets about 16% of total global energy 
demands.10 According to recent international energy outlook 
published by the US Energy Information Agency renewables in 
general, and biomass in particular, will be among the world’s 
fastest-growing energy sources.11 Hence, the use of biomass in all 40 

thermal energy-yielding processes (e.g. combustion and co-firing) 
and processes as torrefaction, pyrolysis and gasification for the 
production of biofuels is expected to grow. For example, in the 
USA generation of non-hydroelectric renewable electricity from 
biomass is expected to more than triple by 2035.11 45 

 However, in order to control torrefaction, pyrolysis and 
gasification process steps effectively there is a need for efficient, 
on-line techniques for monitoring key variables (e.g. H/C and 
O/C atomic ratios, which decline in the residual carbonized solid 
phase when biomass is subjected to any of these processes).  50 

 
 
 
Covalent C-O, C=O and C=C bonds are present in torrefied 
biomass, and in addition to C-H and O-H bonds their vibrations 55 

interfere with near infrared (NIR) radiation12, i.e. overtones from 
fundamental vibrations in the infrared (IR) region. Thus, overtone 
vibrations in the NIR region (having larger penetration depths 
than in IR) provide valuable chemical information about the state 
of carbonised biomass, and robust NIR instruments, which can 60 

even be used in harsh industrial environments, have been 
developed. 
 NIR techniques can be used for monitoring and controlling 
biofuel processes based on solids as well as torrefaction 
processes.12-14 Due to their rapidity, time- and cost-effectiveness, 65 

low requirements for sample preparation and negligible use of 
consumables, NIR analyses have also been utilized in 
standardized procedures for measuring diverse variables in other 
kinds of biological material, e.g. protein contents of wholegrain 
wheat and seed moisture content.15,16 It may therefore be possible 70 

to develop robust, real-time NIR-based, ‘green chemistry’ 
methods for characterizing torrefied biomass, biochar and solid 
residues after gasification, that have major advantages over 
traditional, wet chemistry techniques. 
 The main objective of this study was therefore to study the 75 

possibility of using NIR spectroscopic techniques combined with 
multivariate calibration modeling to predict an array of properties 
of torrefied biomass, biochar and the solid residue from gasifying 
biomass, and thus reduce the need for wet chemical analysis to 
characterize these ‘green coals’, i.e. carbon enriched remains after 80 

thermotreatment of biomass. Another objective was to determine 
if NIR spectroscopy has potential utility as an international 
standardized technique for assessing key variables such as the 
H/C and O/C atomic ratios and energy content of thermotreated 
biomass, especially torrefied biomass and biochar after pyrolysis. 85 
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Methods and materials 

Biomass model 
Biomass samples were obtained from two model species: above-
ground parts of the agro-crop reed canary grass (Phalaris 
arundinacea L.), as a model for rhizomatous and energy grasses 5 

(others include Miscanthus ssp. and switch grass), and wood from 
the forest tree species Norway spruce (Picea abies Karst. (L.)) as 
a representative of woody species. In both cases, samples of both 
un-treated (dried to dryness) and thermal treated materials were 
milled over a 1 mm sieve using a laboratory mill17. The samples 10 

were then split into pairs of subsamples: one for wet chemical 
analysis to obtained reference values of the measured variables 
and the other for spectroscopic analysis. 
 
Torrefied biomass  15 

Torrefaction, or mild pyrolysis, is a promising thermal pre-
treatment step prior to biomass conversion processes such as 
gasification and co-firing. It improves the quality of raw 
lignocellulosic biomass as a fuel by (inter alia) reducing its 
hydrophilicity, grinding resistance, oxygen content, 20 

inhomogeneity and bio-contamination, while raising its initially 
low energy content.  
 Torrefaction is performed by applying temperatures ranging 
from 200 to 340 ºC in the absence of oxygen. During the process 
the biomass is partly devolatilized, its hemicellulose and oxygen 25 

contents decrease, while its heating value increases, and other 
properties change.18 Biomass samples of pelletized reed canary 
grass (8 mm in diameter) and chips of Norway spruce wood 
(typically <4.5×15×30 mm) were torrefied at temperatures 
between 240 ºC and 300 ºC with a residence time of 8 to 25 30 

minutes in a pilot-scale torrefaction plant at the Biofuel 
Technology Centre of the Swedish University of Agricultural 
Sciences in Umeå, Sweden. In all 34 torrefied samples were 
collected. 
 35 

Biochar  
Biochar samples (ca. 0.8 kg) were collected from 5-20 cm wood 
pieces of sawn and dried planks pyrolysed in a commercial 
plant19 for 8-14h and reaching at about 450 ºC the two last hours. 
The samples may have included wood originating from Scots 40 

pine (Pinus sylvestris L.) besides Norway spruce. Other biochar 
samples (size of about 0.01-0.05 kg) were from chips of spruce 
stem wood treated at 350-600 ºC for 4 to 40 minutes; in average 
484 ºC (std: 75 ºC) and 19.6 minutes (std: 11.6 minutes) for these 
16 samples. 45 

 Samples (ca. 0.1 kg) of the solid residue after gasification of 
particles (< 1 mm) from reed canary grass and Norway spruce, 
respectively, at about 850 ºC and a residential time of in average 
4.0 seconds were collected from the ETC experimental plant in 
Piteå, Sweden. 50 

 
Analysed reference variables 
The energy (calorific value), ash, volatile matter and fixed carbon 
contents of the samples were determined according to European 
standard methods.20-23 Carbon (C), hydrogen (H), oxygen (O; 55 

calculated), nitrogen (N) and sulphur (S) contents (wt.%, dry 
basis) of samples were analysed according to a standard 
method.24 Atomic H/C and O/C ratios were calculated from mass 

concentrations of these elements. All analysed parameters were 
used as reference variables in modelling. Data of mass yield 60 

expressed as the ratio (in %) of remaining dry mass of the thermo 
treated sample in relation to its dry mass when untreated was also 
recorded for most of the samples.   
 When concentrations of C, H, O, N, S and ash are known it is 
possible to predict the gross calorific value (GCV) in biomass 65 

using the following formula, developed by Gaur and Reed25: 
 
PGCV = 0.3491×C + 1.1783×H – 0.1034×O – 0.0151×N + 
0.1005×S – 0.0211×ash (Eqn. 1) 
 70 

where PGCV is the estimated gross calorific value in kJg-1 and C, 
H, O, N, S and ash are the mass concentrations of the respective 
elements (in %) of dry biomass. This calculated heating value 
may be biased and the Pellet Handbook26 states that this 
calculation overestimates GCV values by 1.8% on average.  75 

 
NIR spectra and FT-IR spectroscopy 
NIR spectra were collected by a Perten spectrometer27 using a 
mirror cup for small sample volumes exposing about 20 cm2 
surface area (diameter: 5.06 cm). Each subsample consisted of 80 

about 11 ml, or 1.5 to 5.2 g, depending on the density of the 
material. Average reflectance spectra of 50 scans (during 3 
seconds) at every wavelength from 950 to 1650 nm were 
recorded from triplicates of each milled sample and were 
converted into absorbance values. In total 58×3 spectra with 701 85 

data points were used for modelling relationships between the 
spectra and measured variables (as described below).  
 Because of overlapping, weak peaks and broad bands of 
overtone vibrations in NIR also IR spectrometry was used to 
obtain more clear absorption peaks from fundamental molecule 90 

vibrations. FT-IR (Fourier transform infrared) reflectance spectra 
were collected on a Bruker IFS 66 v/S spectrometer under 
vacuum (400 Pa) with a standard DTGS (deuterated triglycine 
sulfate) detector. Manually ground KBr (infrared spectroscopy 
grade, Fisher Scientific, UK) was used as background. 95 

Approximately 10 mg of dry sample was mixed with 390 mg KBr 
and manually ground in agate mortar. A spectral resolution of 4 
cm-1 was used and spectra from the sample-KBr blend were 
recorded over the region of 400-5200 cm-1 and 128 
interferograms were co-added to obtain high signal to noise ratio. 100 

For Fourier transformation, Blackman-Harris 3-term apodization 
function and a zero filling factor of 2 were used and background 
adjusted spectra were transformed in absorbance mode.  
 To gain better overview spectra were grouped into classes 
according to the carbon content of the samples and only average 105 

spectrum for each class were shown in some figures. 
 
Modelling and diagnostics 
Principal component analysis (PCA) was used for overviewing 
the spectral data, and partial least squares (PLS) regression based 110 

on mean-centred NIR spectra and values of reference variables 
obtained for each sample, was used in the calibration 
modelling.28-30 For these analyses the SIMCA 12.031, Matlab32 
and PLS_Toolbox33, 34 software packages were used. 
 Figure 1 shows a flow chart of how to use spectral information 115 

in the NIR region and multivariate calibration modelling to 
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predict a range of reference values that otherwise have to be 
analysed by wet-chemical methods, and, how to improve 
modeling over time by addition of spectroscopic and reference 
data from new samples. 
 5 

 
 
 
 
 10 

 
 
 
 
 15 

 
 
 

Fig 1. Flow chart for principle of continual improvement in using 
spectroscopic data and calibration modelling to predict new reference 20 

values and evaluate models based on test sets (*: most often laborious 
wet-chemical analyses). 

The model coefficients calculated by PLS regression modeling, 
e.g. for the prediction of GCV, are the b vector in y =Xb + f (here 
y here is the vector of observed values e.g. GCV, X is the matrix 25 

of NIR spectral values and f is the vector of residuals). By 
knowing the b-coefficients the values of unknown samples can be 
predicted i.e. the y-value for each new sample is estimated by 
multiplying the b-coefficients with the spectrum form this new 
sample. If the value of the unknown samples is known, i.e. 30 

analysed using wet chemicals according to some standardised 
procedure, then the model can be validated and model diagnostics 
can be calculated. Provided that the NIR based model has 
sufficient accuracy than the wet based analyses can be reduced to 
a minimum and predictions can be made in real time and used on-35 

line in a process. 
 Diagnostic statistics to evaluate the PLS calibrations were 
based on the residuals (f = y-yp) between the vectors of observed 
(y) and predicted values (yp) in test sets. These diagnostics were: 
the root mean squared error in prediction (RMSEP = [fTfJ-1]0.5), 40 

bias (bias = 1TfJ-1), coefficient of multiple determination (Q2 = 1-
fTf(yc

Tyc)
-1), ratio of performance to deviation (RPD = [yc

TycJ
-

1]0.5RMSEP-1 = [(yc
Tyc)(f

Tf)-1]-0.5) and range error ratio (RER = 
[ymax-ymin]RMSEP-1). The scalar J here is the number of 
observations in the test set, yc is the centred vector of observed 45 

values while the scalars ymin and ymax are the maximum and 
minimum values of the reference variable, respectively, in the test 
set. The scalars RMSEP and bias have the same unit as the 
reference variable while the others are dimensionless. The 
number of model components that provided the first or second 50 

local minimum of RMSEP was used in the calibration modelling. 
To validate the models leave-one-out (L1O) validation was used, 
hence each model presented consisted of a subset of models 
equalling the number of observations (each observation was 
predicted only once). In many cases the data obtained for samples 55 

treated at 850 ˚C were omitted because they deviated 
significantly in the PCA models (since no observations bridged 
the interval 600-850 ˚C). Because of the design of the 

experimental materials no effort was made to find detection limits 
for the used calibration method. 60 

Results and discussion 

Sample data 

The carbonization treatments covered a large temperature 
interval, but few samples had been treated at temperatures 
exceeding 600 ˚C, thus there were few observations for modelling 65 

relationships between higher treatment temperatures and the 
reference variables. Table 1 presents summary statistics for the 
reference variables across all samples. 
 
Table 1. Numbers of observations (obs), and mean, standard deviation 70 

(std), minimum (min) and maximum (max) values of reference variables 
(GCV, gross calorific value; C, carbon; H, hydrogen; O, oxygen). Units 
based on dry weight (d.w.). 

Reference variable # obs mean std min max 

Mass yield (% d.w.)* 50 62.3 28.7 19.8 100 
Volatile matter (% d.w.)* 46 66.5 21.6 5.6 85.6 
Fixed carbon (% d.w.)* 39 27.7 17.3 14.2 81.3 
Ash (% d.w.) 58 2.9 7.2 0.2 47.7 
GCV ( kJ/g d.w.) ** 58 24.9 5.1 16.8 34.0 
GCV ash free ( kJ/g d.w.) ** 58 25.8 5.1 19.8 34.4 
C (% d.w.) 58 63.4 14.1 47.1 90.6 
H (% d.w.) 58 5.0 1.3 0.7 6.4 
O (% d.w.) 58 28.3 13.6 1.5 43.1 
H/C atomic ratio  58 1.01 0.40 0.17 1.50 
O/C atomic ratio 58 0.38 0.22 0.023 0.66 

* Missing values 58 minus #obs. ** nine values estimated by Eqn 1 

 75 

The carbon content was highest (90.6% or 95.5% on an ash-free 
basis) and the contents of both hydrogen and oxygen lowest 
(0.7% and 1.5% or as ash-free values 1.3% and 2.9%, 
respectively). Ash content, amount of fixed carbon and energy 
content increased with increasing degree of carbonisation. The 80 

atomic hydrogen to oxygen ratio also increased, indicating that 
relatively more oxygen was lost than hydrogen as the treatment 
temperature rose. 
 The overview also showed that there is a high correlation 
between carbon content and mass yield. The fitting using a 2nd 85 

order polynomial explained 99.4% of the variation, see Fig 2. 
 
 
 
 90 

 
 
 
 
 95 

 
 
 
 
 100 

 

Fig 2. Relationship between mass yield of thermotreated biomass and 

resulting carbon content (ash free data). 
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Fig 3. A: Mean NIR absorbance spectra of thermo-treated biomass at temperatures ranging from 100 to 850 ˚C; B and C: Average of classes from <50% 
to >80% content of carbon (d.w). B: NIR absorbance spectra, 2nd derivatives; C: IR absorbance spectra. 10 

 
Spectral overview 
Spectral data acquired from the examined materials (Fig. 3A) 
clearly show that the increasing blackness (higher absorbance of 
radiation in visual wavelengths) of the samples caused by 15 

increasing carbonisation spills over into the NIR region. We 
therefore postulate that the visual region may be of interest for 
rough predictions of the degree of carbonisation. The change in 
colour of thermally modified biomass has been investigated by 
González-Peñ and Hale35,36 who found that colour changes are 20 

primarily linked to changes in the acid-insoluble lignin and that 
some colours are strongly related to specific chemical 
components, e.g. hemicellulose and lignin. For more fine-tuned 
predictions, information about the abundance of chemical 
structural groups (notably C-H, C-O and O-H) must be included 25 

in the spectral data. This information can be found in near infra-
red spectra, as indicated in Fig 3A and 3B. 
 Figure 3A shows that the baseline of the NIR spectra (here, the 
linear regression of single spectra) shifts from a positive slope, 
for material treated at low temperatures, to increasingly negative 30 

slopes for material treated at higher temperatures. The absorbance 
at all NIR wavelengths increased with increasing treatment 
temperature, while the number of well-defined peaks decreased. 
Only 4-6% of the incident radiation from samples treated at about 
850 ˚C was reflected to the detector. Nevertheless, first 35 

derivatives revealed that in these spectra there are still some 
(small) peaks at about 1500 nm, indicating O-H stretching and 
deformation. 
 PCA was used to overview all NIR spectral points (in total 
40,658). The first principal component (data not shown) alone 40 

was sufficient to classify the samples according to their degree of 
carbonization. The second principal component indicated a shift 
in the absorbance versus wavelength slope of the samples’ NIR 
spectra at a thermal treatment temperature of around 350 ˚C, 
when the volatile matter of the remaining biochar was about 40-45 

50%. In an analysis of nuclear magnetic resonance spectra and 
associated variables of torrefied wood Melkior et al.37 found that 
depolymerisation of wood begins at temperatures of ca. 200 ºC 
and increases approximately linearly as temperatures are 
increased to 300 ºC. They also concluded that cellulose was the 50 

most stable component but after a 4h long treatment at 300 ºC 
Ben and Ragauskas38 found that also cellulose in wood of loblolly 
pine was decomposed, and in Tang and Bacon40 it was concluded  

 
that at 350 ºC cellulose was completely decomposed. 55 

Thermogravimetric analyses of biomass thermally treated at low 
oxygen partial pressures have also revealed that linear breakdown 
of non-cellulose polymers from ~250 ˚C begins to end at around 
350 ˚C.39 Thus, the shift from positive to negative slopes 
indicated in the second PCA principal component (data not 60 

shown) may indicate the rapidly increasing breakdown of 
cellulose and lignin at further increases in treatment temperature 
followed by increased condensation of aromatic structures that 
results in the shift of slope. 
 To obtain an overview and analyse trends average of NIR and 65 

IR spectra were calculated from carbon class <55% (47.1% to 
54.9%), 55-60%, 60-70%, 70-80% and >80% (80.1% to 90.6%) 
constituting samples ranging from 47.1 to 90.6% in carbon 
content (d.w.). Observations having less than 0.8% ash content 
were included, i.e. 3 samples were omitted (one observation was 70 

missing for IR carbon class 60-70%). The carbon mean value of 
these classes was in percent 52.4, 55.9, 65.8, 74.4 and 87.1. By 
using Matlab and Savitzky-Golay derivative smoothing (window 
size 51, polynomial of order 3 and 2nd derivative) within 
PLS_Toolbox 2nd derivatives that removes the influence of offset 75 

and slope were calculated for each average NIR spectrum and 
carbonization class (Fig 3B). The absorbance in IR for the same 
classes is shown in Fig. 3C. 
 The 2nd derivatives of average NIR spectra showed that the 
higher the carbonization was the lesser derivative minima (Fig 80 

3B). These minima indicate where local peak values of NIR 
absorbance were found and the chemical assignments within Fig. 
3B are according to Osborne et al.41 and Shenk et al.42 The 
average spectra of the same classes in the IR region (Fig. 3C) 
with chemical assignments according to Shurvell43 showed higher 85 

absorption for the narrow bands of C=C, C=O and C-O, but lower 
for the broad C-H and O-H bands, when the carbonization was 
increased. As indicated at wavenumbers 1590-1595 cm-1 (C=C) 
and at about 3000 cm-1 (C-H) the aromatic component increased 
with degree of carbonization. Thus, in the enrichment of carbon 90 

the amount of C=C increases while going from <55 up to >80% 
carbon there are substantial losses of O-H and C-H. However, a 
proportion of O and C is successively reorganized in C-O and 
C=O bonds as these groups increases at higher C contents, i.e. 
when temperature was increased. 95 

Page 4 of 8Green Chemistry

G
re

en
C

he
m

is
tr

y
A

cc
ep

te
d

M
an

us
cr

ip
t



This journal is © The Royal Society of Chemistry [year] [journal], [year], [vol], 00–00  |  5 

Table 2. Numbers of observations (# obs), numbers of model components (A) and diagnostic statistics (RMSEP: root mean square error in prediction; Q2: 
coefficient of multiple determination; RPD: ratio of performance to deviation; RER: range error ratio) of the calibration models for each of the measured 
variables, obtained using leave-one-out validation. 
 

Leave-one-out modelling # obs A RMSEP Bias Q2 RPD**** RER 

Non-ash free      
Mass yield (% d.w.) 50 10 3.62 -0.006 0.988 9.00 22.2 
Volatile matter (% d.w.) 46 9 3.46 0.008 0.980 7.06 23.1 
Fixed carbon (% d.w.) 37 10 3.28 0.330 0.966 5.46 20.1 
Ash (% d.w.)** 49 10 0.13 -0.004 0.890 3.02 8.7 
GCV (kJg-1)* 56 14 0.75 -0.004 0.983 7.77 20.2 
C (% d.w.)* 56 14 1.95 0.016 0.986 8.40 22.2 
H (% d.w.)* 56  10  0.31 -0.005 0.936 3.94 12.5 
O (% d.w.)* 56  10  1.81 0.033 0.985 8.09 21.0 
H/C atomic ratio* 56  10  0.06 0.001 0.976 6.50 18.3 
O/C atomic ratio* 56 10 0.03 0.001 0.988 9.33 24.0 
H/C atomic ratio* (calculated***) 56 - 0.06  0.001 0.976 6.46  20.5 
O/C atomic ratio* (calculated***) 56 - 0.02  0.001 0.988 9.28 26.9 

Ash-free      
GCV (kJg-1); ash-free 58 11 1.19 -0.010 0.956 4.79 12.3 
C (% d.w.), ash-free 58  12  3.30 -0.094 0.961 5.09 13.9 
H (% d.w.), ash-free 58  10 0.29 0.001 0.960 5.03 17.9 
O (% d.w.), ash-free 58 10 1.86 0.047 0.984 8.13 21.7 
H/C (calculated***, ash-free) 58 - 0.05  0.003 0.983  7.65  25.7  
O/C (calculated***, ash-free) 58 - 0.02  0.002 0.991  10.31 30.1  

 

* The two samples from gasification was not included; ** 9 of the ash values were not included as they regarded as outliers (>> 1.3%). The mean value 

and standard deviation of the included (0.2-1.3%) were 0.58% and 0.34%, respectively; *** The NIR based predictions of C, H and O, respectively, were 

used to calculate the ratio; **** RPD2 = (1 - Q2)-1 

 

Calibration model overview 5 

Most of the calibration models showed excellent predictive 
performance – especially for mass yield, volatile matter, GCV, C, 
O and O/C, for which RPD values exceeded 7 and, 
correspondingly Q2 values exceeded 0.98 since in this case RPD2 
= (1-Q2)-1 in the calibration test sets (provided that the same 10 

degree of freedom (J) is used in determination of standard 
deviation and RMSEP, otherwise if the degree of freedom is J-1 
for standard deviation then the right hand expression is multiplied 
by [1-J-1]) (Table 2). The least accurate was the ash content 
model based on samples with ash values from 0.2 to 1.3%, 15 

whereas nine values (all much higher than 1.3%) were excluded. 
 In addition to leave-one-out (L1O) modelling, we also applied 
ED7 tests (in which strata comprising a seventh of the data are 
used as test sets in each of seven runs, and each observation is 
predicted only once). The results were similar to those obtained 20 

by L1O modelling (data not shown) using the same number of 
model components and thus are not presented or further 
considered. This indicates that results obtained by L1O modelling 
do not significantly deviate from those obtained using other PLS 
modelling approaches. Thus, PLS modelling of data hosted in a 25 

database with numerous observations of reference variables is 
likely to provide excellent predictions (cf Fig. 1). 
 
Atomic H/C and O/C ratios 
The H/C and O/H atomic ratios were modelled in three ways: (i) 30 

directly by modelling each ratio and (ii-iii) indirectly by first 
modelling the individual C, H and O non-ash free concentrations 
(ii) or their ash-free concentrations (iii) and then calculating the 
ratios using the predicted concentrations. In the modelling the 
extreme observations at 850 ˚C were only used for ash-free 35 

models because of their large distance in ash content to other 
observations. The model with the highest predictive capacity is 
presented in Fig. 4. 

 
Fig 4. Van Krevelen diagram of observed and predicted atomic H/C and 40 

O/C ratios of raw biomass and biomass treated with temperatures up to 
850 ˚C. 

 
Volatile matter and fixed carbon 

The fixed carbon, ash and volatile matter contents are together 45 

with remaining non-ash and non-carbon (after determination of 
volatile matter) in total 100% of the biomass. The model for fixed 
carbon is not shown, but its excellent performance is indicated in 
Table 2. The calibration model for volatile matter obtained using 
L1O modelling show high accuracy, especially in the range above 50 

about 50% volatile matter. The heat treatment seemed to 
introduce qualitative changes influencing spectral information at  
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Fig. 5. A: Observed and predicted energy contents (gross calorific values, 15 

GCV) of raw and thermo-treated biomass. B: Model coefficients (average  
and ± one standard deviation)  for NIR based prediction of gross calorific 
values. 

around 50% of volatile matter determined by loss of material 
during 7 minutes at 900 ˚C in excess air. By splitting the data into 20 

two classes, for samples with volatile matter over and under 50% 
(with a few overlapping observations in both datasets to enlarge 
the number of observations) the predictions could be improved 
(data not shown). 
 25 

Energy content 

The calorific value of biomass is associated with the content of C, 
H, O, N and S and their covalent carbon bonds, and NIR spectral 
signals interact with most of these bonds e.g. C=C, C-H, C=O, C-
O, O-H, N-H and S-H (except for the C-C bonds, but spectral 30 

information of C=C, C-H, C=O, C-O then provides indirect 
information of C-C bonds). Thus, in accordance with 
expectations the calibration models based on NIR spectra of both 
raw and thermo-treated biomass were highly accurate, as 
illustrated in Fig. 5A. This model explained 98.3 % of the 35 

variation in GCV. 
 In this case too, splitting the data into two sets for two different 
treatment temperature ranges resulted in better performing 
models, with fewer components (data not shown), but doing so 
resulted in relatively few observations.  40 

 Figure 5B shows the average model coefficients of the 56 PLS 
models and their standard deviation. It should be noted that the 
coefficients are calculated from mean centred data in the different 
calibration sets (having an all over mean value of 25.02 kJg-1 for 
the reference variable) and the relative contribution to GCV is the 45 

product between mean centred NIR spectra and the coefficient 
values. This makes it difficult to interpret the model as there also 
are overlapping and broad bands of overtone vibrations in the 
NIR spectra. However, regions at about 1303 and 1454 nm 
showed positive contributions to GCV, probably associated to C-50 

O, C=O and C=C structural groups, whereas those at 1160, 1418 
and 1608 nm had most negative influence. 
 Another possibility, however more complicated, to estimate 
gross calorific value is to use only the NIR predicted contents of 
C, H and O and the observed ash contents i.e. neglecting 55 

influence of S and N as the contents these elements are low in 
thermotreated biomass, especially in wood. Comparison of the 
measured gross calorific values and those calculated from NIR  

 
 60 

 
 
 
 
 65 

 
 
 
 
 70 

 
 
 
 
 75 

 
predicted values using Equation 1 showed that single calculated 
values underestimated the energy content by in average 0.31% 
and the standard deviation was 19.8% of the mean observed gross 
calorific value (25.02 kJg-1) within the range of 18.8-34.01 kJg-1 80 

(the observations at 850˚C were not included). The linear 
relationship between the measured GCV and NIR calculated 
energy values (PGCV) from C, H and O and observed ash content 
was PGCV = 0.9816×GCV + 0.5366. The model explained 98.2 % 
of the observed variation and the RMSEP value was about the 85 

same (0.67) as the GCV model above (see Table 2), but bias 
increased (-0.0766) somewhat. Thus, it is seems possible to 
estimate gross calorific value with high accuracy also from ash 
content and predicted values of C, H and O. 

Conclusions 90 

The presented results clearly show that NIR spectroscopy can be 
used for predicting a broad range of variables (energy, major 
elements in organic components, ash, volatile matter and fixed 
carbon contents) in the ‘green coal’ and biochar remaining after 
torrefaction, pyrolysis or gasification of biomass. Furthermore, 95 

the study indicates that NIR spectroscopy has high potential 
utility as a standardized technique for characterising thermo-
treated biomass, and thus, reducing use of analyses based on wet 
chemicals. Such standards for using NIR to determine moisture 
and protein in whole kernels44 but also fat, starch and crude fibers 100 

in animal feeding stuffs, cereals and milled cereal products45 have 
already been implemented. 
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