Green Chemistry

Accepted Manuscript

Green Chemistry

This is an *Accepted Manuscript*, which has been through the RSC Publishing peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This Accepted Manuscript will be replaced by the edited and formatted Advance Article as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication.

More information about *Accepted Manuscripts* can be found in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard **Terms & Conditions** and the **ethical guidelines** that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these *Accepted Manuscript* manuscripts or any consequences arising from the use of any information contained in them.

RSCPublishing

www.rsc.org/greenchem Registered Charity Number 207890 Table of content (TOC)

Fully bio-based linear branched polyethylene mimics bearing ester functions were synthesized by metathesis copolymerization of linear and branched α,ω -dienes obtained from fatty acid derivatives.

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/green

COMUNICATION

Branched polyethylene mimicry by metathesis copolymerization of fatty acid-based α, ω -dienes.

Thomas Lebarbé,^{*a,b,d*} Mehdi Neqal,^{*a,b*} Etienne Grau,^{*a,b*} Carine Alfos,^{*c*} and Henri Cramail*^{*a,b*}

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Castor oil and vernonia oil platforms were used to synthesize two linear and branched α,ω -diene monomers. ADMET copolymerization conducted in bulk yielded a series of copolyesters with various degrees of branching with respect to the feed ratio between the two α,ω -dienes. After hydrogenation, these copolyesters showed thermo-mechanical properties in accordance with the ones of LLDPE and 10 VLDPE with tunable melting points between 50°C and 90°C. As expected and similarly to the "PE-like" polyesters reported in the literature, the presence of estar functions distributed along the polyethylene backhone slightly lowered the crustalline ability of the co

- literature, the presence of ester functions distributed along the polyethylene backbone slightly lowered the crystalline ability of the soformed polyesters. Nevertheless, these novel bio-based polyesters constitute a good sustainable alternative to olefin-based elastomers (LLDPE and VLDPE), especially for specific applications which require degradability.
- With about 80 million tons per year, polyethylene (PE) is the 15 top manufactured polymer, giving rise to low cost materials. According to the type of polymerizations, various PE microstructures are achievable yielding materials with a large range of thermo-mechanical properties. Four types of PE are generally identified: almost purely linear high-density
- ²⁰ polyethylene (HDPE) (d~ 0.94-0.97 g.cm⁻³), low-density polyethylene (LDPE) (d~ 0.90-0.94 g.cm⁻³), linear low-density polyethylene (LLDPE) and very low-density polyethylene (VLDPE) (d~ 0.86-0.90 g.cm⁻³) which are characterized by different types and degrees of branching, randomly distributed
- ²⁵ along the polymer backbone. The presence of branches significantly lowers the crystalline ability of the PE, resulting in elastomeric and ductile mechanical features.

Despite the numerous applications of PE materials, the latter do not constitute a sustainable solution, in particular for

- ³⁰ environmental applications, as evidenced by their lack of hydrolytic degradability. With the aim to introduce potentially degradable segments to a PE backbone while keeping its characteristics, a lot of efforts have been carried out these last years to design sustainable and bio-based "polyethylene-like"
- ³⁵ polyesters.¹⁻⁶ This is generally achieved by polycondensation of long-chain α, ω -difunctional monomers. In particular, many synthetic routes to the chemical modification (metathesis, thiolene addition, isomerizing alkoxycarbonylation...) of fatty acids were studied yielding long chain aliphatic monomers bearing
- ⁴⁰ hydroxyl, acid or ester groups.⁷⁻⁹ After polymerization, aliphatic polyesters with variable ester function densities were obtained, as a function of the substrate and the chemical modification used. Nonetheless, most of the studies performed on the development of "PE-like" polyesters from fatty acids ⁴⁵ resulted in materials that mimic the structure of HDPE.
- On the contrary, very few investigations were carried out to synthesize "LDPE-, LLDPE- and VLDPE-like" polyesters from plant oils. Some relevant examples include the works of

This journal is © The Royal Society of Chemistry []

Matsumura and coll. concerning the enzyme-catalysed ⁵⁰ copolymerizations of hydrogenated methyl ricinoleate (methyl 12-hydroxystearate) with 12-hydroxydodecanoic acid or pentadecalactone.^{10, 11} By varying the feed ratio between the branched and linear monomers, a series of high molecular weight copolyesters with versatile properties were obtained.

Figure 1- Synthetic strategy to "LLDPE like" polyesters

In this work, we aimed at developing new "LLDPE- and VLDPE-like" polyesters through acyclic diene metathesis (ADMET) copolymerization of two fatty-acid based α,ω -diene ⁶⁰ monomers. Castor oil and vernonia oil were used as feedstocks for the synthesis of the branched and linear monomers. ADMET copolymerization in bulk was then carried out yielding a series of copolyesters with various degrees of branching. Hydrogenation of the unsaturated copolyesters led ⁶⁵ to the saturated analogous mimicking the chemical structures of LLDPE and VLDPE (**Figure 1**). The thermo-mechanical

properties of the so-formed copolyesters were investigated and compared to their petroleum-based analogues.

Methyl 10-undecenoate and 12-hydroxystearic acid, obtained by steam cracking and hydrogenation of ricinoleic acid

- s respectively, were employed for the synthesis of the branched α, ω -diene (**B**). A second monomer (**L**) showing a linear structure (with the same main chain structure than for the branched monomer) was also synthesized from methyl 10undecenoate and 1,12-dodecanediol (obtained by oxidative 10 cleavage of vernolic acid).
- The formation of (L) was carried out by a simple transesterification, in bulk, of two equivalents of methyl 10undecenoate with one equivalent of 1,12-dodecanediol (**Figure S2**). For the branched monomer (**B**), the synthetic strategy was
- ¹⁵ the same than for the linear one, using 12-hydroxystearyl alcohol instead of 1,12-dodecanediol (**Figure S3**). The polymerization grade of the monomers was confirmed by GC analysis regarding the high purity obtained (>97%).

Once the α,ω -diene monomers (L) and (B) synthesized, it was

- ²⁰ then possible to develop a series of polyesters by ADMET copolymerization of the two monomers. All the polymerizations were launched at 85°C in bulk under dynamic vacuum due to the non-volatility of the monomers. Grubbs 1st generation metathesis catalyst was employed in this study in
- ²⁵ order to limit olefins isomerization. The feed ratio between the two monomers was changed from 100% of purely linear monomer (L) to 100% of branched monomer (B) resulting in a number of atoms of the main chain between two branching points as low as 34 (0-29 branching points per 1000 atoms of ³⁰ the main chain) as shown in Table 1.
- After 24h of polymerization, the catalyst was deactivated with ethyl vinyl ether and the polyesters were precipitated into methanol. The resulting polyesters were analyzed both by ¹H-NMR and SEC in THF (**Figure S4**). The disappearance of the
- ³⁵ proton peaks at 5.8 and 4.9 ppm and the appearance of a multiplet at 5.4 ppm provide evidence of polyester synthesis by formation of internal olefins (Figure 2). The exact composition of the copolymers was also determined by ¹H-NMR analysis. The average number of atoms of the main chain between two
- ⁴⁰ branching points was varying between 34 and 136 atoms (except for the purely linear polyester) which show good agreement with the number of carbon atoms generally found for commercial LLDPE.

The unsaturated polyesters were then analyzed by SEC in THF

- ⁴⁵ using a PS calibration. Except for B0 (62 kg.mol⁻¹) synthesized using mechanical stirring (contrary to the other polyesters which were synthesized under magnetic stirring), the obtained molecular weight values were in the range 14-22 kg.mol⁻¹ with $D \sim 1.5$ -1.7 (**Table 1**). Thus, mechanical stirring seems to be ⁵⁰ required for efficient removal of the ethylene condensate.
- In certain circumstances, it is desirable to keep unsaturation in the polymer backbone for further functionalization or crosslinking. However, in the context of our study, the polyesters must be free from remaining double bonds to avoid oxidation
- ⁵⁵ and possible cross-linking during heating of the samples. Reduction of the double bonds of the polyesters proceeded in toluene at 80°C with Pd (10%) on charcoal under hydrogen

pressure (50bar). Fully saturated polyesters were obtained as evidenced by the disappearance of olefins protons peaks in ¹H-⁶⁰ NMR spectra (**Figure 2** and **Figure S5**). Only HB0 did not show quantitative conversion. It can be attributed to the lower solubility of the polyester. Nevertheless, a conversion of 88% was measured by ¹H-NMR analysis for HB0 what should provide sufficient improvement of the thermo-mechanical ⁶⁵ properties.

Figure 2- ¹H-NMR stacked spectra of the branched α,ω -diene (up), B100 (middle) and HB100 (bottom) in CDCl₃.

- The thermal stability of the saturated polyesters was ⁷⁰ investigated by TGA experiments under non-oxidative atmosphere (**Figure S6**). High thermal stability for all polyesters was illustrated by the large difference (>200°C) between their decomposition temperatures and their melting points, thus allowing easy compression or injection molding ⁷⁵ and therefore possible use for a wide range of applications.
- In order to evaluate the influence of the degree of branching on the polyester crystallinity, DSC analyses were performed. The unsaturated polyesters were first analyzed. As show in **Table 1** and **Figure S7**, hexyl branches significantly reduce the
- so crystalline ability of the polyesters. Indeed both crystallization and melting temperatures (and their corresponding enthalpies) highly decrease with an increase in hexyl branches density. The unsaturated polyesters thus cover a large range of thermomechanical properties depending on the branching density with
- ⁸⁵ Tm in the range 13-69°C. Melting enthalpy was also highly affected by the presence of hexyl branches with values equal to 34 J.g⁻¹ and 101 J.g⁻¹ for B100 and B0 respectively. The relatively low value of melting point and corresponding enthalpy measured for B0 in comparison to other "PE-like"
- ⁹⁰ polyesters given in the literature is ascribed to the remaining olefins which disrupt efficient crystallites formation due to cisand trans- configurations and imped sufficient mobility of the chains.¹

Hydrogenation of the unsaturated polyesters resulted in ⁹⁵ improved thermo-mechanical properties (**Figure S8** and **Figure 3**). Indeed, the fully saturated structure of the resulting polyesters was responsible for improved chain packing and thus enhancement of the crystallization and melting temperatures (and their respective enthalpies). An enhancement

50

of around 20-30°C was observed for the melting temperature of all the polyesters.

Table 1- Thermo-mechanical properties of the unsaturated(B0-B100) and hydrogenated (HB0-HB100) polyesters.

Entry	mol% (B)[d] ^a	Mn [Đ] (kg.mol ⁻¹) ^b	T _{5%} (°C) ^c	Tm (°C) ^d	$\frac{\Delta Hm}{(J.g^{-1})^d}$
0	0	62 [1 5]	-	68.9	101.2
HB0	0	02 [1.3]	394	87.4	135.5
B25	22 [126]	20 [1 7]	-	55.9	89.4
HB25	22 [130]	20[1.7]	357	59.2 - 77.0	98.1
B50	17 [60]	22 [1 6]	-	46.3	62.9
HB50	47 [08]	22 [1.0]	344	44.8 - 64.9	66.5
B75	74 [45]	14[16]	-	26.3 - 36.6	38.1
HB75	/4 [43]	14 [1.0]	331	51.3 - 56.6	65.1
B100	100 [24]	22 [1 6]	-	13.2	32.4
HB100	100 [34]	22 [1.0]	312	51.6	63.0

⁵ (a)¹H-NMR- [d] is the branching density (number of atoms of the main chain between two branching points) (b) SEC in THF, PS calibration (c) TGA- 10°C.min⁻¹ (d) DSC- 10°C.min⁻¹

Despite the close average number of atoms between two branches in comparison to LLDPE (25-100 carbon atoms), the ¹⁰ melting points of the branched polyesters (HB25, HB50, HB75 and HB100) in the range 51-77°C, were much lower than for LLDPE (Tm ~ 100-125°C)¹²⁻¹⁵ and were closer to those generally measured for VLDPE (Tm ~ 60-100°C). This deviation to the LLDPE thermo-mechanical properties was ¹⁵ logically attributed to the presence of inherent ester functions, in accordance to the previous studies realized on "polyethylene

like" polyesters.^{2-6, 16} Indeed, Penelle and coll. demonstrated that ester group can be incorporated in the crystallites thus lowering the overall attractive interactions between the ²⁰ polymer chains in comparison to polyethylene.¹⁷

- It is noteworthy that only HB0 showed a narrow endothermic melting peak, while the other saturated polyesters showed complex melting patterns. This was attributed to the highly regular microstructure of HB0 in comparison to the other
- ²⁵ saturated polyesters for which hexyl branches are distributed randomly along the backbone, giving rise to a broader crystallite size distribution which impacts the melting temperature of the copolyesters. In the case of HB25 where the alkyl dangling chain density remains low, two narrow
- ³⁰ endothermic peaks were observed. To investigate this melting behavior, DSC analysis was performed on a HB25 sample annealed for 15 minutes at 65°C (temperature between the two endothermic peaks). The obtained DSC heating trace (Figure S9) showed evidence of two distinct melting peaks at similar
- ³⁵ temperatures than without annealing. This information let us consider polymorphism (different crystalline phases or crystallites differing in size) rather than melting of a metastable crystalline phase with subsequent crystallization into a more stable phase.
- ⁴⁰ Modulated DSC analysis at a heating rate of 3°C.min⁻¹ was then performed on the same sample (HB25). Indeed, the DSC traces, displayed in **Figure S10** gives evidence of polymorphism. Indeed, the reversible heat flow signal shows

two endothermic peaks with maxima at 59°C and 78°C related 45 to two melting transitions. On the contrary, the non-reversible heat flow shows no significant variations (crystallization) in the temperature window concerned. Thus, the complex melting pattern is not ascribed to a melting-recrystallization process but to polymorphism.

Figure 3- DSC heating curves of the saturated polyesters. 10°C.min⁻¹.

It is known that, contrary to ethylene/propylene copolymers, ethylene/octene copolymers display the exclusion of large ⁵⁵ hexyl branches from the crystal unit cell.^{12, 18} In the case of HB25 and HB50, due to the low branching density and the randomness of the branching point positions along the polyester backbone, it is thought that the melting peak at lower temperature is assigned to crystallites corresponding to ⁶⁰ segments with high branching content (smaller crystallites). The melting transition at higher temperature corresponds to the nearly linear segments. This hypothesis was confirmed by wide-angle X-ray diffraction (WAXD) performed on HB0 and HB25. From the WAXD patterns (**Figure S11**) obtained at ⁶⁵ 25°C, HB0 displays the same typical orthorhombic crystal

- structure than HDPE (lattice parameters a=7.40 Å, b= 4.93 Å and c= 2.54 Å) with two characteristic crystalline peaks at scattering angles of 21.6° and 24.0° corresponding to reflection planes (110) and (200) respectively.^{19, 20} Regarding HB25, the
- ⁷⁰ insignificant change in the scattering angle values (21.5° and 23.8°) in comparison to HB0 provides evidence of the orthorhombic crystal structure too. Moreover, no other peaks were observed for HB25, which suggests the existence of only one crystal structure despite the presence of the hexyl branches.
- ⁷⁵ This feature clearly shows that the melting transition occurring at lower temperature is ascribed to the melting of crystallites of smaller sizes. It was fully confirmed by the apparent crystallite sizes calculated using Scherrer equation both at 25°C or 60°C (**Table S2** and **Figure S12**).²¹

80 Conclusion

Castor oil platform was efficiently used to develop a series of "LLDPE-like" polyesters by ADMET polymerization. Two biobased α,ω -diene monomers, one linear and one bearing an hexyl dangling chain, were first synthesized. The α,ω -dienes ⁸⁵ were then copolymerized in different amounts resulting in

unsaturated polyesters covering a wide range of thermomechanical properties. Their hydrogenation yielded the saturated polyesters that showed close structural similarities with LLDPE regarding their polyethylene backbone with s incorporated ester functions and hexyl dangling chains. These

- copolyesters showed good thermal stability as seen from the initial degradation temperatures above 300°C. Thermomechanical properties were closer to VLDPE than LLDPE regarding the melting points in the range 51-77°C. For most of
- ¹⁰ the copolyesters, a broad melting peak with complex pattern was observed which provide evidence of small crystallites formation with a high heterogeneity in size. These novel biobased materials, constitute good sustainable alternatives to petroleum-based LLDPE and VLDPE. Indeed, these
- ¹⁵ copolyesters were synthesized by ADMET approach under mild conditions (bulk process and moderate temperatures) using bio-based monomers obtained from non-edible and annually plant oils derivatives. Moreover, the incorporation of hydrolysable ester functions along the polyethylene backbone
- 20 let us consider biomedical and environmental applications for these new materials thanks to their potential biodegradability.

Acknowledgements

The authors thank Ahmed Bentaleb (CRPP-CNRS) for the WAXD measurements. This study was financially supported by

²⁵ the University of Bordeaux-1, ANR, IPB, CNRS, Aquitaine Council, ITERG, ONIDOL and ADEME agency.

Notes

^aUniv. of Bordeaux, Laboratoire de Chimie des Polymères Organiques, UMR 5629, IPB/ENSCBP, 16 avenue Pey-Berland, F-33607, Pessac ³⁰ cedex, France

^bCentre National de la Recherche Scientifique, Laboratoire de Chimie des Polymères Organiques, UMR 5629, F-33607, Pessac, France, Email : cramail@enscbp.fr

^cITERG, 11 rue Gaspard Monge, Parc Industriel, F-33600, Pessac, 35 France.

^dFrench Environment and Energy Management Agency, 20 avenue du Grésillé-BP 90406, F-49004, Angers Cedex 01, France

† Electronic Supplementary Information (ESI) available: [Experimental part/ schematic representation of polyethylene classes

⁴⁰ and corresponding properties/ ¹H-NMR spectra of the monomers and the copolyesters in CDCl₃/ TGA and TGA derivative curves of the saturated polyesters/ DSC and modulated DSC curves of the copolyesters/ crystallization parameters of the copolyesters/ WAXD patterns of HB0 and HB25]. See DOI: 10.1039/b000000x/

References

- J. Trzaskowski, D. Quinzler, C. Bährle and S. Mecking, Macromolecular Rapid Communications, 2011, 32, 1352-1356.
- F. Stempfle, D. Quinzler, I. Heckler and S. Mecking, *Macromolecules*, 2011, 44, 4159-4166.
- C. Vilela, A. J. D. Silvestre and M. A. R. Meier, *Macromolecular Chemistry and Physics*, 2012, 213, 2220-2227.
- F. Stempfle, P. Ortmann and S. Mecking, *Macromolecular Rapid* Communications, 2013, 34, 47-50.
- 55 5. M. P. F. Pepels, M. R. Hansen, H. Goossens and R. Duchateau, Macromolecules, 2013, 46, 7668-7677.
 - 6. P. Ortmann and S. Mecking, *Macromolecules*, 2013, **46**, 7213-7218.
- 7. L. Maisonneuve, T. Lebarbe, E. Grau and H. Cramail, *Polymer Chemistry*, 2013, **4**, 5472-5517.

- L. Montero de Espinosa and M. A. R. Meier, *European Polymer Journal*, 2011, 47, 837-852.
- U. Biermann, U. Bornscheuer, M. A. R. Meier, J. O. Metzger and H. J. Schäfer, *Angewandte Chemie International Edition*, 2011, 50, 3854-3871.
- H. Ebata, K. Toshima and S. Matsumura, *Macromolecular Bioscience*, 2008, 8, 38-45.
- 11. T. Kobayashi and S. Matsumura, *Polymer Degradation and Stability*, 2011, **96**, 2071-2079.
- 70 12. R. G. Alamo and L. Mandelkern, *Thermochimica Acta*, 1994, 238, 155-201.
- R. G. Alamo, B. D. Viers and L. Mandelkern, *Macromolecules*, 1993, 26, 5740-5747.
- 14. R. G. Alamo and L. Mandelkern, *Macromolecules*, 1989, **22**, 1273-1277.
- R. Alamo, R. Domszy and L. Mandelkern, *The Journal of Physical Chemistry*, 1984, 88, 6587-6595.
- I. van der Meulen, E. Gubbels, S. Huijser, R. I. Sablong, C. E. Koning, A. Heise and R. Duchateau, *Macromolecules*, 2011, 44, 4301-4305.
- C. L. F. De Ten Hove, J. Penelle, D. A. Ivanov and A. M. Jonas, *Nat Mater*, 2004, **3**, 33-37.
- M. J. Richardson, P. J. Flory and J. B. Jackson, *Polymer*, 1963, 4, 221-236.
- 85 19. M. F. Butler, A. M. Donald, W. Bras, G. R. Mant, G. E. Derbyshire and A. J. Ryan, *Macromolecules*, 1995, 28, 6383-6393.
- 20. Y.-L. Hsieh and X.-P. Hu, Journal of Polymer Science Part B: Polymer Physics, 1997, **35**, 623-630.
- 21. P. Scherrer, Göttinger Nachrichten Math. Phys., 1918, 2, 98-100.