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Visualising and controlling the flows in biomolecular systems at and
between multiple scales: from atoms to hydrodynamics at different
locations in time and space

Evgen Pavlov,∗a Makoto Taiji,c Arturs Scukins,a Anton Markesteijn,b Sergey Karabasov,b and
Dmitry Nerukha

A novel framework for modelling biomolecular systems at multiple scales in space and time simultaneously is described. The
atomistic molecular dynamics representation is smoothly connected with statistical continuum hydrodynamics description. The
system behaves correctly at the limits of pure molecular dynamics (hydrodynamics) and at the intermediate regimes when the
atoms move partly as atomistic particles, and at the same time follow the hydrodynamic flows. The corresponding contributions
are controlled by a parameter, which is defined as an arbitrary function of space and time, thus, allowing an effective separation of
the atomistic ‘core’ and continuum ‘environment’. To fill the scale gap between the atomistic and the continuum representations
our special purpose computer for molecular dynamics, MDGRAPE-4, as well as GPU-based computing were used for developing
the framework. These hardware developments also include interactive molecular dynamics simulations that allow to intervene
the modelling through force-feedback devices.

1 Introduction

The entirety of physical processes in complex systems can be
represented as a hierarchical structure. The processes in chem-
ical system, macromolecules, or biological objects proceed
simultaneously at different temporal and spatial scales. Re-
cently attempts have been made in building integrated models
that allow carrying out computer experiments simultaneously
at several scales1–3. This is especially important for biological
objects, starting from protein molecules and ending with hu-
man organs4,5. This kind of models contain and exchange in-
formation between the components at different scales provid-
ing more complete picture and uncovering qualitatively new
phenomena6,7.

While statistical mechanics methods allow the description
of the system as a whole using average values, the direct im-
plementation of models with different levels of the hierarchy
demands understanding the physical behaviour of materials
at different levels. For example, in solid state physics inter-
atomic interaction models8 describe the type of bond forma-
tion and the structure of the material. From the other hand, the
method of finite elements, which completely ignores internal
atomistic structure, describes it as a continuum model9.
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An example of such models applied to the physics of liq-
uids is the Landau-Lifshitz fluctuating hydrodynamics10. This
model maps collective dynamic of continuum phase to the
atomistic level. The hydrodynamic Landau-Lifshitz equa-
tions (LL-FH) are classical continuum fluid dynamics equa-
tions with added stochastic flows. They include the statisti-
cal model of temperature fluctuations around the local equi-
librium. The fluctuations satisfy the equipartition theorem11.
Combining this model with the method of molecular dynam-
ics (MD), which represents the atomistic approach (every-
thing is determined through interatomic interactions), allows
to construct an hierarchical model. It is now possible to take
into account the atomistic character of the movements of the
molecules and the continuum approach for stochastic flows in
fluid at the same time12–14. The application of this approach
to the macromolecule-water system is promising for studying
the properties of proteins and their environment.

Historically one of the first attempts to unify the continuum
description of liquids with their atomistic representation was
the Langevin equation used for the descriptions of the particle
motion in continuum:

1
m

f (t) =
du
dt

+ γu, (1)

where u is the velocity of the particle of mass m moving under
the influence of the force f and γ is the friction coefficient.
The force is assumed to be random with correlations deter-
mined by the expression where it is defined as a white noise:

〈 fi(t) f j(t ′)〉= 2Dδi jδ (t− t ′), (2)
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where
D = mγkBT. (3)

The spectral density15 of the force is

1
3
〈 f 2(t)〉ω = 2D. (4)

It shows that D is a diffusion coefficient and at the same time
it is the noise intensity in the Langevin equation. The equation
(2) expresses the fluctuation-dissipation relationship15.

In the hydrodynamic limit the simultaneous fluctuations at
different locations in space are not correlated and considered
as the white noise. To determine the fluctuations of the lo-
cal stresses and heat fluxes in the case of continuous hydrody-
namic environment Landau and Lifshitz suggested a modifica-
tion of the classical Navier-Stokes equations in which the ran-
dom variables are present. As the development of Langevin’s
idea (2), the stochastic terms are determined based on the
fluctuation-dissipation theorem11, which provides the balance
between the fluctuations in the system and its dissipative prop-
erties. When numerically solving the fluctuation hydrodynam-
ics equations it is important to keep this balance. If it is vio-
lated the system can either develop instability (with the domi-
nance of stochastic flows) or the value of the fluctuations can
be too low (under the dominance of dissipative flows in the
system).

For a correct transition between the MD and the hydrody-
namic descriptions the correspondence of the statistics of fluc-
tuations in both representations is required. This is computa-
tionally demanding because some characteristics of the liquid
are particularly slowly converging (such as, for example, the
isothermal compressibility calculated using the derivative of
the pressure with respect to volume). This is especially true
at the stage of framework development as the equations at all
levels have to be solved at the same time for benchmarking.
To overcome the computational difficulties two ways are pos-
sible. The first path uses inexpensive gaming platforms, the
second one implements supercomputers. We have used both
in our work while developing our approach.

The widespread of computer games leads to the rapid evolu-
tion of graphics processors, the development of which is faster
than the development of conventional CPUs. The main com-
plication for molecular modelling applications is the need in
software coding that requires special knowledge. Neverthe-
less, the trend is such that, possibly, the graphics processors
will soon be one of the most attractive alternatives for cheap
and relatively high performance computing (HPC). Our results
reported below show high efficiency of GPU based computa-
tion in solving LL-FH equations.

The development of specialised petaflops platforms is more
difficult, but it has a potential of fundamental breakthroughs
in niche simulations such as molecular modelling as they can
achieve timescales infeasible for any other hardware. The

current trend in peta- (and exa-) flops HPC can be divided
into two classes, Fig. 1. The first uses general purpose CPUs
and achieves high performance by utilising a very large num-
ber of computing nodes. An example of such machine is
the K-computer built in RIKEN. The second class is built
around specialised accelerators where the most time consum-
ing molecular computation is performed on the integrated
chip, for example, the MDGRAPE or ANTON computers,
Fig. 1. We have used both types of supercomputers for gener-
ating MD data necessary in our hybrid method development.

Fig. 1: Time and space scales of biomolecular processes and the
limits of MD simulation feasibility

In this publication we report on the research of an interna-
tional team in the framework of a G8 project ‘Using next gen-
eration computers and algorithms for modelling the dynam-
ics of large biomolecular systems’ that includes the theoreti-
cal, computational, and engineering development of a frame-
work for hybrid multiscale atomistic/hydrodynamic modelling
of liquid solutions. We first describe the main idea and theo-
retical implementation of the approach. Then, the results on
the method’s numerical implementation as well as GPU and
high performance specialised computer MDGRAPE are pro-
vided.

2 Multiscale hybrid method

2.1 The general idea

Our model describing both hydrodynamic (continuous) and
molecular dynamic (discrete) components is based on the
model of a miscible two-phase fluid. The computational do-
main is a double periodic box which is covered by a uniform
Eulerian grid and filled with Lagrangian particles. At some re-
gions, HD and MD, the liquid is described by purely hydrody-
namic and purely Newtonian equations of motion respectively.
In the hybrid domain the fluid consists of two “phases”, Fig. 2.
Phase 1 is a continuum water with volume fraction s = V1

V ,
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where V1 is the volume of phase 1 and V is the total volume
of the domain. Phase 2 is a hydrodynamic phase that incorpo-
rates molecular particles. Its volume fraction is (1− s) and it
is characterised by N, the number of particles per elementary
volume dV . The phase fraction s = s(x) is a function of space
coordinates x such that s = 1 in the HD domain, s = 0 in the
MD domain, and it smoothly varies, 0 < s(x) < 1, in the hy-
brid domain, Fig. 2. For each hydrodynamic cell the velocity
u and the density ρ of the hydrodynamic phase are defined.
The averaged value of the atomistic velocities and densities
are also defined for each cell, up and ρp, Fig. 2.

HD

MD

S=1 0<S<1 S=0                 0<S<1                S=1

S=1

0<S<1

S=0

0<S<1

S=1

vMD

vHD

r rHD MD,

Fig. 2: Hybrid hydrodynamics – molecular dynamics model and the
hydrodynamic cell (control volume)

The equations of motion are derived from the equations of
conservation of total mass and momentum in each elementary
Eulerian volume (control volume). The coupling between HD
and MD substances is established in the HMD region by in-
troducing the birth and death source terms for each substance,
by analogy with a model of miscible two-phase flows. For de-
termining the densities and velocities of the continuum phase
the system of Landau-Lifshitz equations is solved:

∂ρ

∂ t
+∇(ρ~u) = 0, (5)

∂ρα

∂ t
+∇(ρuα~u) = ∇β

(
Π̃αβ +Παβ

)
,

∂ρE
∂ t

+∇(ρE~u) = ∇β

((
Παβ + Π̃αβ

)
·ui
)
+∇(~q+~̃q).

Where the stress tensor consists of a deterministic part

Παβ =− (p−ξ ∇ ·~u)δαβ+ (6)

η
(
∂α uβ +∂β uα −2D−1

∇~u ·δαβ

)
and a stochastic part, a random Gaussian matrix with zero
mean and the covariance given by the formula

〈Π̃αβ (r1, t1) · Π̃γδ (r2, t2)〉=

2kBT
[

η
(
δαβ δαγ +δαγ δβδ

)
+

(
ηV −

2
3

η

)
× (7)

×δαβ δβγ

]
δ (r1− r2)δ (t1− t2).

The stochastic stress tensor can be written explicitly11 as

Π̃αβ =

√
2kBT
δ tδV

(√
2
√

η ·Gs
αβ

+
√

D
√

ξ
tr[G]

D
Eαβ

)
, (8)

where G is the Gaussian random matrix with zero mean and

covariance 〈Gαβ Gγδ 〉= δαγ δβδ , Gs
αβ

=
Gαβ+GT

αβ

2 − tr[G]
D Eαβ

are symmetric random matrices with zero trace, Eαβ is the
identity matrix, tr[G] is the trace of the matrix. This form
of correlations follows from the equipartition theorem, which
relates the thermal fluctuations to temperature11.

The averaged heat flux is

qα = κ ·∂α T, (9)

where κ is the heat conductivity coefficient, ξ and η are the
shear and bulk viscosities, D is the dimensionality of the sys-
tem. An additional stochastic heat flux also has zero mean and
the covariance flux components are defined by

〈q̃α(r1, t1) · q̃β (r2, t2)〉= 2kBλT 2
δαβ δ (r1− r2)δ (t1− t2)

or, explicitly,

q̃α =

√
2kBλT 2

δ tδV
Gα . (10)

In our case the stochastic stress tensor and the stochastic heat
fluxes are independent. For this reason in the following the
heat flows are not considered.

The solution provides the correspondence between the aver-
aged MD velocities of the particles in the cell, the fluctuating
hydrodynamic flows, and the temperature. Our method pro-
vides the equations that give matching values of the particle
velocities and the fluid velocities.

2.2 Main governing equations of the method

We use the following notations: xi is the Cartesian coordinate
component, ui is the velocity component, ρ is the density, m is

1–?? | 3

Page 3 of 10 Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t
Fa

ra
da

y
D

is
cu

ss
io

ns
A

cc
ep

te
d

M
an

us
cr

ip
t



the mass, F is the force per unit Eulerian volume V = h3, N is
the number of particles per unit volume, and subindex p stands
for particle (MD model). Assume a summation over any index
repeated twice. For simplicity here we assume that space and
time is uniform everywhere in the MD and HD regions of the
box. The mass conservation for the HD substance of density
ρ that occupies the partial volume 0 < s < 1 is

∂ (sρ)

∂ t
+

∂ (uisρ)

∂xi
= J, (11)

with an equivalent form convenient for numerical solution:

s(ρ(t + τ)−ρ(t))+∑
p

(
s
∫ t+τ

t
ρuidt

)
dSβ/V = (12)

−
∫ t+τ

t
Jdt,

where J and ρ represent the quantities averaged over the con-
trol volume, that is the Eulerian “bin” for MD of volume
V = Vbin, area S and β is a coordinate direction. J is the HD
substance birth rate due to the coupling with MD particles in
the HD zone. A similar equation is formed for the MD sub-
stance that occupies the partial volume (1− s):

∂

∂ t

(
(1− s)∑

p
ρp)+

∂

∂xi
((1− s)∑

p
ρpuip

)
=−J, (13)

where ρp = mp/V is the density of the MD particles. Again,
this differential equation is just a convenient form for the equa-
tion, which in practice is solved in the conservation form

(1− s)

(
∑
p

ρp(t + τ)−∑
p

ρ(t)

)
+ (14)

∑
α

(
(1− s)

∫ t+τ

t
∑
p

ρpuβp dt

)
dSβ/V =−

∫ t+τ

t
J dt,

where the flux divergence can be found from the MD

∑

(
(1− s)

∫ t+τ

t
∑
p

ρpuβpdt

)
dSβ/V = (15)

∑
β

(
(1− s)

(
∑

β−particles−out
ρp− ∑

β−particles−in
ρp

))
.

By adding the same term ∂

∂ t ((1− s)ρ + ∂

∂xi
((1− s)ρui) to both

sides of (11), it is rearranged to

∂

∂ t
p+

∂

∂xi
(uiρ) = J+ (16)

+
∂

∂ t

(
(1− s)∑ρ)+

∂

∂xi
((1− s)∑ρui

)
.

The mass birth/death function J entering the balance laws is
not arbitrary but has to be determined in accordance with the
modification of the MD equations. It is assumed that in the
HD zone the evolution of the coordinate xpi of each particle is
determined by its MD velocity obtained from the Newton law
that takes into account the two-phase force coupling, uNewton

ip
plus a correction. The correction is needed to constrain the
velocity of the particles to the HD value in the pure HD limit
s→ 1:

dxpi

dt
= upi + s(ui−uip)+

s(1− s)α(x)
∂

∂xi
(ρ̃−∑

p
ρp)/ρp/N(t)

ρ̃ = sρ +(1− s)∑
p

ρp.

(17)

Equation (17) is equivalent to using a modified force poten-
tial in the usual MD equations (although the explicit formula
for the modified potential that produces the corrected veloc-
ity field is not trivial to obtain because of the complicated
particle-particle interactions involved).

The momentum equation for the HD substance follows
from the conservation law:

∂ (sρui)

∂ t
+

∂ (u juisρ)

∂x j
= sFi + J2, (18)

where J2 is the MD interaction force. A similar conservation
law for the MD particles per volume is:

∂ ((1− s)∑p ρpiupi)

∂ t
+

∂ ((1− s)∑p ρupiup j)

∂x j
= (19)

= (1− s)∑
p

Fpi− J2,

where Fpi = FMD
pi =

∂Vp
∂xi

, Vp-interpartical potintial. In the
above the HD force is computed in accordance with the
Landau-Lifshitz FH model

Fi =−
∂ (Παβ + Π̃αβ )

∂xi
. (20)

Similarly to the mass equation, the momentum birth/death
function J2 entering the balance laws is not arbitrary but has to
be determined in accordance with the modification of the MD
equations, achieved by generalising the second Newton law:

duNewton
p j

dt
= (1− s)Fp j/ρ+ (21)

∂

∂xi

(
s(1− s)α(x)∑

p
up j/N(t)

∂

∂xi

(
ρ̃−∑

p
ρp

))
/ρp/N(t)−

− ∂

∂xi

(
sβ (x, t)

∂

∂xi

(
ρ̃ ũ j−∑

p
ρpup j

))
/ρp/N(t),
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where the density is ρ̃ = sρ +(1− s)∑ρp, and the velocity
is ũi =

[
sρui +(1− s)∑p ρpupi

]
/ρ̃ , and β (x, t) = β (x), for

N(t)> 0, otherwise β (x, t) = 0.

-100 -50 0 50 100

-100

-50

0

50

100

Fig. 3: Velocity fields of MD (grey) and hydrodynamic (black)
phases for s = 0.6

3 Results

3.1 Results on the hybrid method

For computer simulations a system of 40k two-dimensional
particles that interact via the Lennard-Jones potential was cho-
sen. The simulation area was a square with periodic boundary
conditions16. Temperature and density corresponded to water
density at 122.4K. The region was divided into 100 hydrody-
namic cells, each of which had the value of the hydrodynamic
density and temperature derived from the Landau-Lifshitz FH
model. Purely MD calculations were used for equilibration,
after which the modified leapfrog formulas (21) and (17) were
used for integration. The coupling between the continuum
phase (FH) and the MD phase was performed at every 100
MD step (100 MD steps is equal to 1 FH step). For several
values of the model parameters s, α , and β the simulations
of the hybrid LL-FH/MD model have been performed. The
parameters α and β were chosen equal to 10000 for efficient
coupling between the phases.

The coupling parameter s was varied from zero to one.
Fig. 3 and 4 show a typical behaviour of the continuum
phase and the molecular dynamics phase velocities ui and

-100 -50 0 50 100

-100

-50

0

50

100

Fig. 4: Same as in Fig. 3 for s = 0.8

∑p upi/N(t). Also, the curl of the velocity fields is shown
in Fig. 5 and 6. The density fields are shown in Fig. 7 and
8. In all cases the MD and FH phases follow each other. The
best correspondence is achieved for s= 0.8, as expected, since
for this case the MD particles act as almost passive traces that
follow the hydrodynamic flows, whereas for s = 0.6 discrep-
ancies between the fields are present.

The solutions for the two phases are driven to each other
and the standard deviation of the main variables converge to
the reference values of the pure MD solution, which is the
same as that of the pure LL-FH solution. It should be stressed
that the comparisons of the field values of the hybrid method
with those of pure MD (FH) are meaningless because the solu-
tions are stochastic (chaotic) and particular realisations of the
fields are different. A meaningful comparison is possible in
the statistics of the fluctuations of the field values, which do
match as described above.

3.2 High performance molecular modelling: MD-
GRAPE

In multiscale simulations the computational speed is limited
by high-resolution parts due to the large differences in time
and space scales. The basic time step of an all-atom MD sim-
ulation is 1-2 fs, while those of hydrodynamics is of the order
of hundreds of picoseconds. Thus, we need to fill the gap of
several orders of magnitude in time scale. We have done this
by using HPC.
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Fig. 5: Curl of the velocity fields of MD (solid line) and hydrody-
namic (dashed line) phases for s = 0.6

The general CPU based supercomputers, such as the K-
computer, are most effective for simulating large molecular
systems comprising millions of atoms. In this case the scal-
ing of the computation speed with the number of CPUs is
very good, Fig. 9. In contrast, the specialised computers allow
faster calculations for smaller systems, of the size of several
thousands of atoms, Fig. 1. We have developed such special-
purpose computer systems for MD simulations named MD-
GRAPE17, Fig. 10. The MDGRAPE computers were acceler-
ators of non-bonded force calculations.

Recently, the ANTON machine, which is also a special-
purpose computer for MD simulations, has been developed by
D. E. Shaw research18. They integrated the non-bonded force
accelerators, general-purpose processor cores, memories, and
network interfaces in a single System-on-Chip (SoC). The in-
tegration minimizes the latencies between these computing el-
ements. As a result, it enables 100 times better performance
for small-scale systems than normal PC clusters and the high
performance of the full system can be achieved for systems as
small as 10K atoms. Thus, it enables 100 ps MD simulation
per second for these systems.

The ability of enabling fast simulations of small systems is
especially useful for protein MD simulations as well as mul-
tiscale simulations. For this purpose we are currently devel-
oping the fourth-generation machine, MDGRAPE-4, Fig. 11.
The MDGRAPE-4 also aims at achieving fast simulations of
small systems. It is also based on the SoC technology, sim-
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Fig. 6: Same as in Fig. 5 for s = 0.8

ilar to ANTON. The target performance is 100 ps simulation
per second for a system with 100K atoms. Currently, we have
almost finished the evaluation of the system board. We plan
to finish the system in 2014 when the software development
will be finalised. The latter will be based on GROMACS and
contain C library set for accessing the GP core.

The calculation speed is critical for visual interaction with
the simulated systems since the time of data processing in a
human brain and a visual system is of the order of 10 ms.
Thus, to enable a real-time interactive simulations, we need
the performance of more than 30 frames per second and more
than 300 simulation steps per second. We have developed such
a system using the previous generation machine MDGRAPE-
3, Fig. 12. In this system, only a few layers of water molecules
can be treated due to the performance limitation. A typical
speed is ≈ 15 frames per second for a ≈ 150 residue glob-
ular protein. The multiscale simulation coupling MD on the
MDGRAPE-4 and FH on conventional CPU/GPU machines
will enable smoother and more precise visual simulations of
solvated biomolecules.

3.3 GPU results

Another branch of HPC implementation of our framework
uses GPU based calculations. Because of the nature of
stochastic simulations, it is the statistical behaviour of the LL-
NS equations which is relevant for the model rather than an
instantaneous solution. For statistical convergence of low fre-
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Fig. 7: Density fields of MD (solid line) and hydrodynamic (dashed
line) phases for s = 0.6

quencies typical of the hydrodynamics fluctuations, one needs
a sufficiently long simulation time. For example, the solu-
tion of stochastic diffusion problem converges as 1√

Nt
, where

Nt is the number of time steps of the simulation, which is typi-
cally of order of several millions to get the error in fluctuations
down to less than a few percent.

For three-dimensional problems, this leads to considerable
computational times in case it is run in a serial manner based
on single computational unit (CPU). On the other hand, the
LL-NS Fluctuating Hydrodynamics equations are well suited
for an implementation in NVidia’s CUDA. The latter allows
one to off-load the computations on to the Graphical Process-
ing Units (GPU) with performing massively parallel computa-
tions based on hundreds of computational threads.

The basic idea behind computations on the GPU, using the
terminology of CUDA, are based on the fact that certain bits
of code (kernels) can be executed simultaneously in several
blocks each containing hundreds of threads. The key for opti-
misation is to limit the request for the same memory space, re-
sulting in memory collisions and therefore high latency. In the
case of the LL-NS equations, each block of cells (e.g. 16x16)
can be evaluated independently, where only the single layer
of boundary cells need to request memory space shared with
other blocks. This is similar to simple block domain decom-
position. Besides the different approach how to the access
of the computational arrays, the (C++) code itself needs little
change.
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Fig. 8: Same as in Fig. 7 for s = 0.8

The GPU used in the current simulations of liquid argon
at equilibrium conditions is the NVidia Tesla C2075. Figure
13 shows the amount of time it takes to compute one cycle
of the two-time-level Central Leapfrog algorithm for three-
dimensional LL-NS equations versus the number of cells of
the computational domain.

The dependency of the amount of workload goes up lin-
early with the amount of cells, i.e. a linear scaling if workload
balance is achieved. It is also interesting to compare this scal-
ing with the workload based on a single CPU. Figure 13(b)
shows how the GPU computation times compare to the com-
putational times based on a single core of an Intel Xeon E5-
2609 processor. There are two “regimes” on the CPU versus
GPU comparison plot.

In the first part of the curve 13 corresponding to relatively
small job sizes, the curve rises steeply that indicates a sharp
growth of efficiency when only a fraction of the GPU threads
are fully utilised and their competition for shared memory is
low. After all GPU threads are fully engaged, the rate of the
curve growth stagnates. The latter is likely to be caused by
the fact that the system is reaching its limit of available RAM
(GPU dedicated 5GB versus CPU shared with system 6GB).
Nevertheless, as follows from this comparison graph, that the
GPU can do the task up to 300 times faster compared to one
CPU core, or at best about 75 times faster in comparison with
the four-core CPU processor.

Because of the significant speedup due to GPU implemen-
tation, the LL-NS fluctuating hydrodynamics simulations per-
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Fig. 9: Scaling with the number of computation nodes for MD sim-
ulations using the K-computer at RIKEN

Fig. 10: The development of the GRAPE family accelerators (Gor-
don Bell Prizes won in 1995, 1996, 1999, 2000 (double), 2001, 2003,
and 2006)

formed for this article took a few hours rather than a week on
the grids up to 10 million computational cells.

4 Conclusions

A theoretical framework that allows a correct hybridisation of
the atomistic (molecular dynamics) and continuum (hydrody-
namics) representations of a liquid system is described. The
velocity and density fields of such hybrid systems are calcu-
lated which demonstrate that the atoms can follow the con-
tinuous flows without violating the conservation laws. Impor-
tantly, the framework does not require any artificial repulsive
walls or forces that separate the representations. Instead, the
contribution of each representation is governed by an arbitrary
function of space and time. This allows the definition of differ-

ent domains, which can also move, containing different degree
of ‘atomisation’. This can be used in simulating, for example,
a protein surrounded by water that gradually changes its rep-
resentation from purely atomistic in the vicinity of the protein
to purely continuous far from it.

For implementing the framework, a special purpose accel-
erator, MDGRAPE, has been used. The latest version of it,
MDGRAPE-4, can achieve the 100 ps per day performance for
a 100K atoms system. The details of the system are described
and compared to other high performance computer systems
used for molecular modelling.

An implementation of the continuum fluctuating hydrody-
namics solver using NVidia Tesla C2075 GPU is described. A
very effective speed up in computation is demonstrated.

Our current research is centred around the applications
of the described framework and its HPC implementation to
water-protein realistic systems. We expect the first results of
this work to be published by spring 2014.
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Fig. 11: The MDGRAPE-4 system board and System-on-Chip. The
board has 8 SoCs and 48 optical transmitter/receiver for networking.
The SoC has 8 nonbond force calculation modules (PP), 8 general-
purpose processor modules (GP) each of which has 8 cores, memo-
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Fig. 12: Interactive MD simulation system using MDGRAPE-3.
User can intervene simulations using the 3D force-feedbacked joy-
stick

Fig. 13: a) The amount of time one cycle takes on the GPU versus
the number of cells (N). b) The ratio between the time it takes to
execute one cycle on the CPU versus the time on the GPU versus the
number of cells in one direction of the cubed domain.
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