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Intrinsically disordered regions (IDRs) in proteins are still not well understood,
but are increasingly recognised as important in key biological functions, as well
as in diseases. IDRs often confound experimental structure determination —
however, they are present in many of the available 3D structures, where they
exhibit a wide range of conformations, from ill-defined and highly flexible to
well-defined upon binding to partner molecules, or upon posttranslational modi-
fications. Analysing such large conformational variations across ensembles of 3D
structures can be complex and difficult; our goal in this paper is to improve this
situation by augmenting traditional approaches (molecular graphics and principal
components) with methods from human-computer interaction and information
visualisation, especially parallel coordinates. We present a new tool integrating
these approaches, and demonstrate how it can dissect ensembles to reveal func-
tional insights into conformational variation and intrinsic disorder.

1 Introduction

Over the past decade, the role of intrinsically disordered regions (IDRs) in pro-
teins has been increasingly recognised as important, especially in eukaryotes.
These regions are now known to play key roles in many biological functions,
in regulatory control, and in many diseases'. The presence of IDRs in a pro-
tein is believed to often confound experimental structure determination, although
these regions are present in many of the available 3D structures?. Some insights
have been gained from examination of structures containing IDRs; in particular,
it has become clear that IDRs can exhibit a wide range of structural conforma-
tions, from ill-defined and highly flexible to well-defined, upon binding of part-
ner molecules, or upon posttranslational modifications . Overall, however, many
aspects of intrinsic disorder in proteins remain poorly understood.

Many structural studies of IDRs have used homogenous ensembles, i.e., en-
sembles comprised of identical molecules that differ only in 3D conformation.
This includes ensembles derived from molecular dynamics (MD) simulations,
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where snapshots are taken at different time points. While MD can be powerful, it
is often not feasible to compute sufficiently long trajectories to study key effects
on IDRs, such as the binding of partner molecules. A second source of homoge-
nous ensembles that has been used to characterise IDRs are protein structures
determined by nuclear magnetic resonance (NMR) studies?. These ensembles
often exhibit large conformational variations that are widely believed to corre-
late with the dynamic behaviour of proteins in solution. However, there is good
evidence that this belief may be wrong, and that variations observed in NMR
ensembles derive primarily from a lack of data to describe the structure fully®.
In contrast, when structures are derived from X-ray crystallography, any regions
lacking sufficient data are simply removed, leaving apparent gaps in the polypep-
tide chain. A similar approach should probably be taken when using NMR en-
sembles to study IDRs: regions of the structure with little or no experimental
data should often be removed from the analysis. When not done, this may lead
to overestimating the conformational variation of IDRs.

In this work, we focus on ensembles that are more heterogeneous, namely
ensembles that contain all experimentally-determined structures that are judged
to be significantly similar to one ‘target’ protein sequence, based on a template-
based structure prediction method>. Currently, such ensembles are readily avail-
able for many proteins, often containing information on interactions with other
proteins, DNA, RNA, or small molecules — such ensembles are likely to be of
increasing significance for molecular biologists, as more structural data becomes
available. Examining these ensembles can reveal a wealth of molecular detail on
the range of conformations adopted with different binding partners, and can pro-
vide insight into IDRs, as these ensembles can capture ranges of conformations
across different crystal packing environments, different experimental conditions,
and across different molecular complexes. However, these ensembles can be
quite complex, with sometimes hundreds, or even thousands of structures.

There are many methods to facilitate the analysis and visualisation of struc-
tural ensembles, one of the most widely used being principal components and
related methods, which are typically used to find correlated motions® either in
NMR ensembles or in crystal structures’. Such dimension reduction methods
are useful for simplifying the resultant visualisations, thus aiding interpretation.
However, it remains challenging to augment information about the spatial posi-
tion of atoms, residues, or secondary structure elements with further attributes
such as solvent accessibility, electrostatics, etc. Most methods developed to date
focus either on homogenous ensembles, or on ensembles showing structural fam-
ilies®, which typically include a very diverse range of proteins. The ensembles
considered in this work are an intermediate case, and there are few methods for
using these ensembles to efficiently gain functional insight into IDRs or other
aspects of conformational variation. A key problem with visualising such en-
sembles is that they are often highly cluttered, particularly in those regions that
exhibit high flexibility.

To address these challenges, we propose using parallel coordinates® in con-
cert with traditional methods such as principal component analysis (PCA) and
molecular graphics for the analysis of intrinsic disorder and conformational flex-
ibility in heterogenous protein ensembles. The use of parallel coordinates al-
lows simultaneous visualisation of high-dimensional data — such as multiple
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Table 1 Residue attributes used in the parallel-coordinates view.

Label Description

2nd Secondary structure state of residue determined by STRIDE !2.
Contacts Molecule in contact with current residue.

IUPRED Predicted disorder score for current residue 3.

Phi The ¢ backbone angle for current residue.

Psi The y backbone angle for current residue.

Position Residue position in alignment to the target sequence.

PCAi RMSF Root mean square fluctuation of the Euclidean distance of the
Cy, atom position to the i-th eigenvector.

RMSF Root mean square fluctuation of the Euclidean distance from the
Cy, atom to the mean structure.

SAS Accessible surface area computed with the double cubic lattice
method 4 via STRIDE.

Type The amino acid type (mapped to arbitrary integer).

Chain PDB !5 chain identifier (mapped to arbitrary integer).

ID PDB identifier (mapped to arbitrary integer).

PCAi 3D coordinates of current structure projected along i-th princi-
pal component®.

RMSD Root mean square deviation of current structure from the top-

ranked structure '0.

attributes (see Table 1) from structure ensembles — and is particularly useful to
facilitate exploring and finding patterns in the data. In this paper, we construct a
multiple view setup ' that allows residues selected in parallel coordinates to be
directly highlighted in a 3D molecular graphics view via brushing-and-linking !

2 Related Work

The visualisation of homogenous ensembles is particularly well supported by
the VMD '7 molecular graphics tool, as well as other popular tools such as Py-
MOL '8 or Chimera !°. Typically, all structures in an ensemble are visualised after
being superimposed by minimising the root mean square deviation (RMSD) of
the corresponding backbone atoms in the structure, typically using algorithms
like those of Kabsch '® or Coutsias et al.?. However, the use of the superimposi-
tion approach quickly becomes limited for ensembles containing many structures
or those exhibiting large conformational diversity. Therefore, in addition to the
generic dimension reduction approaches mentioned above, a range of more tai-
lored approaches have been developed to suit particular cases.

For visualising NMR ensembles, several specialised tools have been devel-
oped. One such tool is MOBI?!, which computes a mobility score for the amino
acid backbone, based on a combination of Co interatomic distances and ¢ and
V angles, then visualises the score using a colour-code mapped onto 3D struc-
ture representations. Another tool developed specifically for NMR ensembles is
MolMol?2, which offers a ‘sausage’ visualisation, where a protein’s backbone is
represented by a tube of variable diameter, scaled according to the mobility of
each amino acid.
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For visualising MD simulations, specialist systems have been created for
studying overall motions, including hierarchical, multiresolution trees>?, as well
as interactive linking between alternative visualisations (e.g., DIVE?*). In ad-
dition, methods have been developed for studying even more specialised cases,
such as transient cavities>> or molecular diffusion events?®. Most MD methods
make explicit use of temporal ordering, which is lacking in the ensembles studied
in this work.

The above tools typically make use of a range of abstract visualisation meth-
ods. One of the first and most popular non-spatial visualisations in structural
biology is the Ramachandran plot?’ for the investigation of the distribution of
backbone torsion angles with respect to secondary structure elements. Other
examples include hydropathy plots, RMSD plots, contact maps — for a recent
review, see O’Donoghue et al. 8.

This work focuses on an abstract visualisation method — the parallel-coor-
dinates plot® — that has not previously been applied to ensembles of molecular
structures, or to intrinsic disorder. This method has been used to visualise high-
dimensional data across various application domains, including bioinformatics >’
and systems biology3%3!, where it has been shown to be useful for the analysis
of regulatory networks or gene expression (see Heinrich and Weiskopf>? for a
recent survey).

We only found two previous reports using parallel coordinates with protein
structure data. The first was from Luke>? using parallel coordinates to visualise
the conformation of the tetrapeptide Met-enkephalin using separate coordinate
axes for each rotatable bond in the molecule, similar to the Ramachandran plot.
However, this does not scale well as the number of axes increases with the protein
size. The second application was from Becker>*, which took a similar approach,
but used only main-chain dihedral angles for conformational analysis of proteins.
Becker recognised three major advantages of using parallel coordinates for con-
formational analysis: (i) multiple conformations can be displayed in the same
plot, (ii) different types of axes can be mixed in a single plot, and (iii) dynamic
clustering and filtering (hiding) can be conducted based on patterns emerging
from the plot.

In this work, we further extend these approaches with a richer set of attributes,
scalability, interactivity, multiple linked views!®!!  and the integration of statis-
tical methods in the analysis process.

3 Methods

For this work, a plugin to the MegaMol™ framework 3> was implemented to load
sets of PDB ! files, and compute a set of attributes to be used for the parallel-
coordinates plot. The system was built using C++ and OpenGL and tested on a
Windows workstation with an Intel Core i7, 6 GB RAM and an NVIDIA GeForce
GTX 680 (4 GB VRAM).

3.1 Data Preparation

We selected three well-studied human proteins where IDRs and conformational
variation were known to influence function (p53, RXR-a, and H2B). In each
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case, multiple experimentally determined structures are available — either for
that sequence or highly similar sequences — that include a range of residues
predicted to be disordered (determined using an TUPRED '3 score > 0.5). In
addition, the available structures include many cases with multiple partner mo-
lecules. We derived structural ensembles for each target protein sequence with
the template-based structure prediction tool HHblits >, using it to find and align all
PDB structures with significantly similar sequence. We included only structures
with an expected value of < 10719, a threshold recommended to ensure that all
structures are likely to have similar fold to the target protein36-7.

The three resulting ensembles of PDB structures represent structure vari-
ations observed using different experimental methods (NMR, crystallography)
across related proteins from several different organisms, and in the presence of
a range of binding partners (e.g., DNA or other proteins). For every structure,
the HHblits output was used to produce an alignment between each residue in
the ATOM records of the PDB file with a corresponding residue in the UniProt 38
sequence of the target protein.

Structures in the resulting ensembles were then clustered based on the region
of the match to the full-length protein sequence. We selected one cluster for each
sequence — corresponding to one sequence domain — that had a manageable
yet sufficiently diverse set of PDB structures (from 47 to 78 cluster members).
Structures in the cluster where ranked first by the number of identical residues to
the full-length UniProt sequence; in case of matches, PDB structures were then
ranked by crystallographic resolution, with NMR structures ranked last. The
clustering and ranking were done using the Aquaria resource, currently in devel-
opment at CSIRO and Garvan (http://aquaria.ws).

To prepare for visualisation and further analyses, each structure in an ensem-
ble is superimposed onto the top-ranked structure using the Kabsch algorithm !¢,
and the respective RMSD is recorded. For NMR structures consisting of multiple
models, we used only the first model occurring in the PDB file. For each member
of the ensemble, a set of additional attributes were computed. These attributes
were selected to reveal different structural aspects that relate to both conforma-
tional variation and intrinsic disorder. The attributes are summarised in Table 1,
and are further described below:

Secondary structure elements, backbone torsion angles, as well as the solvent
accessible area per residue were computed via STRIDE '2.

Intermolecular contacts were defined as follows: for each atom of each residue
of the target protein, we searched within a distance of SA — if any atoms were
found within this distance belonging to another molecule in the PDB structure,
this molecule was considered to be in contact with that protein residue.

For the ensemble, we computed a mean backbone structure by averaging the
coordinates of superimposed C, positions for all residues that HHblits matched
to the residues in the query UniProt sequence. This mean structure was used to
calculate a root mean square fluctuation (RMSF) for each C,, atom, providing a
measure of local spatial variation at each residue.

In order to study correlated variations in structure, we applied PCA to each
final ensemble using a standard approach® developed for analysing MD simu-
lations. Here, a covariance matrix of atom coordinates is calculated and diago-
nalised to obtain the principal modes that describe most of the spatial variation
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within the ensemble. As all structures were superimposed prior to applying PCA,
variations caused by the rotation and translation of a whole structure do not af-
fect the computation. Again, only o-carbons are used. For the construction of the
covariance matrix, only residues aligned to the target sequence in all members of
the ensemble are considered (i.e., gap residues were excluded).

3.2 Visualisation

We constructed a visualisation system using traditional 3D molecular graphics
methods 28, to represent ensembles in a spatial context, in concert with a parallel-
coordinates view to display additional multidimensional information about the
same data set. The system allows users to select residues in parallel coordinates
that exhibit certain attributes, with brushing-and-linking allowing the selection to
be assessed in the spatial view.

3d06 96 colil ALA 0 0.1 -169.4 -169.25
ID Position 2nd Type RMSF IUPRED Phi Psi

Fig. 1 Mapping residues attributes to poly-lines in parallel coordinates. This figure
shows two representations (spline and stick, top) of a single structure from the PDB
(3d06) and its representation in parallel coordinates (bottom). Each residue is
represented as a poly-line (a set of line segments) crossing a set of axes, corresponding to
attributes of the residue. Note that for some attributes (such as the PDB ‘ID’), all lines of
residues from the same structure will cross at the same point on the respective axis. In
this view, the ‘2nd’ axis (for secondary structure) was used to brush residues composing
o-helices (red) and B-strands (blue).

6| Faraday Discuss., [year], [vol], 1-15 This journal is © The Royal Society of Chemistry [year]



The 3D view supports most commonly used molecular rendering modes, in-
cluding ball-and-stick, stick, spacefilling (Van-der-Waals), cartoon 3 solvent ex-
cluded surface (SES)*%#!, and Gaussian surfaces*? (see Figure 1 for examples of
a spline and stick rendering). Depending on the type of analysis to be conducted
and the question to be answered, the standard practise in molecular graphics is
to encode additional attributes (such as secondary structure, electrostatics, hy-
drophobicity etc.) using colour or glyphs to be visualised together directly with
the 3D structure in a spatial context. This approach works well for small num-
bers of attributes, but can become cumbersome for tasks that require consider-
ation of many different attributes — the standard practise is to switch between
attributes or use multiple 3D visualisations. This can become tedious, especially
for ensembles, which can impede the discovery of patterns in the data, such as
relationships, clusters, dependencies, or outliers.

To facilitate the analysis of disorder in ensembles of structures, we augmented
the traditional molecular graphics view with parallel coordinates®, which allow
simultaneous visualisation of a large number of attributes across whole ensem-
bles. In parallel coordinates, multidimensional data is represented by a set of
axes arranged in parallel, as opposed to the orthogonal layout of axes in Carte-
sian coordinates. A data point in multidimensional space is then mapped to a
poly-line (a set of line segments) in parallel coordinates, intersecting each axis
at its respective coordinates. A point-line-duality between 2D Cartesian and par-
allel coordinates guarantees a unique mapping of patterns from a 2D scatterplot
to a 2D parallel-coordinates plot and vice-versa. This allows us to incorporate
well-known statistical plots such as the Ramachandran plot?” into a parallel-
coordinates system of protein ensembles. In addition, parallel coordinates allow
us to visualise an arbitrary number of dimensions in a single plot, which can
be useful to visually spot multidimensional outliers or clusters in the data and
thus provide an analyst with information about protein ensembles that might be
difficult or impossible to see using an isolated spatial view.

In our implementation, each poly-line represents a residue in one PDB struc-
ture, and each axis represents a residue attribute described in Table 1 (see also
Figure 1). In order to map categorical data to axes in parallel-coordinates, we
cast non-numerical attributes (such as ‘ID’ or “Type’) to unique integers with no
specific order. As a result of our residue-based representation, lines having an at-
tribute in common will cross at the same point on that attribute axis; for example,
all o-helical residues will cross the secondary structure axis at the same point.
Axes are rendered as vertical lines with labels for the minimum and maximum of
the respective dimension (note that we omit some labels in the figures for the sake
of clarity). Since the order of axes is crucial for the determination of patterns in
the data, our tool allows the order to be changed interactively.

As is typically done in parallel-coordinates views, our tool allows the user
to select lines (representing residues), and to brush the selection with a user-
defined colour. Selected residues are also immediately highlighted in the spatial
view using the same colour. Furthermore, selection can be used to define a set
of structures to be removed in both views (called filtering, as every structure that
contains at least one selected residue is removed from the ensemble) or to hide
lines in parallel coordinates; these simple but powerful features enable the user
to interactively explore the ensemble based on attributes in parallel coordinates.
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To further facilitate interactive exploration, we tailored our system for fast
rendering. For the spatial view, we chose to represent the polypeptide backbone
using lines or splines (similar to the cartoon model), which was usually effective
in providing a cogent visualisation for each of the ensembles used.

Initially, the ensembles used in this study tended to be visually cluttered due
to the presence of multiple different molecules in various PDB files. With our
tool, a user can easily focus on particular parts of the ensemble by selecting
attributes from the parallel-coordinates view. For example, as a first step in our
analyses, we used our tool to show only one chain in each PDB structure, namely
the chain that aligns onto the target sequence (or the first such chain, in the case
of oligomers) — see Figure 2 (top).

We also designed our tool to automatically update the attributes of all parallel-
coordinates axes whenever the user filters structures. For instance, this update
process completely recalculates the PCA, based only on the currently visible
structures and updates the 3D superposition using the top-ranked, non-hidden
structure as the target structure.

ID RMSD 2nd Position RMSF  Phi Psi  IUPRED ContactsChain SAS  Type PCA1..4 PCA1_RMSF

Fig. 2 P53 ensemble of 72 PDB structures, many containing partner proteins and DNA
molecules (top left). Our system allows interactive dissection of the ensemble by hiding
or revealing structures via selection of attributes from the parallel-coordinates view
described in Table 1. The top right view was created from the original ensemble (top left)
by a parallel-coordinates selection matching all PDB chains not aligned onto p53 (grey
brush in the bottom plot), then filtering all structures that contain brushed residues.

4 Results

In this section, we tested our system by applying it to investigate the three protein
ensembles described in Section 3.1. We show how our approach helped to gain
insights into the relationship between intrinsic disorder and structural variation
for these proteins.
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4.1 Cellular Tumour Antigen P53

The ensemble for the human protein cellular tumor antigen p53 consists of a set
of 72 PDB structures that have been aligned to residue positions 94 to 295 of
the full-length sequence in UniProt (primary accession P04 637). This region of
p53 is known to bind DNA (e.g. 1TSR, 2ACO0), as well as partner proteins, such
as p53 binding protein 1 (1GZH). Figure 2 shows the initial view, with all PDB
structures superimposed (top left) plus a view showing only PDB chains directly
aligned onto p53.

1059 09 DNA

ID Position ~ RMSF  IUPRED Contacts ~ Chain  RMSF  IUPRED

Fig. 3 Disorder and intermolecular contacts in the p53 ensemble. Left: Brushing was
used to color red all residues with visually outlying RMSF values (> 3.8A) — all are
predicted to be disordered (i.e., have IUPRED score > 0.5). However, many of the
residues predicted to be disordered have low RMSF (blue). Right: Brushing in parallel
coordinates allows users to focus on particular partner molecules. In this example, the
‘Contacts’ axis was used to highlight residues of p53 (red) in direct contact with DNA.

UNP:QOH3D4

ID PCA1 PCA2 PCA3 PCA4 ID  Chain Contacts PCA1

Fig. 4 Finding sub-states in the p53 ensemble. Left: From the set of ‘PCA’ axes, two
prominent outliers in the ensemble are brushed red. Both structures show very different
backbones from the ensemble all over the sequence. These outliers were removed for
subsequent steps, causing all attributes of the parallel-coordinates plot to be recomputed
automatically. Right: Of the remaining structures, selecting from the now updated
‘PCA1’ axis reveals another subset (red) with distinctly different structure — and
somewhat higher apparent disorder — compared to the core ensemble (grey). From the
‘Chain’ axis, we see that this subset is comprised of molecules p63 and p73 (UniProt
accessions Q9H3D4 and 015350), both close relatives of p53.

From the 3D view, it seems that most structures form a rather rigid core, with
two outlying regions of high conformational variation — one at the N-terminal
o-helix and a second between residues 180 and 190. Applying our tool to this
ensemble revealed that residues with very high observed disorder (RMSF) al-
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ways had high predicted disorder (IUPRED), while the converse was not true
(Figure 3). Figure 4 further illustrates how our tool can be used to successively
dissect the p53 ensemble, for example by identifying and removing structures
from divergent protein sequences, ultimately deriving a subset of highly simi-
lar structures that can be used, e.g., to derive relationships between disorder and
secondary structure (Figure 5).

Contacts  IUPRED Phi  Psi ca 2nd Contacts  IUPRED Phi  Psi
Position RMSF Position RMSF

2nd

Fig. 5 Relationship between disorder and secondary structure in the p53 ensemble. Left:
In this figure, the “2nd’ axis (secondary structure) was used to brush o-helices (red) and
B-strands (blue). The parallel-coordinates plot shows that helices in this ensemble are
more likely to contain disordered residues than f strands, based on both [IUPRED score
and RMSF. The ‘Phi’ and ‘Psi’ axes show the expected configurations for both types of
secondary structures, in accordance with the corresponding regions in the Ramachandran
plot. Right: Brushing the ‘2nd’ and ‘Position’ axes reveals residues that adopt different
secondary structures across the ensemble. o-helices are shown in red, B-strands in blue,
and coils in green. The plot indicates that only a small fraction of residues with
ambiguous secondary structure have been predicted to be disordered by IUPRED. Among
these, most are associated with low RMSFs. Next steps in the analysis might include
filtering by ‘Contacts’ to investigate the source of the variation in secondary structure.

4.2 Retinoic acid receptor RXR-o.

This example encompasses 78 structures that were aligned to residues 132 to
241 of human protein retinoic acid receptor RXR-o. (P19793). The ensemble
initially shows a high degree of variation; one large cluster of similar confor-
mations can be seen, as well as two small clusters (Figure 6). Using the prin-
cipal component axes in the parallel-coordinates plot (in particular ‘PCA3’ and
‘PCA4’), we were able to quickly identify and brush the smaller cluster. Figure 6
shows two brushing and filtering steps used (from left to right) to filter out these
sub-clusters; the remaining cluster, comprising most of the structures, was then
examined for disordered regions. Figure 7 compares residues with high predicted
disorder (blue) versus those with high observed disorder (red). The blue selection
includes many regions with very low observed disorder (e.g. the helices). Upon
visual examination of the disordered region (bottom left in the 3D rendering in
Figure 7), we found a distinct cluster of structures that could be highlighted us-
ing the third principal component (Figure 8). Comparing the spatial views of
Figures 7 and 8 further shows that these structural differences are correlated with
differences in other disordered regions of the ensemble. After adding the ‘Con-
tacts’ axis to the parallel-coordinates plot, we can see that these structures are
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bound to the same partner protein (PPAR-y, P37231, see rightmost axis in Fig-
ure 8). Obviously, this conformation is not a requirement for binding PPAR-v, as
there are other structures in the ensemble that also bind to PPAR-y (grey). How-
ever, this special conformation seems to prevent the binding of other possible
binding partners (blue in selection in Figure 8).

Fig. 6 Successive filtering of sub-states within the RXR-o ensemble. The pattern of
lines across the ‘PCA’ axes clearly shows two distinct clusters (left). Brushing the small
cluster (red) allows to remove the corresponding structures from the ensemble, and all
attributes to be recomputed. The same procedure can be repeated until only a set of
highly similar structures remains (right).

7.81 0.8

Position RMSF IUPRED

Fig. 7 Predicted vs. observed disorder for the RXR-o ensemble. Blue indicates residues
predicted to be disordered (IUPRED score > 0.5), while red indicates residues with
visually outlying RMSF values (> 5.2A). Note in the 3D structure the red coloring was
rendered last, and hence conceals some residues coloured blue. The ‘Position’ axis
shows the position of the selected amino acids in the sequence. As with p53, residues
with high observed disorder (RMSF) tend to have high predicted disorder (IUPRED),
however the converse trend is not as clear.

4.3 Histone H2B

This ensemble consists of 49 structures aligned to residues 30 to 127 of the hu-
man protein histone H2B (096A08). Overall, these structures are highly similar,
with only two comparably small regions of disorder at the N- and C-termini (see
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ID PCA1 PCA2 PCA3

Fig. 8 Disordered region in the RXR-ot ensemble. In the disordered region to the right,
some structures form a relatively ordered subset, which has been selected (in red) by
brushing one of the ‘PCAi’ axes. Looking at the ‘Contacts’ axis shows that all members
of the ensemble that form the red cluster bind to the same protein (PPAR-y), whereas
none of the members that bind to another protein follows this conformation (blue
selection). Thus, binding of PPAR-y induces order in this region.

Figure 9). As with the previous two ensembles, all residues with highly divergent
RMSF values also had high IUPRED scores, while the converse was not true.

5 Discussion

Our tool has many more capabilities than could be presented here, however the
cases included in the Results demonstrate that the tool can be useful in dissecting
protein ensembles.

Some key trends emerged from the Results. In some cases, we see that bind-
ing of partner molecules appears to stabilise regions that are otherwise disor-
dered. This may explain the lack of observed disorder in many residues that
were predicted to be disordered, especially for the H2B ensemble, in which all
structures have H2B in complex with other histone proteins. The correlation of
disorder with secondary structure observed in Figure 5 is also interesting, and
may merit further investigation using a larger set of ensembles.

However, the clearest trend to emerge was that in all three ensemble, all
residues with high observed disorder (i.e., outlying RMSF values) were predicted
to be disordered IUPRED score > 0.5). Similarly, the converse was consistently
not observed, i.e., many residues predicted to be disordered had low RMSF.
Like many other methods for predicting disorder, [UPRED is based purely on
sequence, and measures the propensity of a sequence region to exhibit disor-
der, using only amino acid properties. Our results support the suggestion that
IUPRED has high recall, but not high precision, for the task of predicting dis-
order in the heterogenous ensembles used in this study. Stated another way, our
results suggest that many of the residues predicted by IUPRED to be disordered
are false positives. However, it is important to note that for the ensembles used
in this study, the observed RMSF values may differ considerably from the ‘true’
disorder that occurs when these proteins are alone in solution, with no partner
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Fig. 9 Predicted vs. observed disorder for the H2B ensemble. Blue indicates residues
predicted to be disordered (IUPRED score > 0.5). Red indicates residues with visually
outlying RMSF values (> 2.2A), i.e., residues with high observed disorder. High
observed disorder always corresponds to high IUPRED scores, but the converse is not
true.

molecules — which is the state that [IUPRED aims to predict. In contrast, the en-
sembles we used contained many structures with partner molecules, and almost
all were derived from proteins in a crystalline state, not in solution. Nonetheless,
such ensembles are a rich and detailed source of experimental data that we be-
lieve will be very useful in helping improving our understanding of the functional
roles and mechanisms of IDRs.

Overall, the results demonstrate that our tool makes it easy to explore inter-
relationships in these heterogeneous structural ensembles; in the near future, we
intend to use our approach to look at a broader range of cases and, if these cor-
relations stand up, to use them to design statistical tests to further test the trends
mentioned above.

While we are using traditional molecular graphics techniques, the parallel-
coordinates view greatly facilitates ensemble exploration by showing a large
amount of additional information about the ensemble that otherwise would be
hidden or difficult to see with a conventional molecular graphics approach. The
combination with a spatial 3D view of the molecular structures further enables the
analyst to cross-check selected patterns in a well-known environment. The use
of parallel coordinates is powerful yet relatively easy to implement, and hence
is a good candidate for inclusion in popular molecular graphics tools, such as
VMD!7, PyMol !® or Chimera!'®. Such inclusion would significantly extend the
range of attributes, database support, and usability features compared to what is
currently available in our implementation, which is a research prototype.

There are some points that need further consideration when using parallel
coordinates. One of the most criticised aspect is that patterns depend on the order
of axes. There are several approaches to meet the challenge of finding a ‘good’
axis order: Some authors proposed using an automatic ordering based on various
measures such as correlation coefficients or distance metrics (see Heinrich and
Weiskopf 32 for an overview), others use manual, interactive reordering of axes
(as we did for the system presented in this paper) or show all pairwise correlations

in a matrix of parallel-coordinates systems™*3.
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For very large ensembles and large structures, it may be useful to modify our
approach, for example by adding another level of aggregation and compute statis-
tics for whole chains or structures, instead of single residues. This would greatly
reduce the number of graphical primitives that may occur, and so improve ren-
dering speed. In part, this has been realised implicitly in our system for axes that
depict information on a chain or structure basis (such as the ‘Chain’ or ‘RMSD’
axes).

In the future, we plan to extend our tool to achieve a tighter coupling between
the parallel-coordinates plot and the 3D visualisation, for example by adding
colour maps to an axis, thereby allowing user’s to select a parallel coordinate axis
and to colour-code the 3D models according to the values on this axis (e.g. using
a cool-warm shading). We also plan to add specialised protein ensemble rep-
resentations (e.g. the ‘sausage’ visualisation used in MolMol??), and to add a
range of further protein structure attributes — this will allow us to add further
dimensions to the parallel coordinates and potentially find new patterns in the
ensembles. Finally, we also plan to investigate the usefulness of this approach
for analysing molecular dynamics simulations.

6 Conclusion

Adding views to a system that show different aspects of the data is a well-known
and frequently practised approach for a wide range of applications. In this paper,
we have shown that parallel coordinates can be a useful add-on to a molecular
graphics environment. Applied to the rather complex use-case of analysing pro-
tein ensembles, the approach enabled us to dissect these complex datasets, and
gain some insight into the correlation between observed and predicted disorder.
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