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Intermolecular binding underlies various metabolic and regulatory processes of
the cell, and the therapeutic and pharmacological properties of drugs. Molecular
docking systems model and simulate these interactions in silico and allow us to
study the binding process. Haptic-based docking provides an immersive virtual
docking environment where the user can interact with and guide the molecules to
their binding pose. Moreover, it allows human perception, intuition and knowl-
edge to assist and accelerate the docking process, and reduces incorrect binding
poses. Crucial for interactive docking is the real-time calculation of interaction
forces. For smooth and accurate haptic exploration and manipulation, force-
feedback cues have to be updated at a rate of 1 kHz. Hence, force calculations
must be performed within 1ms. To achieve this, modern haptic-based dock-
ing approaches often utilize pre-computed force grids and linear interpolation.
However, such grids are time-consuming to pre-compute (especially for large
molecules), memory hungry, can induce rough force transitions at cell bound-
aries and cannot be applied to flexible docking. Here we propose an efficient
proximity querying method for computing intermolecular forces in real time. Our
motivation is the eventual development of a haptic-based docking solution that
can model molecular flexibility. Uniquely in a haptics application we use oc-
trees to decompose the 3D search space in order to identify the set of interacting
atoms within a cut-off distance. Force calculations are then performed on this set
in real time. The implementation constructs the trees dynamically, and computes
the interaction forces of large molecular structures (i.e. consisting of thousands
of atoms) within haptic refresh rates. We have implemented this method in an
immersive, haptic-based, rigid-body, molecular docking application called Hap-
timol RD. The user can use the haptic device to orientate the molecules in space,
sense the interaction forces on the device, and guide the molecules to their bind-
ing pose. Haptimol RD is designed to run on consumer level hardware, i.e. there
is no need for specialized/proprietary hardware.

1 Introduction

Intermolecular complex formation underlies virtually all the metabolic and regu-
latory processes of the cell, as well as the therapeutic effects and pharmacologi-
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cal properties of drugs. For the past 40 years, scientists have been studying such
bindings and relied on experimental (in vitro) work and computational methods
(in silico) to study, model, and replicate them. Molecular docking refers to the
computational methods devised and employed by researchers and field practi-
tioners in order to simulate (as accurately as possible) this natural process. The
ultimate goal of docking is to fit two molecules (often referred to as receptor and
ligand molecules) together in a viable configuration based on their topographic
and physiochemical properties.

There are two main approaches to docking, one automated the other inter-
active. Automated methods1–3 utilize sophisticated, pose selection algorithms
and rely only on computer power to carry them through. Conversely, interactive
methods4,5 allow human intervention, and their performance depends closely on
human intuition, knowledge and expertise. Automated docking solutions com-
prise the majority of the applications available in the field. Nonetheless, they are
time consuming (solutions to docking problems can take several hours)4,6, often
predict incorrect docking conformations7,8, and by their very nature are not able
to benefit from human knowledge and intuition. Haptic devices9 and interactive
molecular visualization systems5,10–13 address these issues by transferring some
of the complexity of the molecular binding process from the computer to the hu-
man. Haptic-based docking systems simulate the docking process in a 3D virtual
environment, where the user interacts with the virtual molecules and performs a
knowledge-guided search and selection of the final binding pose. They provide
an immersive virtual docking environment where the user can sense (via a haptic
device) the interaction forces and guide the molecules to their binding pose. They
also establish a learning environment for the study of the docking process, and of
the underlying interactions. It has been shown that such docking systems allow
human perception, intuition and knowledge to assist and accelerate the docking
process, and reduce incorrect binding poses14.

Other applications of haptics in biomolecular science assist users to inves-
tigate the importance of haptic technology in e-learning and education15,16, in-
teract with molecules during molecular dynamics simulations17,18, explore inter-
actively the solvent accessible surface (ISAS) of a protein19, deform an elastic
network model of a biomolecule by applying forces to individual atoms20, and
interact with properties related to molecular quantum dynamics (wave-packet dy-
namics) and potential energy surfaces21.

A fundamental part in a haptic-based docking solution is the calculation of the
interaction forces. The forces and torques acting between molecules is a conse-
quence of nonbonded (noncovalent) interactions (assuming no chemical reaction
takes place between them) which are due to van der Waals (VDW) and electro-
static interactions, if we ignore solvent induced forces. If we are treating the
two molecules as rigid, these are the only interactions required although when
molecules are considered to be flexible bonded interactions must be included ei-
ther explicitly or implicitly.

For smooth and accurate haptic exploration and manipulation of the inter-
action forces, haptic technology necessitates that all force-feedback cues must
maintain a refresh rate of 1 kHz due to the sensitivity of the human haptic sense.
Hence, all force calculations must be performed within 1ms. A brute force ap-
proach to calculate the VDW and electrostatic forces requires a time complexity
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of O(NM), where N and M are the number of atoms in the receptor and ligand
respectively. Such an approach is impractical on modern CPUs even for small
molecules (i.e. molecules comprising of several hundred of atoms each) due
to the lack of processing power. Modern, high-end GPUs offer an alternative
execution platform for this approach, and, given their processing power, have
the potential to perform force calculations for large molecules (i.e consisting of
thousands of atoms) within the 1ms constraint. However, our preliminary results
(discussed in Section 5) suggest that the performance gains achieved by a GPU-
based implementation of this approach, although noticeable, do not suffice for
molecular structures containing more than a thousand atoms each.

Existing haptic-based docking approaches compute these forces on the CPU
and as such, they often utilize pre-computed 3D force grids4,22 and linear inter-
polation to accelerate the respective computations. These force grids address the
1kHz refresh rate requirement efficiently, however, they are time-consuming to
pre-compute (especially for large molecules), memory hungry, can induce rough
force transitions at cell boundaries22 and cannot be applied to flexible docking
problems (since the force grids must be recomputed in real time as the molecule
deforms).

In this work, we propose an efficient octree-based, proximity querying method
that enables us to compute (on the CPU) in real time and at haptic refresh rates
the intermolecular forces of docking. Our approach addresses efficiently and
successfully all issues related to the pre-calculated force grids and can facilitate
a haptics-driven docking of large molecular structures (i.e consisting of thou-
sands of atoms). As such, it can be applied equally in the study of protein-
protein and protein-drug docking problems. We have implemented this method
in a haptic-based, immersive, rigid body docking system called Haptimol RD,
which is designed to run on consumer level hardware, (i.e. there is no need for
specialized/proprietary hardware). Our motivation is the eventual development
of a haptic-based docking solution that can model molecular flexibility.

2 Previous work

The potential benefits of integrating haptic technology in molecular docking so-
lutions have been under investigation since the late 60’s23. Nonetheless, the
progress made in this field has been slow. The main reasons for that were the
lack of product commercialization (early haptic technology was proprietary), and
the lack of the necessary computing power which rendered the use of haptic
technology in docking solutions either prohibitively expensive and/or computa-
tionally infeasible. The emergence of powerful desktop computers, affordable
haptic devices and open-source rendering APIs (Application Programming Inter-
face), at the beginning of the 21st Century, alleviated these obstacles, and enabled
molecular-docking researchers to incorporate haptic technologies in their studies.
Though the number of related studies still remains small, it is anticipated that this
number will increase as haptic technology becomes easier and cheaper to use and
integrate.

Brooks et. al.23, from the University of North Carolina, pioneered the field
of haptic-based docking with the GROPE III project. They addressed and solved
the force calculation problem by adopting Pattabiraman et. al.’s pre-computed,
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energy-potential, grid method24. Similarly to Pattabiraman et. al., Brooks et.
al. pre-computed and stored the inter-atomic force at predefined 3D-grid cells.
Each grid cell stored the summation of the VDW and electrostatic contributions
to the force. They then computed the total force of the intermolecular interac-
tions with a tri-linear interpolation on the appropriate force vectors. Bayazit et.
al.25 applied a similar force calculation approach in their study. They developed
a hybrid docking solution by integrating haptic technology into their automated
motion planning method (OBPRM). In their solution, the haptic device allowed
the user to sample the conformational space, sense the interaction forces, identify
sites with low energy potentials, and connect these findings into a roadmap. This
roadmap was then given as an input to the road planner that calculated the final
docking path. Their energy and force calculations modelled only VDW interac-
tions, and were accelerated with the use of a force grid.

Lee and Lyons26 improved upon the force grid method by calculating sepa-
rate force grids for each component of the non-bonded interactions (i.e. VDW
and electrostatic). Moreover, the forces stored in the grid cells accounted for
all possible pairwise atom-type combinations between the receptor and ligand
molecules. Their approach provided a better approximation of the interaction
forces, and enabled the user to scale, and turn on/off in real time the forces
attributed to the VDW and electrostatic interactions. Their method has been
adopted by many current, haptic-based docking solutions and studies related to
the teaching of structural biology to students27, to computer-aided drug design28,
and to overcoming the trapping problem in Molecular Dynamics simulations14.
Like Lee and Lyons, Wollacott and Merz Jr.22 with HAMStER utilized two dif-
ferent 3D-grids for force calculations (one for VDW and one for electrostatic),
but they pre-computed the grids only around the active site of the receptor.

Nagata et. al.29 attempted to compute the force of all non-bonded interactions
(VDW, electrostatic, and hydrogen bonds) in real time, without utilizing pre-
computed grids. They concluded that (even for small molecules) their brute-
force approach could not compute the binding interactions at haptic refresh rates,
without a 100-fold increase in processor power available to them at the time.
Within project CoRSAIRe, Ferey et. al.30 calculated the docking forces using
a force grid for the electrostatic contribution and a brute force approach for the
VDW contribution. Their brute force calculations, however, did not account for
all interatomic VDW interactions, but only for those involving the surface atoms
of the molecules. Hou and Sourina31 and Sourina et. al.32 used a brute-force
approach to calculate the VDW forces in their haptic-based, helix-helix docking
system called HMolDock. They were able to dock with their system a aIIb helix
(with 154 atoms) and a anti-aIIb helix (with 266 atoms).

Other approaches to the computation of the intermolecular interaction forces
include the works of Daunay et. al., and Zonta et. al. Daunay et. al.7 developed a
haptic-based flexible docking application and utilized a simulation engine for the
respective energy computations. The forces and torques, rendered on the haptic
device, were not calculated; they were converted from the total energy potential
by a novel force-field reconstruction method. Their system could not support ”as
is” 1kHz, haptic rendering rates, and thus they relied on wave theory (and on the
appropriate wave transformations) to bridge the rate disparities between haptic
rendering (1kHz) and force calculations. Finally, Zonta et. al.33 integrated the

4 | 1–21

Page 4 of 21Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t
Fa

ra
da

y
D

is
cu

ss
io

ns
A

cc
ep

te
d

M
an

us
cr

ip
t



OpenBabel library into their docking system ZODIAC and used it for all force
calculations. Using ZODIAC, they were able to calculate the forces at haptic
refresh rates while docking a ligand of 16 atoms to a receptor of 5.5K atoms.

3 Methods

3.1 Force Equations

The primary interest of this work is the real-time calculation of the VDW and
electrostatic forces exerted between the receptor and ligand molecules during
docking. The VDW interaction is modelled by the Lennard-Jones (LJ) potential
and the electrostatic potential by Coulomb’s law.

The VDW force acting on atom j as exerted by atom i and modelled by the
LJ potential is given by,

~FV DW
i j =

[
12

Ai j

r13
i j
−6

Bi j

r7
i j

]
~̂ri j (1)

where Ai j and Bi j are constants that depend on the type of interacting atoms, ri j is
the distance between these atoms (measured from their centre), and~̂ri j is the unit
vector in the direction from atom i to j. In Equation 1, the first term inside the
brackets defines the repulsive part of the force, whereas the second term defines
the attractive part - the dispersion force.

The force acting on atom j due to the electrostatic interaction with atom i as
modelled by Coulomb’s law is given by:

~FES
i j =

qiq j

4πεε0r2
i j

~̂ri j (2)

where qi and q j are the atomic charges of the two atoms, ε0 is the permittivity
of free space, and ε is the relative permittivity dependent on the dielectric prop-
erties of the solvent. Given Equations 1 and 2 we compute the total force of the
intermolecular interactions by summing up all pairwise, inter-atomic interactions
involved. Namely, if N atoms from the receptor interact with M atoms from the
ligand then the total force is given by,

~FTot = Σ
N
i Σ

M
j

([
12

Ai j

r13
i j
−6

Bi j

r7
i j
+

qiq j

4πεε0r2
i j

]
~̂ri j

)
(3)

Equation 3 is the total force acting on the ligand due to its interactions with
the receptor. The total force acting on the receptor due to its interactions with the
ligand is of the same magnitude but in the opposite direction. There are related
expressions for the torque acting on the molecules but these are not modelled as
most haptic devices are unable to exert torques on the user. In our work, Equation
3 is applied only for those inter-atomic interactions within a cut-off distance.

We use the non-bonded parameters of the Gromos54a734 force field (as spec-
ified and implemented in Gromacs version 4.6.235) to provide values for the pa-
rameters Ai j, Bi j, qi and q j. Specifically, we calculate the values of Ai j and Bi j
as Ai j =

√
Ai×A j and Bi j =

√
Bi×B j respectively, where Ai, Bi and A j, B j are
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the LJ parameters of atoms i and j as given by the Gromos54a7 force field. The
Coulomb constant 1

4πε0
is set equal to 138.935485 kJ mol−1 nm e−2 and we set

ε equal to 1.0 for the purposes of this benchmarking study, i.e. we assume in-
teractions take place in vacuo. The total force is measured in kJ mol−1 nm−1.
To render it on the haptic device we convert it first to Newtons by dividing by
6.02329× 1011 since 1N is equivalent to 6.02329× 1011 kJ mol−1 nm−1. We
then scale it by a factor of the order of 1011 to ensure that a good range of forces
can be felt by the user through the haptic device. In addition to Gromos54a7,
our method can utilize other force fields such as AMBER36, CHARMM37 and
OPLS-aa38.

3.2 Octree-based proximity query for force calculations

Fig. 1 An octree structure of depth 2 with its octant subdivisions. At depth 0 (L=0) lies
the root octant, at depth 1 are the eight child octants of the root, and at depth 2 are the
eight leaf octants of those child octants. A complete octree of depth L contains 8L leaf
octants.

For a real-time calculation of the docking forces we devised a method that
uses a cut-off distance to reduce the set of interatomic interactions considered
in Equation 3, and octrees39 to obtain this set at haptic refresh rates. Octrees
are spatial partitioning hierarchies that recursively divide the geometry of an ob-
ject into smaller subunits (called octants), until they reach a certain subdivision
depth. Initially the object’s bounding box (often modelled as a cube) is subdi-
vided into eight child octants of the same size, then each child is subdivided into
eight smaller child octants, and this process continues recursively L times, where
L is the subdivision depth. This recursive subdivision results in a tree structure
of degree 8 and depth L that represents the object’s geometry, and in which each
leaf octant contains a part of that geometry (Figure 1). Such treelike structures
simplify the implementation, and accelerate the execution of costly operations40

such as object intersection discovery, neighbour finding, proximity querying etc.
With octrees, these operations are most often implemented as simple, recursive
tree traversals of the underlying structures. Our method constructs and stores
within different octrees a spatial decomposition of the tertiary (3D) structure for
both receptor and ligand molecules, and then uses these tree structures to effi-
ciently query the 3D space and identify all atom pairs i and j whose ri j distance
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Fig. 2 Main image: Two proteins interact within Haptimol RD. Green colours denote the
atoms that interact within a given cut-off distance. The respective octree leaf octants are
also depicted. Inset: Zoomed in view of the interacting atoms.

is within this cut-off (Figure 2). Force calculations are then performed on this set
in real time. All tree traversals during octree construction and querying are per-
formed recursively in a depth-first order starting from the root. Octrees have been
applied in many different problems related to solid modelling, computer graphics,
computer-aided design, computer vision and image processing, and robotics40,41,
but there are no reports of their application in molecular-docking problems. Oc-
trees perform very well in problems addressing deformable geometry42, and we
want to exploit this property while studying and modelling molecular flexibil-
ity. In the following three subsections we describe our octree construction and
querying algorithms, and outline how we compute the total force, respectively.

3.2.1 Octree Construction
Our method constructs an octree, and populates it with atoms simultaneously. It
requires as input a target subdivision level L, and the dimensions of the box that
bounds the geometry to be partitioned. The method derives initially the dimen-
sions of the molecule’s minimum bounding cube, and sets this cube as the tree’s
root octant. It then utilizes Algorithm 1, AddAtomAndConstructChildOctants,
to subdivide the tree into equally-sized child/leaf octants, and to populate them
with atoms. Given an atom’s coordinates, Algorithm 1 traverses the octree, and
assigns the atom to the leaf octant that either intersects or contains this centre. If
the path to this leaf octant (or the leaf itself) does not exist, the method creates the
required octants (forming this path) dynamically, and subdivides the tree struc-
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Fig. 3 Top row: A conceptual 2D visualization of an octree cube containing atoms a, b, c,
d, e, and the corresponding tree structures (of depth 1) constructed. Atom e intersects all
four leaf octants. (a) A typical construction method assigns e to all leaf octants. (b) Our
construction method assigns e to the first applicable leaf octant traversed. Bottom row:
The octree is intersected by an octree containing atom j. Atom j interacts with atoms a, b,
c, d, and e. (c) Under the typical construction, the set of interacting atom pairs produced
contains duplicates of (j,e). (d) Under our construction, the set contains only one instance
of (j,e).

ture accordingly. This subdivision terminates when the target level L is reached,
the respective leaf octant is created, and the atom is assigned successfully to it.
When the atom is intersected by more than one octant our construction algorithm
assigns the atom to the first leaf octant traversed, and not to all of them, as is
customary for octree-based collision detection algorithms (Figures 3a and 3b).
The query algorithm (see Section 3.2.2) ensures that the given atom will be con-
sidered for the final query set, irrespective of the child nodes it is assigned to.
Furthermore, this one-to-one relationship between atoms and octants accelerates
the performance of the query algorithm because each inter-atomic pair is consid-
ered only once, and thus the cost of handling duplicate pairs is avoided (Figures
3c and 3d). Since an octant is created only when an atom intersects it, the re-
sultant octree contains no empty octants (octants with no atoms), and thus it is
compact and memory efficient, and helps the query algorithm avoid unnecessary
octant traversals. Lastly, our experiments indicated (see Section 4.1) that when
the octree depth was set to four, our approach attained a performance balance
between its octree construction and querying times.

3.2.2 Octree Querying
As the two molecules move in space, their geometry changes position and ori-

entation. These changes are stored in the two viewing transformation matrices
TR and TL, for the receptor and ligand molecules respectively. To query correctly
the two octree structures, these matrices must be applied to both octant and atom
coordinates stored within these trees. To save a substantial amount of matrix-
vector multiplications, we combine TR and TL into one matrix using the relation
TNew = T−1

R TL, and then apply TNew only to the ligand-related coordinates (we
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Algorithm 1 AddAtomAndConstructChildOctants

Require: maxDepth, the octree’s maximum allowable depth
Require: currentTreeLevel, the octant’s current level in the octree
Require: minBoxCoord, the octant’s minimum box coordinate
Require: maxBoxCoord, the octant’s maximum box coordinate
Require: atomCoord, the coordinates of the atom’s centre
Require: atom, the atom object to add
Ensure: filledOctree

1: if isOctantNew = true then
2: octantMinBoxCoord← minBoxCoord
3: octantMaxBoxCoord← maxBoxCoord
4: octantCentroid← (minBoxCoord+maxBoxCoord)*0.5
5: octantRadius← (minBoxCoord-maxBoxCoord)*0.5
6: isOctantNew← false
7: end if
8: childrenTreeLevel← currentTreeLevel+1
9: // reached a tree leaf node, thus assign to this octant the given atom

10: if childrenTreeLevel > maxDepth then
11: octantsAtomList.AddEnd(atom)
12: isOctantNew← true
13: return atom added
14: else
15: for RP = 1 to 8 do
16: childMinBoxCoord ← get the min box coordinates for child octant

childOctant<RP>
17: childMaxBoxCoord ← get the max box coordinates for child octant

childOctant<RP>
18: if atomCoord intersect/being enclosed by childMinBoxCoord and child-

MaxBoxCoord then
19: if childOctant<RP> has not been created then
20: childOctant<RP>← create new Octant Node
21: isOctantALeaf← false
22: // add this child at the end of the octant’s children list
23: octantsChildrenList.AddEnd(childOctant<RP>)
24: end if
25: // forward/add the atom to childOctant<RP> octants recursively
26: return childOctant<RP>.AddAtomAndConstructChildOctants(maxDepth,

childrenTreeLevel, childMinBoxCoord, childMaxBoxCoord, atom-
Coord, atom)

27: end if
28: end for
29: end if
30: end
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Fig. 4 (a) A 2D visualization of Equation 4. The two leaf octants belong to two different
octrees and contain atoms ar and al , respectively. These atoms are within the cut-off
distance and thus interact. In such cases, dNet will always be less than or equal to the
cut-off, since it defines the closest distance between the two spheres (of radii rR and rL)
bounding these atoms. (b) A diagram-based proof that our algorithm will handle the atom
pair (ar, al) correctly, irrespective of the leaf octant (A, B, C or D) atom ar was initially
assigned to. Even in the worst case scenario (ar was assigned to C), the dNet of octants C
and O will be equal to the cut-off (blue line), whereas in the other three cases it will be
less than the cut-off. In this example octant A is the best insertion case for ar since it is in
zero dNet distance from octant O.

use TNew = T−1
L TR and apply TNew to the receptor-related coordinates if the lig-

and is larger than the receptor). This approach maintains the relative orientation
of both structures intact, and instead of transforming both molecules in space, it
keeps the receptor geometry fixed and transforms only the ligand geometry with
respect to it.

Given TNew and the two octree structures our method applies Algorithm 2,
DeriveInteractingAtomPairsSet, to query pairwise and recursively the underly-
ing octants, identify all interacting atom pairs within the cut-off distance, and
return the set, SPairs, of these pairs. Using the atoms stored in SPairs (and their
non-bonded parameters), the force calculation procedure derives the total force.
The query algorithm starts from both octree roots and performs a pairwise traver-
sal of their respective child octants. For each non-leaf octant pair examined, it
updates the necessary octant coordinates using TNew, and then computes the net
distance dNet between the octant centres using:

dNet = dTot − (rR + rL) (4)

where dTot is the total distance between the octant centres, and rR and rL are the
radii of their bounding spheres (Figure 4a). If dNet is less than or equal to the cut-
off distance plus an error margin es (to safeguard the query from floating point
arithmetic errors), the algorithm continues and examines recursively the children
of this octant pair, and stops when it reaches the relevant leaf octants. At the
leaf level, the algorithm computes all pairwise inter-atomic distances between
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the centres of the atoms stored in the respective leaf-octants, and saves in SPairs
those atom pairs with a distance less than or equal to the cut-off.

By utilizing Equation 4, the cutoff distance, and the octree hierarchy, our
query strategy performs quick rejection tests on the underlying molecular geom-
etry, and converges rapidly to those leaf-octants containing the interacting atom
pairs. Our octant rejection test (i.e. dNet > (cuto f f + es)) is a simple numerical
test with no substantial computational cost. Moreover, it is invariant to octant ori-
entation in space, since dNet is computed based on octant bounding sphere radii
and not on octant box dimensions (i.e. bounding cube dimensions). Since atoms
are bounded by octant boxes and octant boxes are bounded by octant bounding
spheres, two atoms will interact, if and only if the dNet distance of their bounding
octants is less or equal to the cut-off, regardless of octant orientation. Hence,
if the dNet distance between two octants is not within the cut-off it is safe to
discard that part of molecular geometry from the solution set, and query it no fur-
ther. The same reasoning applies to the special tree construction cases stated in
Section 3.2.1 (i.e. when atoms are intersected by more than one octant). As pre-
viously mentioned, the construction algorithm assigns such atoms to the first leaf
octant traversed. Let ar be one such atom. If ar is intersected by multiple octants,
then its centre must lie on a common point shared by the bounding boxes/spheres
of these octants. Let, now, al be an atom interacting with ar. Clearly the dNet
distance between the octants containing al and ar must be less than or equal to
the cut-off. But since ar lies on a shared point then the dNet distance between the
octant containing al and the remaining octants must also be less than or equal to
the cut-off (Figure 4b). As such, ar will be queried and inserted in SPairs as ex-
pected, regardless of its placement within the octree during construction. Hence,
our rejection test will prune correctly the octrees (and their underlying geome-
try), under all construction cases, special or trivial. Nonetheless, floating point
precision errors might induce false fails in our test, and inadvertently lead to atom
omissions. The use of es safeguards the rejection test and query algorithm from
such erroneous outcomes. In our queries we let es to be the VDW radius of the
smallest atom in the given molecule.

3.2.3 Calculating the Force
Our force calculation procedure traverses sequentially the SPairs set, and for each
atom pair found in SPairs, it computes the VDW and electrostatic force contribu-
tions and adds them to the total force. Since all force calculations are performed
in real time, our method can facilitate independent handling of the electrostatic
and VDW forces in a manner similar to the one reported in Lee and Lyons26.
Namely, it enables the user to scale and switch on/off dynamically the electro-
static and VDW forces, as well as, the repulsive and attractive parts of the VDW
force. Such force calculation flexibility allows the user to experiment with dif-
ferent types of interactions easily.

4 Results

To test our approach we have implemented the methods discussed above in a
haptic-based, rigid-docking application called Haptimol RD. Haptimol RD was
developed using the OpenHaptics HD and OpenGL libraries, and the Visual C++
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Algorithm 2 DeriveInteractingAtomPairsSet

Require: TNew, the combined viewing transformation matrix
Require: octree1Octant, an octant from the first octree structure
Require: octree2Octant, an octant from the second octree structure
Require: cutoff, the cut-off distance
Ensure: SPairs

1: retValue← false
2: if both octree1Octant AND octree2Octant are leaf-octants then
3: for all atoms ar in octree1Octant and all atoms al in octree2Octant do
4: datoms ← compute inter-atomic distance between ar and al
5: if datoms ≤ cutoff then
6: save pair (ar, al) in SPairs
7: retValue← true
8: end if
9: end for

10: else
11: if octree1Octant OR octree2Octant is a leaf-octant then
12: // set non-leaf octant to tmpNLOctant and leaf octant to tmpOctant
13: if octree1Octant is a leaf-octant then
14: tmpNLOctant← octree2Octant
15: tmpOctant← octree1Octant
16: else
17: tmpNLOctant← octree1Octant
18: tmpOctant← octree2Octant
19: end if
20: for all child octants octc in tmpNLOctant do
21: dNet ← compute net distance between octc and tmpOctant
22: if dNet ≤ (cutoff+es) then
23: if DeriveInteractingAtomPairsSet(TNew, octc, tmpOctant, cutoff)

then
24: retValue← true
25: end if
26: end if
27: end for
28: else
29: for all child octants octr in octree1Octant and all child octants octl in

octree2Octant do
30: update necessary octant coords. (i.e. the shortest octree) with TNew
31: dNet ← compute net distance between octr and octl
32: if dNet ≤ (cutoff+es) then
33: if DeriveInteractingAtomPairsSet(TNew, octr, octl , cutoff) then
34: retValue← true
35: end if
36: end if
37: end for
38: end if
39: end if
40: return retValue
41: end
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programming language. Using Haptimol RD we conducted the following set of
experiments:

1. benchmarking construction and querying performances

2. measuring querying performance during real-time rigid-docking simula-
tions

To account for possible speed inconsistencies caused by background pro-
cesses, we executed each benchmarking experiment ten times and reported the
average. All of our tests were conducted on a 2.93GHz Intel Core i7 PC, running
a 64bit version of Windows with 8GB RAM. The haptic device utilized in our
simulations was the Geomagic Touch (formerly known as SensAble Technolo-
gies Phantom Omni).

4.1 Benchmarking Performance

Fig. 5 Octree construction times per molecule in milliseconds, for octree depth levels
2-8.

We report the octree construction and querying times on various molecular
structures. The construction times must be considered if receptor flexibility is
modelled, given that the trees would have to be constructed repeatedly and in
real time as the molecule deforms. For rigid-body docking, the querying times
are the only values of practical importance, since the trees need only be calculated
once prior to the interactive session. We benchmarked our octree construction
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method using four proteins comprising different numbers of atoms. The pro-
tein structures were obtained from the Protein Data Bank (PDB)43. The proteins
used were Crambin (PDB code: 1CRN), Lysozyme (3HTB), Alcohol Dehydroge-
nase [containing only one of the two subunits, 1ADG1S], Alcohol Dehydrogenase
[containing both subunits (dimer), 1ADGD]. For each test protein we constructed
seven octrees of different depths (from 2 to 8), and recorded the number of atoms
each protein comprises, the total number of octants created, and the total number
of leaf octants (Table 1). For depths lower than four, our method constructed the
respective octree structures within one millisecond, in all test cases. At depth four
it supported millisecond/sub-millisecond construction times for proteins contain-
ing up to 3500 atoms. For depths larger than four, sub-millisecond construction
times were attained only for small proteins (comprised of several hundreds of
atoms). Figure 5 depicts these construction times per protein, for all seven depth
values. We did not test our construction method for depth values larger than eight
due to physical memory limitations.

Fig. 6 Octree querying times of our ten interacting molecular pairs in milliseconds for
the same seven octree depths (i.e. 2-8). The querying time for test case 1ADG(dimer)–
1ADG(dimer) at depth 2 is not shown here (to avoid graph scaling and to improve graph
readability). The time for this test case was 51.275 ms.

To benchmark our querying method we used the same four proteins and we
devised ten test cases as shown in Figure 6. Each test case consisted of two pro-
teins (out of this set), the larger of which was assigned as the receptor. Based
on their centres, the proteins were placed at the origin of the Cartesian space
and the ligand molecule was then translated along the positive x-axis by a dis-
placement distance δT . The δT distance varied per test case, and was chosen
empirically. Namely, we displayed both proteins on the screen, moved the lig-
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and along the positive x-axis while allowing it to intersect the receptor, and then
visually selected the distance that generated a substantial amount of overlapping
octants (and atoms), that allowed us to test adequately the performance of our
querying method in relation to tree depth and protein size. Since such exten-
sive atom overlapping would never occur during an actual docking simulation
(because of the VDW repulsive forces), the querying response times recorded
can also act as sufficient, upper-bound, performance indicators for our proximity
query method. We used the value of 8Å for the cut-off distance, and for each
test case we recorded the δT distance used, the querying response time, the car-
dinality of the SPairs set, the total number of child and leaf octants traversed and
the total number of inter-atomic distance calculations (Table 2). The querying
response time is the time to determine the set, SPairs, the time to perform the
force calculation being negligible in comparison. Figure 6 depicts these query-
ing times per test case, for all seven depth values. According to these results, our
method achieved sub-millisecond querying response times for all test cases when
the respective octree depths were set to four. Faster response times were attained
for smaller octree depths in several cases, however our measurements indicated
that at depths equal to four our approach maintained a performance balance be-
tween the construction and querying times. Evidently, the octree construction
and querying costs are depth and geometry-size dependent, and impose a trade-
off between construction speed and querying performance. This relationship is
depicted in Tables 1 and 2 which list the construction and querying measure-
ments pertinent to each test case, for depths 3, 4, and 5. Clearly as the size of the
interacting proteins increases the construction cost also increases monotonically
by almost twofold at every step, whereas the querying cost remains substantially
lower at depths higher than four, than it is at depths three and lower. Measure-
ments for depths 2, 6, 7 and 8 were not included for table clarity.

Table 1 Octree construction times per molecule in milliseconds, for depth levels 3, 4,
and 5. The table lists the number of atoms comprising each molecule, the total number of
octants created, and the total number of octants at the leaf level. D stands for Dimer and
1S for one subunit.

# of Tot. # Tot. # of Construction
Molecule heavy atoms L of octants leaf octants time (ms)

1CRN 327
3 132 97 0.1023
4 372 240 0.1837
5 699 327 0.2837

3HTB 1388
3 165 124 0.2617
4 683 518 0.4879
5 1810 1127 0.8329

1ADG1S 3445
3 190 143 0.539
4 888 698 1.0025
5 3122 2234 1.8006

1ADGD 7046
3 137 108 1.0035
4 644 507 1.6403
5 3135 2491 2.6987
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Table 2 Octree querying times for ten interacting molecular pairs in milliseconds, for
depth levels 3, 4, and 5. The table lists the displacement distance used in our experiments,
the number of interacting atom pairs (SPairs) returned, the total number of child/leaf oc-
tants traversed, and the total number of atom pairs examined in order to generate the set
SPairs. D stands for Dimer and 1S for one subunit.

Tot. # Tot. # Tot. #
of of leaf of atom

Interacting δT octants octants pairs Querying
Molecules (nm) SPairs L travers. travers. exam. time (ms)

1CRN–1CRN 1.55 4146
3 2841 2450 30427 0.5666
4 10405 7564 13792 0.9428
5 18542 8137 8137 1.5023

3HTB–1CRN 2 4040
3 2076 1729 70700 0.6236
4 8117 6041 22046 0.9337
5 16690 8573 10234 1.4212

3HTB–3HTB 2.9 3224
3 1514 1114 123272 0.8613
4 6707 5193 34134 0.9497
5 14623 7916 11761 1.6833

1ADG1S–1CRN 2.8 4792
3 1474 1183 109636 0.8126
4 6885 5411 33116 0.9073
5 16536 9651 14524 1.3562

1ADG1S–3HTB 3.88 4338
3 1140 848 211686 1.1711
4 5128 3988 48060 0.9148
5 14077 8949 16695 1.587

1ADG1S–1ADG1S 4.29 3168
3 1008 670 315964 1.6513
4 4254 3246 62847 1.0028
5 11787 7533 17576 1.5472

1ADGD–1CRN 3.27 8853
3 1040 838 218443 1.1536
4 4824 3784 72293 0.9758
5 16112 11288 31079 1.6743

1ADGD–3HTB 4.2 2952
3 918 686 437063 2.096
4 3670 2752 83642 0.8688
5 10375 6705 22332 1.3097

1ADGD–1ADG1S 5.21 2569
3 787 562 715797 2.902
4 2642 1855 99087 0.837
5 8108 5466 23060 1.0944

1ADGD–1ADGD 5.58 2452
3 730 565 1719242 7.1563
4 1830 1100 122310 0.9926
5 5703 3873 25108 1.0454
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4.2 Real-time Rigid-Docking Simulation

In addition to our benchmarking experiments we measured the performance of
our proximity querying method in real-time, rigid-docking simulations, using
three well known complexes, related to protein-protein and protein-drug docking.
Although we did not model receptor flexibility in these simulations, we report the
respective octree-construction times for the reader who wants to take into account
these construction overheads (necessary if molecular flexibility is addressed). In
our docking simulations, we used the complexes of Epidermal Growth Factor
(EGF) with EGF receptor (EGFr), Bovine Pancreatic Trypsin Inhibitor (BPTI)
with Trypsin, and anticancer drug BAY43-9006 (sorafenib, Nexavar) with can-
cer target B-raf as defined in the 1NQL, 3OTJ, and 1UWH PDB files respec-
tively. Out of these files, we extracted the 3D geometry of the six underlying
molecules, in their binding conformations. Some molecules had gaps in their ge-
ometry such as incomplete residues with missing atoms. These geometry gaps,
however, were not significant enough to influence (positively or negatively) our
performance measurements. We utilized Gromacs 4.6.2 (with the -missing flag
when required) to get the non-bonded force parameters for all molecules except
the drug sorafenib. For sorafenib we obtained the parameters through PRODRG
server (http://davapc1.bioch.dundee.ac.uk/programs/prodrg/)44. We conducted
three docking simulations using Haptimol RD, and the respective geometry and
force parameter files. During the simulations, the user performed a haptic explo-
ration of the receptor with the ligand, guided the ligand to its docking position
and orientation (as defined in the original PDB file), and sensed the underlying
intermolecular interactions on the haptic device. The simulation lasted slightly
more than a minute, and Haptimol RD recorded at 10 millisecond intervals the
querying response times, and the number of atom pairs generated. Figures 7, 8,
and 9 depict these docking simulation results, whereas Table 3 lists the corre-
sponding construction results. In our simulations we used octrees of depth 4, and
a cut-off distance of 8Å.

Table 3 Octree construction times for the six molecules used in our real-time docking
simulations.

# of Tot. # Tot. # of Construction
Molecule heavy atoms of octants leaf octants time (ms)
sorafenib 48 100 45 0.0384

EGF 483 391 268 0.1929
BPTI 604 399 285 0.237

TRYPSIN 2094 843 656 0.6758
B-raf 5376 1012 795 1.3382
EGFr 5836 615 468 1.2572

Our results show that our method attained sub-millisecond response times for
the majority of the simulation period. Our querying times exceeded slightly the
1ms barrier only when BPTI assumed its final docking position. At that position
our method performed a significant number of octant comparisons, induced by
a substantial octree overlapping, because BPTI was docked deep into Trypsin’s
binding pocket. The response times in that case fluctuated between 1.015 and
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Fig. 7 A graph of the querying times and the number of atom pairs generated during a
real-time, haptic-based docking simulation between the drug molecule sorafenib and the
receptor protein B-raf.

1.092 ms.

5 Discussion

We have developed an octree-assisted, force calculation method applicable to
haptic-based, rigid/flexible docking. When applied to rigid docking, our ap-
proach can facilitate larger molecular structures than the ones reported in pre-
vious studies, and it is therefore not constrained to protein-drug docking but can
also be applied to protein-protein docking. Since tree construction times are ir-
relevant in rigid docking, our approach can maintain 1ms force refresh rates for
molecular pairs comprising of 7K atoms each (e.g. 1ADGD-1ADGD ). On the
other hand, flexible docking necessitates the real-time construction of the tree,
and as such, 1ms refresh rates would be achieved only for molecular pairs of up
to 1.4k atoms each (e.g. 3HTB-3HTB). These sizes can be increased by more
than a twofold if we relax the 1kHz refresh rate requirement down to 500Hz (as
noted in Otaduy and Lin45).

We also anticipate substantial performance gains if we adapt our method for a
high-end GPU. Our belief stems from the observation that our GPU-based imple-
mentation of the brute force approach outperformed the CPU-based implemen-
tation by almost eightfold. Our GPU implementation (on an NVidia GeForce
GTX 580) enabled us to compute the interaction force between eight hundred
thousand atom pairs (simulating a receptor with one thousand atoms and a ligand
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Fig. 8 A graph of the querying times and the number of atom pairs generated during a
real-time, haptic-based docking simulation between the inhibitor BPTI and the receptor
protein Trypsin.

Fig. 9 A graph of the querying times and the number of atom pairs generated during a
real-time, haptic-based docking simulation between EGF and the receptor protein EGFr.
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with eight hundred atoms), whereas the CPU implementation (on a 2.93GHz In-
tel Core i7) constrained this set only to twenty thousand atom pairs (simulating
a receptor with two hundred atoms, and a ligand with one hundred atoms). We
expect to obtain analogous performance gains (if not better) when we transfer
our octree proximity querying approach to the GPU. Therefore, a GPU-based
implementation of our approach is the next logical step.

6 Conclusion

We have developed a method based on octrees for the real-time computation
of the electrostatic and VDW force contributions in molecular docking. Our
implementation calculates the total interaction force within haptic refresh rates
using a cut-off distance, and overcomes the computational limitations of pre-
computed force grids.

We have presented our octree construction and querying algorithms, and im-
plemented and tested the performance of our method using different molecular
structures. Our results show that we can achieve sub-millisecond force calcu-
lation responses for examples of interest from protein-protein and protein-drug
docking.

Haptic-based docking enables intuitive and interactive exploration of binding
poses which may give an advantage over automated approaches. It is expected
that future research will attempt to improve the docking accuracy of such systems
by incorporating more realistic force calculations (e.g. that model solvent effects
implicitly), and addressing receptor-ligand flexibility.
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