Environmental Science Processes & Impacts

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

rsc.li/process-impacts

1	Fate of a novel strobilurin fungicide pyraoxystrobin in flooded soil
2	
3	Tilong Yang, [†] Chao Xu, [†] Xunyue Liu, [†] Xia Chen, [†] Jianbo Zhang, [†] Xingcheng Ding ^{*†}
4	[†] Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural
5	Sciences of Ministry of Agriculture, Zhejiang University, Hangzhou 310029, China
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	

^{*} Corresponding Author: Institute of Nuclear Agricultural Sciences, Zhejiang University, Kaixuan Road No. 268, Hangzhou 310029, Zhejiang Province, China;
Phone: +86-571-86971201; Fax: +86-571-86971421;

E-mail: <u>dingxch@zju.edu.cn</u>

18 Environmental Impact Statement

19	Pyraoxystrobin is a novel strobilurin fungicide with a substituted pyrazole in the side
20	chain, which has high efficiency and broad spectrum fungicidal activities against
21	many crop diseases. The impact of new pesticide on the environment must be
22	assessed before used in agricultural applications. In this study, the extractable residues,
23	bound residues and mineralization, as well as the dissipation rates of pyraoxystrobin
24	were investigated in three flooded soils using ¹⁴ C tracing technique in order to
25	understand its potential risks to environment.
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	

40	Abstract
	110Stlatt

41	Pyraoxystrobin, ((E)-2-(2-((3-(4-chlorophenyl)-1-methyl-1H-pyrazole-5-yloxy)
42	methyl)) phenyl)-3-methoxyacrylate) is a novel strobilurin fungicide with excellent
43	and broad spectrum antifungal efficiency. Environmental behaviors of the new
44	fungicide must be assessed to understand its potential risks to environment. In this
45	study, the extractable residues, bound residues and mineralization, as well as the
46	dissipation rates of pyraoxystrobin were investigated in three flooded soils using 14 C
47	tracing technique. Results showed that pyraoxystrobin didn't undergo appreciable
48	dissipation during the 100-d incubation in some tested soils, with the amount of
49	70.01%, 28.58% and 83.85% parent compound remaining in the solonchak, cambisol
50	and acrisol soil at the end of the experiment, respectively. Almost no
51	14 C-pyraoxystrobin was mineralized to 14 CO ₂ (< 0.5%) over the experimental period.
52	Organic matter had a dominating influence on the bound residues formation and the
53	fractions of bound residues increased as the soil organic matter content increased.
54	Less than 9% of the radioactivity was found in the aqueous phase, while the majority
55	of extractable residues (> 65.39%) were recovered in the organic extracts. This study
56	aims to give a deep insight into the environmental behavior of pyraoxystrobin and
57	may be beneficial to the risk assessment for other analogous fungicides.
58	Keywords: pyraoxystrobin, flooded soil, dissipation, persistence.
59	
60	

Page 4 of 25

62 **Introduction**

63	Strobilurin fungicides are an important class of agricultural chemicals derived from a
64	group of natural fungicidal derivatives of β -methoxyacrylic acid, which have been
65	commonly used against diseases in many important economical crop diseases. ¹ In
66	addition, pyrazole derivatives are widely used as fungicides, insecticides, and
67	herbicides. ² Recently, a series of new strobilurin derivatives with a substituted
68	pyrazole in the side chain are synthesized and found to exhibit excellent fungicidal
69	activities as well as insecticidal and acaricidal activities. ³⁻⁵ Despite soil represent a
70	primary sink for environmental contaminants and a major source of nutrients for
71	plants in terrestrial environment, information concerning fate of strobilurins in soils is
72	limited.
73	Pyraoxystrobin (Code number: SYP-3343,
74	(E)-2-(2-((3-(4-chlorophenyl)-1-methyl-1H-pyrazole-5-yloxy) methyl))
75	phenyl)-3-methoxyacrylate) is a novel strobilurin fungicide containing a substituted
76	pyrazole, which was developed by the Shenyang Research Institute of Chemical
77	Industry, Shenyang, China. It shows high efficiency and broad spectrum fungicidal
78	activities against Pseudoperonospora cubensis, Blumeria graminis, Erysiphe
79	cichoracearum, Plasmopara viticola, and Phyricularia grisea. ⁶ And the effect against
80	Plasmopara viticola, and Phyricularia grisea was even better than azoxystrobin, a
81	commercially available strobilurin fungicide. ^{7, 8} It has obtained authorized patents
82	both in China and in other countries ⁹ and has obtained temporary registration in
83	China in 2009. In pesticide risk assessment, bound residues (BR) formation and

84	mineralization are usually considered in current regulatory procedures. ¹⁰ Furthermore,
85	nonextractable residues for new pesticides are required in Europe. According to the
86	EU directive no authorization shall be granted if the form BR in amounts exceeding
87	70% of the initial dose after 100 days with a mineralization rate of less than 5 % in
88	100 days. ¹¹ However, little is known of the fate processes such as formation of BR
89	and mineralization for pyraoxystrobin. Pyraoxystrobin will potential used for control
90	of rice diseases and may be subjected to flooded conditions following heavy rainfall
91	on poorly drained surface soils. Unfortunately, concern is the absence of literature on
92	fate of pyraoxystrobin in flooded soil.
93	In this study, ¹⁴ C-pyraoxystrobin was used as a tracer to investigate the kinetics of
94	extractable residues (ER), formation of bound residues (BR) and mineralization of
95	pyraoxystrobin in flooded soils.
96	
97	Materials and Methods
98	Chemicals. ¹⁴ C labeled pyraoxystrobin (Table 1; radiochemical and chemical
99	purity are both over 98% and the specific activity is 5.042 ± 0.076 mCi/mmol) was
100	synthesized according to the method of Liu et al. ⁶ Two kinds of scintillation cocktail
101	were used in this study. Scintillation cocktail I was prepared by dissolving 0.5 g of
102	1,4-bis-(5-phenyloxazol-2-yl)-benzene (POPOP, Arcos Organics, Geel, Belgium) and
103	5.0 g of 2,5-diphenyloxazole (PPO, Arcos Organics, Geel, Belgium) in 350 mL of
104	2-methoxyethanol and 650 mL of dimethylbenzene. Scintillation cocktail II was
105	prepared by dissolving 0.5 g POPOP and 5.0 g PPO in a mixture of 600 mL

dimethylbenzene, 225 mL 2-ethoxyethanol and 175 mL ethanolamine. Scintillation
cocktail II was used for trapping and measuring ¹⁴ CO ₂ and scintillation cocktail I was
used for measuring the radioactivity of the extracts. Dimethylbenzene,
2-methoxyethanol, ethanolamine, calcium chloride, acetonitrile, methanol,
dichloromethane were all of analytical grade or chromatographic grade.
Soils . Three different representative agricultural soils, including a solonchak soil

(soil A), a cambisol soil (soil B) and an acrisol soil (soil C), were used in this

experiment. The soil samples were taken from the surface layer (0-15 cm) of

agricultural fields in Zhejiang Province, which located in Eastern China and has a

subtropical summer rain climate. All soils were not previously exposed to

116 pyraoxystrobin. The bulk soil samples were air dried, mixed and passed through a

117 2-mm sieve before use. Selected physicochemical properties of the soils are given in

118 Table 2.

120

121

106

107

108

109

110

111

119 Soil incubation experiments and measurement of released ${}^{14}CO_2$. The

incubation experiments were performed similar to OECD Guideline 307.¹² The setup

employed in this study is shown in Figure S1 of the Supplementary Information. The

tested soils were pre-incubated in a dark cultivation cabinet at 25 ± 1 °C for 30 days

123 after adjusting the soil moisture content at pF 5.5 to allow the microorganisms to

acclimatize. Then an appropriate volume of prepared pyraoxystrobin methanol

solution (8.2 $\times 10^5$ Bq) was dripped into each soil (400 g, dry weight). The

126 homogenized soil samples were left in a fume hood to completely remove methanol.

127 After re-adjusting the soil moisture content at pF 3.8, a 10 g (dry weight) aliquot of

5
Ŋ
J
2
D
5
1)
5
1
5
J
X
3
3
ð
ろのの
ろのり
るののの
00000
ろうりつう
000000
0 000000
0 0000000
OCENNEN O
OCCONCIN O
LOCESSES &
LIOCESSES &
LIOCESSES Q
LOCESSES &
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
te: Processes &
Ce: Processes &
ICE: L'OCESSES &
TICE: TLOCENER O
ence: Processes &
IELICE: PLOCESSES Q
STELICE: PLOCESSES &
CIENCE: Processes &
OCIEIICE: PLOCESSES &
OCIETICE: PLOCESSES Q
I OCIETICE: PLOCESSES Q
AI OCIENCE: PLOCESSES Q
al ocience. Processes o
Ital ocience. Processes o
TIAL OCIETICE. Processes o
sillal ocience: Processes o
ental ocience: Processes o
Tental ocience: Processes o
mental ocience: Processes o
ITTERIAL OCIERICE: Processes o
Internal ocience. Processes o
Unmental ocience. Processes o
OTIMETIAI OCIETICE: Processes &
rommental ocience: Processes o
ILOUTHERIAL OCIENCE: PLOCESSES &

128	each treated soil was transferred into a 40-mL glass vial and water-logged (about 2 cm
129	water layer). The uncovered vials were placed in a vacuum desiccator and incubated
130	at 25 \pm 1 °C in the dark in a cultivation cabinet. Three replicates were used for each
131	soil. The flow-through soil test system was flushed with a slow and continuous
132	nitrogen stream (99.99% pure) for 30 min, at 0, 1, 5, 10, 20, 30, 45, 60, 75, and 100 d
133	after pyraoxystrobin application. The traps containing 30 mL solutions connected with
134	each incubation flask in the upstream section were used for scrubbing the trace
135	amounts of CO_2 from the inlet gas (with 0.5 M NaOH, two traps) and for
136	compensating the water loss (with water). And in the downstream section, ethylene
137	glycol and H_2SO_4 (50%) were used to trap organic volatile compounds and alkaline
138	volatile chemicals respectively, followed by two traps containing 30mL of 0.2 M
139	NaOH to absorb $^{14}CO_2$ from the mineralization of the labeled pyraoxystrobin. The
140	trap solutions were exchanged at each sampling date and radioactivity in the 0.2 M
141	NaOH traps, ethylene glycol and H_2SO_4 were measured on an ultra-low level liquid
142	scintillation counter (Quatalus-1220, Perkin Elmer, Turku, Finland) after mixing with
143	15 mL liquid scintillation cocktail I and removing chemiluminescence in dark for 24
144	hours.

Analysis of ¹⁴C-extractable residues. At 0, 1, 5, 10, 20, 30, 45, 60, 75, and 100 d
after treatment, three replicates from each soil were sampled. The soil-water slurry
from each sample was transferred into a 100-mL polypropylene centrifuge tube and
centrifuged at 4000 rpm for 10 min using an Eppendorf 5840R centrifuge (Eppendorf,
Hamburg, Germany), after which the supernatant was decanted and ¹⁴C activity in the

water phase was determined on a liquid scintillation counter (LSC, Wallac
WinSpectral-1414, PerkinElmer). The soil phase was consecutively extracted by
sequential extraction solvents (50 mL) with 0.01 M CaCl ₂ solution, acetonitrile/water
(9:1, v/v), methanol and dichloromethane. Each extracts constituted of shaking for 24
h, followed by centrifugation at 4000 rpm for 10 min. The dichloromethane phase was
left in a fume hood until completely volatilized and re-dissolved in 25 mL methanol.
A 1.0 mL aliquot of the extract from each step was removed and mixed with 10 mL
scintillation cocktail I to measure ¹⁴ C-radioactivity on LSC. The ER was defined as
the sum of radioactivity from all extracts and the water phase.
HPLC (High Performance Liquid Chromatography)-LSC analysis. To prepare
samples for identification and quantification of parent pyraoxystrobin, the surface
water and the 0.01 M CaCl ₂ extract were mixed, passed through a 0.45- μ m filter
(Millipore, Ireland) and extracted with an equivalent volume of dichloromethane until
no further radioactivity was detected in the aqueous phase. The dichloromethane
phase was then combined with other organic extracts. The combined extracts were
further concentrated to near dryness on a vacuumed rotary evaporator (Eyela SB-1000;
Eyela, Tokyo, Japan) at 37°C and then recovered in about 10 mL methanol and then
condensed to 1.0 mL under a gentle stream of nitrogen at 45 $^{\circ}$ C for further analysis.
The final extracts were centrifuged at 14,000 rpm for 10 min. The supernatant was
passed through a 0.22- μ m filter and transferred to another clean centrifuge tube (1
mL). A 20-µl aliquot was injected into Waters 2695 multisolvent delivery unit coupled
with a Waters Faction Collector III (Waters, Milford, MA, USA). The details of the

172	HPLC analysis were stated in Text S1 and Table S1of Supplementary Information. A
173	pyraoxystrobin standard sample was also injected for confirmation of the retention
174	time of the parent pyraoxystrobin. The post-column eluents were collected at 1.0 min
175	intervals into glass scintillation vials. The collected fractions were measured for
176	radioactivity on LSC after addition of 10mL scintillation cocktail I. The measured
177	¹⁴ C-activity was used for the quantification of parent compound.
178	Analysis of ¹⁴ C-bound residues. After the sequential extraction for extractable
179	residues, the soils were left in a fume hood to allow the volatilization of the residual
180	organic solvents. Aliquots of 1.0 g homogenized air-dried soils were combusted on a
181	biological oxidizer (OX-600, R.J. Harvey Instrument, Hillsdale, NJ) at a combustion
182	temperature of 850°C and a catalysis temperature of 650°C for 4 min. The evolved
183	14 CO ₂ was trapped in 15 mL scintillation cocktail II and then measured for 14 C
184	radioactivity by LSC. The recovery was determined to be 95.0 \pm 2.6% (n=3) by
185	combusting the known radioactivity of ¹⁴ C-pyraoxystrobin.
186	Statistical analysis. All measurements were in three replicates and the arithmetic
187	means and standard errors of means (mean \pm SEM) were calculated from the repeated
188	measurements. SAS statistical software (SAS Institute, Cary, NC) was used for
189	analysis of the significant difference between treatments tested and a one-way
190	analysis of variance (ANOVA) was applied. The dissipation of pyraoxystrobin was
191	fitted to the first-order equation:
192	$y = a \cdot e^{-kx}$

where a represents the percent of parent molecule pyraoxystrobin at 0 d, y represents

194	the percent of parent molecule pyraoxystrobin at time x , x is the time in days, and k is
195	dissipation rate constant.

197 **Results and Discussion**

198 Mineralization of pyraoxystrobin.

Throughout the incubation period, good mass balance was consistently obtained by 199 the sum of the radioactivity of recovered 14 CO₂, BR and ER (95.6 ±0.9% to 104.8 ± 200 0.7%, Figure 1). During the whole incubation period, no radioactivity was detected in 201 202 the ethylene glycol and H₂SO₄ solution, indicating that little pyraoxystrobin or its metabolites were volatilized or no alkaline volatile molecules was formed. The 203 mineralization, defined as the fraction of recovered ¹⁴CO₂ in initially applied amount, 204 205 gradually increased with incubation time in all tested soils. However, the cumulative 14 CO₂ did not exceed 0.5% of the spiked radioactivity in all tested soils throughout the 206 incubation under flooded conditions (Figure 2), indicating the mineralization of the 207 208 pyraoxystrobin pyrazole ring was negligible and pyraoxystrobin might be persistent in soil or exist in the form of metabolites. The low amount of mineralization could be 209 also due to the bound residues formation of pyraoxystrobin or its metabolites. 210 Furthermore, the mode of action of strobilurins is that these compounds inhibit the 211 mitochondrial respiration of fungi.¹³ Pyraoxystrobin, as a novel fungicide with high 212 efficiency and broad spectrum fungicidal activities, was likely able to block 213 respiration of certain microorganisms and thus the mineralization of pyraoxystrobin is 214 limited. 215

217 **Bound residues formation.**

218	Bound residues (BR) are measured by the total radioactivity obtained by the
219	combustion of the extracted soil samples. In the present study, the formation of BR in
220	all three soils was slow at the beginning of incubation and increased with the
221	incubation time after 5 days of the incubation (Figure 3). For example, the fractions of
222	BR were 1.76 $\pm 0.13\%,$ 1.55 $\pm 0.05\%$ and 1.07 $\pm 0.04\%$ of the initial applied ^{14}C
223	activity at 5 d in soil A, B and C, respectively. No significant increase was found in
224	the first 5 days of the incubation period ($p > 0.05$). After 5 d, BR was gradually
225	formed with time and reached 14.3 $\pm 0.6\%,$ 31.5 $\pm 0.3\%,$ and 3.0 $\pm 0.1\%$ of the
226	initially spiked activity at the end of incubation in soil A, B, and C, respectively. The
227	organic matter content in soil is considered to be one of the most important factors for
228	the BR formation because it contains reactive functional groups and internal nanopore
229	structures. ^{14, 15} The formation of BR in soil B, which contains a higher content of soil
230	organic matter (3.23%), is much higher than that in soil A (2.41%) and soil C (2.06%)
231	(p < 0.05). It suggested that organic matter had a dominating influence on the BR
232	formation of pyraoxystrobin or its metabolites. In addition, the BR formation is also
233	influenced by soil pH. For example, the fraction of BR was the highest in neutral soil
234	(soil B, pH 6.95), followed by alkaline soil (soil A, pH 8.20) and acid soil (soil C, pH
235	5.36). However, the order varied for different pesticides such as metsulfuron-methyl,
236	¹⁶ bromoxynil, ¹⁷ and ZJ0273, ¹⁸ which suggests the chemical structure is also an
237	important factor on the environmental fate of a pesticide.

238	The formation of BR may cause a loss of fungicide activity and bioavailability and
239	may be considered as a detoxification process. ¹⁹ However, a partial release of BR may
240	induce relevant ecotoxicological effect and environmental pollution. ²⁰ At the end of
241	the 100-d incubation, BR in all soils was much lower than 70%, which meet the
242	non-accumulative criteria in the directive by the European Commission. ¹¹

244 Kinetics of extractable residues.

245	Extractable residues (ER) are considered to be more available for organisms and
246	susceptible to degradation. ²¹ The fractions of ER of pyraoxystrobin in all tested soils
247	are shown in Figure S2. The ER kept constant in soil C with no significant decrease
248	over the experimental period ($p > 0.05$), while there were prominently decrease in
249	both soil A and soil B ($p < 0.05$). For instance, the radioactive amount of ER of
250	$^{14}\text{C}\text{-pyraoxystrobin}$ were determined to be 98.4 $\pm 2.0\%$ and 100.0 $\pm 0.8\%$ on day 5 in
251	soil A and soil B, respectively, while ER were found to be 82.0 $\pm 2.1\%$ in soil A and
252	71.2 \pm 0.8% in soil B on day 100. Radioactivity recovered in the water phase was 1.99
253	$\pm 0.22\%, 1.01\pm 0.07\%$ and 1.18 $\pm 0.18\%$ of the introduced ^{14}C activity in soil A, B
254	and C at 1 d after incubation (Figure 4). The fraction of 14 C activity in water phase in
255	soil B increased slightly with time, from 0.93% on day 5 up to 2.78% on day 100
256	(Figure 4b), while the fractions decreased over time in soil A (Figure 4a) and soil C
257	(Figure 4c). The increase in soil B may due to the formation of more hydrophilic
258	metabolites or the solubility enhancement ²² of pyraoxystrobin by dissolved organic
259	matter. The decrease in radioactivity of the aqueous extracts in soil A and soil C was

260	likely due to the conversion of the 14 C activity into BR. The decrease could be also
261	due to the movement of radioactivity into the other organic fractions in this extraction
262	procedure. The ${}^{14}C$ activity recovered in CaCl ₂ was defined as the readily available
263	soil fraction by Mordaunt et al. 23 At the end of the incubation, only 3.46 $\pm 0.20\%$,
264	$3.02 \pm 0.20\%$ and 2.89 $\pm 0.20\%$ of the introduced activity in $CaCl_2$ was detected in
265	soil A, B and C, respectively, indicating that pyraoxystrobin residues are poorly
266	water-soluble and not readily available. Pesticides in solution are more available to
267	microorganisms in soils. $^{14, 24}$ The low fractions (< 8.17% in soil A, < 5.80% in soil B,
268	and < 5.55% in soil C, Figure 4) of pyraoxystrobin residues in aqueous phase (water
269	and CaCl ₂), can partly predict a low bioavailability of pyraoxystrobin in flooded soil.
270	The majority of ER was presented in the organic extractable fraction
271	(acetonitrile/water, methanol and dichloromethane), especially in acetonitrile/water
272	(9/1) (Figure 4). The high lipophilic property of pyraoxystrobin (Table 1) could
273	account in part for the high extraction of the ¹⁴ C activity in the organic fraction. The
274	radioactivity detected in the organic phase in soil C remained in the range of 92.78%
275	to 96.37% of the applied activity over time, while it decreased from approximately
276	90% to 77.30% in soil A and approximately 97% to 65.39% in soil B over the
277	incubation period. Because trace or no detectable radioactivity was detected in
278	mineralization and volatile pyraoxystrobin, the decline radioactivity of ER may be
279	caused by the conversion of pyraoxystrobin and its metabolites to BR.
280	

281 **Dissipation of pyraoxystrobin.**

282	The combination of volatilization, mineralization and BR, as well as degradation
283	contributed to pyraoxystrobin dissipation in soil. The parent compound content was
284	calculated by the radioactivity measured on the LSC in the fraction of pyraoxystrobin
285	collected by HPLC. As shown in Figure 5, the parent compound in soil A, B and C
286	remained at 70.01 $\pm4.65\%$, 28.58 $\pm5.94\%$ and 83.85 $\pm4.99\%$ of the introduced $^{14}\mathrm{C}$
287	activity at the end of the experimental period respectively. Dissipation of
288	pyraoxystrobin was well fitted to the first-order decay model in the three soils.
289	Pyraoxystrobin underwent limited dissipation in soil A and C during the experimental
290	period under flooded conditions, with the estimated half-lives $(t_{1/2})$ exceeding the
291	incubation of 100 days. The fungicide dissipation in soil B was more rapid compared
292	to soil A and C, with a $t_{1/2}$ value of 56 days. The different dissipation rates in the three
293	soils may be attributed to their physicochemical properties. Soil organic matter can
294	directly result in the dissipation of pyraoxystrobin due to their dominating role on the
295	process of BR. Furthermore, pyraoxystrobin degraded faster in the soils with more
296	organic matter content than in the soils containing lower organic matter content
297	(Figure S3). Consequently, the dissipation rate in soil B (organic matter 3.23%) was
298	the fastest, followed by the soil A (2.41%) and soil C (2.06%) . All the dissipation
299	processes of pyraoxystrobin, such as mineralization ($< 0.17\%$), degradation (Figure
300	S3) and BR ($< 3.13\%$), were negligible in soil C. It may result from that the activities
301	of some specific microbial species or at least one or more enzymes may be inhibited
302	in this acidic soil which contains the lowest organic matter content.
303	Previous studies reported that the t_{10} values of azoxystrobin, a strobilurin

305

Environmental Science: Processes & Impacts			
	d		
	5		
fungicide, in soils were between 56 and 279 days, depending on the properties of the	n		
soils and different soil conditions. ^{25, 26} Pyraoxystrobin was stable in this study, with	an		
the estimated $t_{1/2}$ values at 214, 56 and 670 days in soil A, B, and C respectively under	Σ		
the flooded conditions. The long persistence of the parent compounds may have a	ted		
potential toxic effect on soil microbes or a risk for accumulation into plant ²⁷ . The	ep		
evaluation of the ecotoxicological relevancy of the residual parent compounds may	CC		
need further investigation.	A ()		
	ICts		
Conclusion	d		
This study provides the first evidence for the environmental behaviors of the novel			
strobilurin fungicide, pyraoxystrobin, in flooded soils. Pyraoxystrobin was relatively	٥٥ ٥		
stable in flooded soils and the mineralization rate was less than 0.5 % in 100 days.	Se		
The fraction of BR of pyraoxystrobin was less than 70% of the initially applied	G		
amount, which was the maximum residual level after 100-d incubation proposed by	Ő		
the European Commission. The majority of extractable residues were recovered in the	đ		
organic extracts and less than 9% of the radioactivity was found in the aqueous phase.	C e		
The high persistence of pyraoxystrobin can give us some implications that the fate of	en		
some strobilurins in flooded soils may also merit further investigation.	C		
	a		
Acknowledgments	3nt		
The present research was partially supported by the Fundamental Research Funds for	me		
the Central Universities (2013FZA6011), Special Fund for Agro-Scientific Research	OD		
15	VIL		

306 the estimated $t_{1/2}$ values at 214, 56 and 670 days in the flooded conditions. The long persistence of the 307 potential toxic effect on soil microbes or a risk for 308 evaluation of the ecotoxicological relevancy of the 309 need further investigation. 310 311 312 Conclusion This study provides the first evidence for the envir 313 strobilurin fungicide, pyraoxystrobin, in flooded s 314 315 stable in flooded soils and the mineralization rate The fraction of BR of pyraoxystrobin was less tha 316 amount, which was the maximum residual level at 317 318 the European Commission. The majority of extrac organic extracts and less than 9% of the radioactiv 319 320 The high persistence of pyraoxystrobin can give u some strobilurins in flooded soils may also merit 321 322 Acknowledgments 323

324 The present research was partially supported by th the Central Universities (2013FZA6011), Special Fund for Agro-Scientific Research 325

Environmental Science: Processes & Impacts Accepted Manuscri

326	in the Public Interest (201103007) and Innovation Team of Nuclear Agriculture
327	Industry of Zhejiang Department of Science and Technology (2010R50033).
328	
329	Supplementary Information
330	Additional details on description of methods and results is available free of charge via
331	the internet at http://www.rsc.org.
332	
333	
334	
335	
336	
337	
338	
339	
340	
341	
342	
343	
344	
345	
346	
347	
348	
349	
350	
	16

254	Deferrer							
351	References:							
352								
353	1. D. w. Bartiett, J. M. Clough, J. K. Godwin, A. A. Hall, M. Hamer and B. Parr-Dobrzanski, <i>Pest</i>							
354	Manag Sci, 2002, 38 , 649-662.							
355	2. H. S. Chen, Z. M. Li and Y. F. Han, <i>J Agr Food Chem</i> , 2000, 48 , 5312-5315.							
356	3. M. Li, C. L. Liu, L. Li, H. Yang, Z. N. Li, H. Zhang and Z. M. Li, <i>Pest Manag Sci</i> , 2010, 66 ,							
357								
358	4. Y. Li, H. Q. Zhang, J. Liu, X. P. Yang and Z. J. Liu, <i>J Agr Food Chem</i> , 2006, 54 , 3636-3640.							
359	5. L. Miao, C. L. Liu, J. C. Yang, J. B. Zhang, Z. N. Li, Z. Hong and Z. M. Li, <i>J Agr Food Chem</i> ,							
360	2010, 58 , 2664-2667.							
361	6. X. Y. Liu, Q. F. Ye, D. L. Kan, Z. Zhang and X. C. Ding, J. Labelled Compd. Radiopharm., 2011,							
362	54 , 780-782.							
363	7. G. S. Qiao, W. Q. Wang, X. Y. Han, X. F. Zhang, Z. Q. Ma and C. L. Liu, <i>Chinese Journal of</i>							
364	<i>Pesticide Science</i> , 2009, 11 , 312-316.							
365	8. Z. J. Fan, H. K. Zhang, L. Ma, X. F. Liu, J. Y. Chen and C. L. Liu, <i>Journal of Sichuan Normal</i>							
366	University (Natural Science), 2008, 31 , 358-360.							
367	9. CN. Pat., 1 657 524, 2004. WO. Pat., 2 005 080 344, 2005.							
368	10. J. Y. Li, J. B. Zhang, C. Li, W. Wang, Z. Yang, H. Y. Wang, J. Gan, Q. F. Ye, X. Y. Xu and Z. Li,							
369	Environ Sci Technol, 2013, 47 , 12768-12774.							
370	11. Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October							
371	2009 concerning the placing of plant protection products on the market and repealing Council							
372	Directives 79/117/EEC and 91/414/EEC. OJL 309/1, 24.11.2009, p. 1-50.							
373	12. Aerobic and Anaerobic Transformation in Soil, Nr. 307, OECD Guidelines for the Testing of							
374	Chemicals; Organization for Economic Co-operation and Development (OECD): Paris, 2002.							
375	13. H. Sauter, W. Steglich and T. Anke, <i>Angew Chem Int Edit</i> , 1999, 38 , 1329-1349.							
376	14. B. Gevao, K. T. Semple and K. C. Jones, <i>Environ Pollut</i> , 2000, 108 , 3-14.							
377	15. J. J. Pignatello, Adv Colloid Interfac, 1998, 76 , 445-467.							
378	16. N. Pons and E. Barriuso, <i>Pestic. Sci.</i> , 1998, 53 , 311-323.							
379	17. G. Y. Sheng, Y. N. Yang, M. S. Huang and K. Yang, <i>Environ Pollut</i> , 2005, 134 , 457-463.							
380	18. W. Wang, Q. F. Ye, W. Ding, A. L. Han, H. Y. Wang, L. Lu and J. Gan, J Agr Food Chem, 2010,							
381	58 , 3062-3067.							
382	19. D. F. Berry and S. A. Boyd, <i>Environ Sci Technol</i> , 1985, 19 , 1132-1133.							
383	20. A. L. Han, L. Yue, Z. Li, H. Y. Wang, Y. Wang, Q. F. Ye, L. Lu and J. Gan, Chemosphere, 2009,							
384	77, 955-961.							
385	21. M. Alexander, <i>Environ Sci Technol</i> , 2000, 34 , 4259-4265.							
386	22. C. T. Chiou, R. L. Malcolm, T. I. Brinton and D. E. Kile, <i>Environ Sci Technol</i> , 1986, 20 , 502-508.							
387	23. C. J. Mordaunt, B. Gevao, K. C. Jones and K. T. Semple, <i>Environ Pollut</i> , 2005, 133, 25-34.							
388	24. K. M. Scow and C. R. Johnson, in Advances in Agronomy, ed. L. S. Donald, Academic Press,							
389	1996, vol. Volume 58, pp. 1-56.							
390	25. R. K. Ghosh and N. Singh, J Agr Food Chem, 2009, 57, 632-636.							
391	26. E. T. Rodrigues, I. Lopes and M. A. Pardal, Environ Int, 2013, 53, 18-28.							
392	27. X. Chen, T. L. Yang, X. Y. Liu, C. Xu and X. C. Ding, Journal of Nuclear Sciences, 2013, 27,							
393	861-866.							

Environmental Science: Processes & Impacts Accepted Manus

Figure 1. Dynamic characterization of ${}^{14}CO_2$, extractable residues (ER) recovered in the aqueous phase, extractable residues (ER) recovered in the organic phase, and bound residues (BR) in (A) soil A, (B) soil B, and (C) soil C under flooded conditions during the 100-d incubation.

Figure 2. Cumulative mineralization rates of ¹⁴C-pyraoxystrobin under flooded

incubations.

Figure 3. Formation of bound residue in flooded soils treated with

¹⁴C-pyraoxystrobin.

Figure 4. ¹⁴C-ER distribution characterization for the three soils: (a) Soil A; (b) Soil B; (c) Soil C.

Figure 5. Dissipation of parent molecule pyraoxystrobin in flooded soils over the

incubation period.

Page 22 of 25

Fable 1. Physicochemical	properties of	f pyraoxystrobin
--------------------------	---------------	------------------

Common name	Pyraoxystrobin		
Chemical structure			
Chemical formula	$C_{22}H_{21}ClN_2O_4$		
Solubility	Insoluble in water		
$K_{\rm ow}^{\ a}$ pH=5	Lg <i>K</i> _{ow} =4.37		
pH=9	Lg <i>K</i> _{ow} =5.36		
Melting point ($^{\circ}$ C)	124-126		

^{*} The ¹⁴C labeling position

^a Octanol/water partition coefficient

	1 2		1 1			2	
No	Soil type	рН	OM ^a	CEC ^b	clay	silt	sand
110		(water)	(%)	(cmol kg ⁻¹)	(%)	(%)	(%)
А	Solonchak	8.20	2.41	11.77	44.26	23.10	32.64
В	Cambisol	6.95	3.23	10.65	42.70	20.98	36.32
С	Acrisol	5.36	2.06	8.93	41.25	18.62	40.13

Table 2. Basic physical and chemical properties of the soils used in the study

^a organic matter. ^b cation exchange capacity

Graphical and Textual Abstract

The mineralization and degradation of pyraoxystrobin was negligible and a large

proportion of pyraoxystrobin can persist in flooded soil.