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After wide spread coral bleaching in the Torres Strait in 2009-10 a monitoring program was established 

under the National Environmental Research Program and run by the Torres Strait Regional Authority to 

identify ocean conditions that may lead to future bleaching. One component of this program was a real 

time ocean monitoring station located between Thursday and Horn Islands in the south-western part of the 

Torres Strait. A key outcome of the project was to make the scientific data and knowledge available to the 10 

local communities in a form that they could engage with and with which they could act to instigate 

outcomes relevant to their needs. The project developed climatologies to give context to the temperature 

data allowing for historical limits to define the significance of the real time data as related to the longer 

term mean. This allowed the identification of ‘normal’, ‘significant’ and ‘extreme’ temperature events 

which could be linked into appropriate responses. Bayesian models were used to encapsulate the current 15 

scientific knowledge about the drivers and responses involved in coral bleaching. These models were 

used to convert the environmental parameters to an output index reflecting the current and future 

likelihood of coral bleaching occurring. Two web sites were used to integrate the real time data, 

climatology data and the bleaching indices generated from the Bayesian models. The first was a more 

technical site developed for the local environmental managers within the Torres Strait Regional 20 

Authority, the second was targeted at the general public with a display located within the local radio 

station and broadcast on a daily basis. Engagement with the project has been high to the point where 

additional monitoring stations and data display kiosks are to be installed in the near future. The 

combination of climatologies to give context and conceptual models to embody system knowledge has 

allowed the project to go from delivering simple measurements to being able to deliver knowledge about 25 

the system in a format that engages the local community and that can be used to facilitate environmental 

management outcomes. 

Introduction 

Coral bleaching is a recognised threat to coral reefs worldwide 

with wide-scale bleaching and subsequent mortality observed in 30 

19981 and on the Great Barrier Reef of Australia in 1998 and 

20022. Increased coral bleaching is also identified as a potential 

outcome of future climate scenarios3. Widespread coral bleaching 

was observed in the Torres Strait, located between mainland 

Australia and Papua New Guinea, for the first time in the 35 

southern 2009-10 summer. Anecdotal and traditional ecological 

knowledge suggests that coral bleaching has not occurred in this 

region in over 30 years or more. Until this event, it was assumed 

that areas near the tropics were more temperature tolerant due to 

the ocean thermostat phenomenon4. The instrumental record of 40 

the past 130+ years for tropical Australia which shows highest 

rate of warming in southern latitudes and lowest rates in the 

northern latitudes5, also suggests that these northern areas are 

likely to have a relatively low risk of coral bleaching. However, 

the 2009-10 summer in the Torres Strait and reports of bleaching 45 

events elsewhere in low latitude coral reef systems6-9 challenges 

the notion of low bleaching risk in equatorial regions. 

An ocean monitoring project for the Torres Strait was established 

in 2012 under the Australian Government’s National 

Environmental Research Program (NERP) in collaboration with 50 

the Torres Strait Regional Authority (TSRA), which has 

governmental authority for the region. The monitoring program 

includes temperature loggers on reefs around the Torres Strait 

and a real-time ocean monitoring station off Thursday Island in 

the southern part of the Strait. 55 

The final component is monthly satellite temperature and 

chlorophyll-a anomaly products for the Torres Strait using 

MODIS Sea Surface Temperature10 and chlorophyll-a/photic 

depth11 data linked into climate forecast models12, 13 (POAMA-2). 

The temperature logger component compliments a legacy 60 

program that included loggers at Thursday Island in Torres Strait 

from 19985. 

A key output from the project was the development of bleaching 

risk indices, both as current risk and the future or forecast risk. 
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This was done in two ways. The first was a regional view based 

on the monthly satellite anomaly products14, the second was 

based on the real time in-situ data. This paper focuses on the 

development of a bleaching risk warning system and associated 

products using the real time in-situ data. 5 

The people of the Torres Strait have a strong cultural link to the 

sea and so engagement with the local communities was a critical 

part of the project. Engagement was facilitated by involving local 

rangers in the work (such as deploying and exchanging loggers, 

and participation in benthic surveys) and by delivering the 10 

scientific outcomes in a way that could be understood by the local 

community. This paper describes the use of climatologies and 

Bayesian models, along with web sites and social media, to 

deliver relevant information to local communities in a way that 

engages them and facilitates direct community level outcomes. 15 

Materials and Methods 

Real Time Data 

A real time observing system was installed on a channel marker 

at Madge Reef, between Thursday and Horn Islands, at Latitude 

10° 35.695’ South, Longitude 142° 13.222’ East. The station 20 

consisted of an above water meteorological station (Vaisala™ 

WXT520 – air temperature, pressure, humidity, rainfall and wind 

speed / direction) complimented by a LI-COR™ LI-192 light 

meter measuring Photosynthetically Active Radiation (PAR). 

The in-water instruments consisted of a Seabird Electronics™ 25 

SBE37 CTD sensor (Conductivity, Temperature and Depth via 

pressure) which gives salinity, water depth and water temperature 

along with a Seabird Electronics™ SBE39 temperature sensor. 

The CTD was located on the bottom in around five metres of 

water at the base of the reef with the SBE39 temperature sensor 30 

located on the reef crest at three metres depth. 

The above water systems included a solar powered data logger 

and modem allowing the real time data to be recorded and 

transmitted every ten minutes. Quality control was performed 

using simple range and rate-of-change checks with the data then 35 

being inserted into a database. From there data were made 

available as near real time data via a web based data system15. 

Metrological data from a nearby land-based station on Horn 

Island (eight kilometres away), run by the Australian Bureau of 

Meteorology (BoM), was captured from their web site16 along 40 

with forecast wind speeds for the following morning and 

afternoon17. 

Climatologies 

Using data from existing temperature logger programs18 it was 

possible to get thirteen years of water temperature data from 45 

Thursday Island, ~1km from the Madge Reef real-time station. 

The raw data consisted of a combination of thirty and ten-minute 

temperature records; these were filtered to remove bad data via 

range and rate-of-change checks. The data were then averaged by 

ordinal day of the year (1-366); that is all data for the 1st of 50 

January were averaged to produce an average temperature and 

associated standard deviation for that day. 

The resulting climatology (Fig. 1) is the mean ordinal day 

temperature, the recorded minimum and maximum temperatures 

from the logger data and the standard deviation of the 55 

temperature representing the variability for each day (Fig. 2). 

The ordinal day values were then modelled using a simple 

polynomial to produce a smoother climate curve. 

The climatology shows a tropical monsoonal pattern with stable 

summer monsoonal dominated temperatures until April when the 60 

monsoon system weakens and temperatures fall to a low in mid-

winter (early August) before rising back to summer temperatures 

in early December. Winter temperatures tend to be more stable 

with low variability while the periods before and after the 

monsoon have the highest variability (Fig 2). 65 

 
Fig. 1 Climatology for Thursday Island showing the mean temperatures 

(black line), the observed daily maximum (dark grey) and minimum (light 

grey) temperatures along with fitted climatology model (grey dashed line) 

(R2 = 0.9877, n=366). 70 

 
Fig. 2 Climatology for Thursday Island showing the standard deviation of 

the daily averaged water temperatures along with fitted model (dashed 

line) (R2 = 0.680, n=366). 

The modelled ordinal day average temperatures along with the 75 

modelled variability form the final climatology. Temperatures 

within plus or minus two standard deviations of the climatology 

were be considered to be ‘normal’ as they accounted for 95% of 

the data variability. Daily average temperatures between the two 

and three standard deviation limits were considered to be 80 

‘significant’. Temperatures outside the three standard deviation 

limits were considered to be ‘extreme’ temperature events and 

would instigate appropriate management actions. These 

management actions were not defined a-priori for the Torres 

Strait, but are likely to be modelled on the Great Barrier Reef 85 

experience where communication, mapping, monitoring, 

coordination and resource allocation are key action items19-21. 
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Bleaching Thresholds 

As part of this project a bleaching threshold was developed for 

the Thursday Island region using observed and experimental data 

(Fig. 3). The threshold works as ‘dose curve’ with temperature 

and duration of exposure in warm summers as key variables 5 

responsible for bleaching and mortality on coral reefs2, 22, 23. For 

example a daily average water temperature of 31.3 °C for a single 

day may not result in bleaching but may if this temperature is 

maintained for three or more days. The bleaching threshold is 

therefore a cumulative exposure curve where bleaching likelihood 10 

is determined by a line equidistant between the warmest year 

where no bleaching took place and the coolest year when 

bleaching is known to have occurred (Fig 3, Table 1). 

 
Fig. 3 Bleaching threshold for reefs in the Thursday Island region 15 

compiled from observed and experimental data (black line) as 

temperature exposure (temperature and time), note the 2009-10 line 

(triangles) when bleaching was observed.  

 

Table 1 Bleaching thresholds for Thursday Island. 20 

Daily Avg. Temp (˚C.) Duration before bleaching (days) 

 31.0 7.0 

 31.1 4.5 

 31.2 2.5 
 31.4 1.0 

 >=31.5 0 

Bayesian Models 

Other factors are known to contribute to bleaching as well, 

including light and salinity, however these relationships are 

empirically less well defined. As such, and in the context of the 

complexity of marine systems, Bayesian models have become the 25 

preferred tool for integrating data and knowledge to better 

understand ecological relationships and drivers of change10, 24, 25. 

Bayesian Models work by defining a series of relationships 

(inputs � responses) in terms of probabilities, these relationships 

can be formed into a network so that inputs or events can flow 30 

through a series of probabilistic relationships to produce an 

output value reflecting the summed network probabilities. 

As Bayesian models do not need absolute values they deal well 

with ‘fuzzy’ relationships, such as if event X occurs then 

response Y will occur within a set of probabilities. Bayesian 35 

models also deal with both numeric and category inputs and so 

can deal with observations and relative values (high/low, 

good/bad). As such it becomes possible to embody the knowledge 

about a system as a series of probabilistic relationships using both 

formal (measured) and informal (approximate or guessed) inputs. 40 

For this project two Bayesian Models were produced. The first 

was a Bleaching Risk model which modelled the risk of coral 

bleaching given the current conditions, as measured by the real 

time data. As such it focused on those parameters linked to coral 

bleaching such as water temperature, light and salinity26-29. In 45 

particular, high light, high temperature and low salinity are 

demonstrably linked to bleaching events mechanistically and 

physiologically29-32. 

In the model (Fig 4) temperature is expressed as the number of 

days at or higher than the discrete temperature increments on the 50 

bleaching threshold curve (Fig 3 / Table 1). Light is measured in 

two ways. The first is the total light received in a day as the sum 

of the ten minute surface PAR readings (SumDailyPAR in Fig. 4) 

clipped from 8am to 4pm. This gives the total light budget for the 

day. The second measures the peak light stress as the time above 55 

a threshold set empirically to represent sunny versus cloudy 

conditions33. For this work, this value was set to 1,800 µmol sec-1 

m-2 and is represented by the CountMaxPAR box in Fig 4. 

Salinity is also included to allow for the interaction of low-

salinity events preceding or following heat-wave conditions 60 

which are a normal part of the marine climate in Torres Strait. 

 

Fig. 4 Bleaching Risk model, input parameters are shown as grey ovals, 

calculated parameters as white ovals, final bleaching index is shown in 

the black rectangle. 65 

To make the temperature model simpler the various discrete 

temperature increments are implemented in a stepwise manner so 

that the first two increments give a summed value which is then 

added to the next increment and so on. The two light measures 

are also combined into a single resulting light model which, with 70 

the salinity and final temperature model, gives the final resulting 

risk index. The final bleaching index is scaled between 0 (no risk 

of bleaching, probability = 0) and 5 (extreme risk of bleaching, 

probability =1) for output and use in the web site. 

The second model was a Bleaching Forecast model. This model 75 

looks to identify times of heat and light accumulation (increased 

risk) and dissipation (reduced risk). As temperature and light are 

the primary proximal causal agents of coral bleaching34, 35, 

measuring times when these stresses increase or decrease gives 

some indication of the actual stress on corals and so the future 80 

likelihood of bleaching. 

The Forecast index combined with the Risk index produce the 

current bleaching likelihood and the chance that this will increase 

or decrease in the near future. 
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The Forecast model was de-coupled from the Risk model in that 

the current bleaching risk was not a factor in calculating the 

future bleaching risk, although the water temperature as related to 

the climatology was. The reason for decoupling was to identify 

periods of heat and light accumulation / dissipation independently 5 

of the current risk. 

As with the risk model, the forecast model groups like measures 

into sub-measures which are then combined to give the final 

forecast index (Fig 5). The index is scaled from -5 to +5 where 

minus numbers indicate conditions conductive to thermal 10 

dissipation or reduction in bleaching risk, and positive numbers 

thermal accumulation or increase in bleaching risk. The wind 

values use the current measured wind speeds and the next day 

forecast wind speeds from the Bureau of Meteorology17. 

Both models were run daily based on the previous days data and 15 

so give daily measures of current bleaching risk and potential 

future risk. The risk index was as a number scaled between 0 (no 

risk) and 5 (extreme risk) and the forecast risk as a number 

between -5 (risk strongly decreasing), 0 (risk staying the same) 

and +5 (risk strongly increasing). The models were built using the 20 

Netica™ software (Norsys, 2013). 

 

 

Fig. 5 Bleaching Forecast model, input parameters are grey ovals, 

calculated parameters are white ovals 25 

 
Fig. 6 Technical web site showing the real time temperature data plotted 

against the climatology data with text interpretations of the current values 

and a dial plot with the difference between the current and mean 

temperatures. 30 

Web Sites 

Two web sites were developed to display the real time data, the 

climatology information and to display the results of the two 

Bayesian models as coral bleaching indices. 

The first of these was designed for the environmental 35 

management staff of the TSRA (Fig. 6) and was more technical in 

nature with the real time data presented as raw data as well as 

graphs. 

The climatology was used to display the current difference 

between the real time and long term average data with the 40 

standard deviation values used to display the significance of the 

variation. 

The second web site was developed for the local radio station 

(4MW) that broadcasts to the Torres Strait region (Fig. 7). For 

this web site the data were interpreted, via a programmatic 45 

interface, into terms more familiar to the listening audience. For 

example wind directions were converted from directions as 

degrees to named directions such as ‘north-west’. For the 

bleaching risk and forecasts these were converted into common 

English terms, again making them easier to understand. In 50 

particular the web site was designed to be easy to read and 

broadcast. 

Social Media 

A Twitter™ account (@TIClimate) was also used to disseminate 

the information. A Java™ program was written which took the 55 

daily model and temperature / climatology data and reformatted 

this as a message and ‘tweeted’ this to the Twitter account. At the 

moment this happens daily as daily updates but it may be more 

appropriate to only send messages to Twitter when something of 

interest occurs (such as conditions being conducive to bleaching). 60 

 

 
Fig. 7 Community web site showing real time data, forecast wind data 

and the ocean temperature (‘Slightly warmer than Normal / Trending 

Steady’) and coral bleaching (‘No Risk of Bleaching / Risk is expected to 65 

Increase Slightly’) indices. 

 

 

Page 4 of 9Environmental Science: Processes & Impacts

E
nv

ir
on

m
en

ta
lS

ci
en

ce
:P

ro
ce

ss
es

&
Im

pa
ct

s
A

cc
ep

te
d

M
an

us
cr

ip
t



 

This journal is © The Royal Society of Chemistry [year] Journal Name, [year], [vol], 00–00  |  5 

Results 

The system was put into operation in late 2012 for the 2012-13 

southern hemisphere summer. There was a failure in the 

communications equipment due to a lightning strike in late 

December resulting in no data for an eight-week period. Apart 5 

from this, the real time station provided a ten-month, near-

continuous ten minute data set on light, water temperature, 

atmospheric data and salinity. 

Data from October to December 2012 show that temperatures 

were cooler than average with one period in mid-December that 10 

equalled the coolest value for that day recorded (Fig 8). While the 

temperatures were cooler than average, no data points crossed the 

two standard deviations line and so for this period temperatures 

were reported as being ‘normal’ or ‘slightly cooler than normal’. 

However, in the autumn period from March to May 2013, 15 

temperatures fell below the lower two standard deviation limit in 

mid-March and then rose to above the upper two standard 

deviation limit in late May (Fig 9). 

 
Fig. 8 Measured daily water temperatures for Thursday Island from 20 

October to December 2012 (black line) plotted against the long term 

modelled climatology (black dashed line), the observed climatology min 

(light grey solid line) and max (dark grey solid line) and the plus or minus 

two standard deviation climatology (light and dark grey dashed lines). 

 25 

Fig. 9 Measured daily water temperatures for Thursday Island from 

March to May 2013 (black line) plotted against the long term modelled 

climatology (black dashed line), the observed climatology min (light grey 

solid line) and max (dark grey solid line) limits and the plus or minus two 

standard deviation climatology limits (light and dark grey dashed lines). 30 

 

 

As a result the system went from being significantly cooler than 

normal to significantly warmer than normal over a period of two 

months. This transition was reported using the position of the 35 

temperature within the standard deviation limits to generate 

wording such as ‘normal’, ‘slightly cooler / warmer than normal’ 

and ‘significantly cooler / warmer than normal’. 

Overall the real time data showed there was no risk of coral 

bleaching as most of the summer temperatures were well below 40 

the climatology and well below the bleaching threshold. It did 

however identify brief periods significantly above or below the 

climatology and as well as periods of temperature and light 

accumulation and dissipation. As a result there was no coral 

bleaching predicted for the 2012-13 summer and none observed. 45 

Discussion 

A new approach to bleaching risk forecasting 

We present here an alternative approach to coral bleaching early 

warning systems. The system described here uses real time data 

to give in-situ conditions, climatologies to provide longer term 50 

context, and Bayesian models to encapsulate expert knowledge 

and other data and knowledge inputs. Importantly, it adds a 

component of weather forecasts to the bleaching risk which 

effectively turns the system from the ‘now-casting’ system to a 

true ‘early-warning’ system which incorporates near-future 55 

weather patterns. The system uses social media and web sites to 

disseminate the resulting information. In particular the use of 

climatologies and the variance around these allows for the 

definition of ‘normal’, ‘unusual’ and ‘extreme’ events and for 

appropriate response actions to be built around these indicators. 60 

The use of Bayesian models allows for expert knowledge about 

the system to be encapsulated and for other sources of 

information, such as social science or on the ground observations, 

to be used. 

The work builds on the heuristic modelling approach of Hendee 65 

et al36 using Bayesian models to implement a rule based system 

that is able to deal with conflicting measures of the same 

parameter, values that may have varying degrees of certainty and 

parameters that may have complex sensitivities between input 

values and model outputs. As with the Stimulus / Response index 70 

of Hendee et al36 the model gives a simple numeric output that 

can be translated into real world language representations of the 

system status. The use of climatologies to provide long-term 

context and simple thresholds for management action, the use of 

differing current and future (forecast) risk models and the 75 

extensive use of social media, extends the previous work. 

The approach is however limited spatially and temporally in that 

factors used in the model to measure potential heat and light 

accumulation and dissipation are only known a few days ahead17 

and the real time data is only available from a few points. This 80 

makes it different to the larger temporal and spatial scales 

employed by, for example, satellite-derived bleaching 

indicators37-39. 

The system does however have some important advantages over 

satellite-based systems, in particular the fact that it is unaffected 85 

by cloud cover, which affects most satellite images for this region 

in summer. The in-water measurements are also more accurate as 

data are directly measured, not remotely sensed. 

24

25

26

27

28

29

30

31

32

3/10/12 17/10/12 31/10/12 14/11/12 28/11/12 12/12/12 26/12/12

W
a

te
r 

T
e

m
p

e
ra

tu
re

 (
D

e
g

. 
C

.)

Date

27

28

29

30

31

32

2/03/13 12/03/13 22/03/13 1/04/13 11/04/13 21/04/13

W
a

te
r 

T
e

m
p

e
ra

tu
re

 (
D

e
g

. 
C

.)

Date

Page 5 of 9 Environmental Science: Processes & Impacts

E
nv

ir
on

m
en

ta
lS

ci
en

ce
:P

ro
ce

ss
es

&
Im

pa
ct

s
A

cc
ep

te
d

M
an

us
cr

ip
t



 

6  |  Journal Name, [year], [vol], 00–00 This journal is © The Royal Society of Chemistry [year] 

In future, it may be possible to meld this approach with modelling 

systems40 to develop longer (temporal) and larger (spatial) range 

forecasts. A number of other real time stations are planned and 

this may give an opportunity to increase the spatial component 

and provide greater linkage to modelling systems. Also planned is 5 

the collection of additional variables, such as underwater PAR 

and turbidity, which may add to the strength of the model. 

From Data to Information to Knowledge 

The aim of the work was to convert the data collected by the 

project into information and knowledge that could be taken up 10 

and used by both the environmental managers of the TSRA and 

by the general public, via the local radio station. 

The first part of this was to give the data context via the 

climatology. The climatology indicated if the real time 

temperatures were warmer or cooler than the long term average, 15 

by how much, and if any differences were significant or not. For 

this study, any data within two standard deviations of the long 

term mean was considered to be ‘normal’, between two and three 

standard deviations as ‘significantly warmer/cooler’ and if 

outside the three standard deviation limits as being ‘extremely 20 

warmer/cooler’. 

The provision of context effectively goes from data to 

information; that is it tells you what the reading means. The 

conversion from information to knowledge involves looking at 

what the information means in an even larger context and what 25 

response may be appropriate. To achieve this, Bayesian models 

were used to represent the scientific knowledge of the system / 

phenomena and to give some idea of what outcomes may come 

from the current situation. These model outputs were delivered as 

interpreted text that had meaning to the target audience. 30 

 

An example of this is shown below (source in italics): 

Data: 

“The Water Temperature is 29.2˚ C. [real-time data].” 

Information: 35 

“The Water Temperature is 29.2˚ C [real-time data] which is 

0.8 degrees warmer than the long term average [climatology]. 

It is just above two standard deviations from the mean making 

it significantly warmer than normal for this time of year.” 

Knowledge: 40 

“The Water temperature is significantly warmer than normal 

[climatology] but not warm enough to cause bleaching 

[bleaching risk model], temperatures are trending steady [real-

time data] but the factors that cause bleaching are declining 

[bleaching forecast model] so that while temperatures are 45 

unusually high there is no immediate bleaching risk and in the 

future any risk will decrease.” 

Climatologies 

The climatology gives a context for the water temperature data; 

the use of standard deviation limits allows any temperature events 50 

to have an associated level of significance. This allows the 

system to effectively ignore or not respond to ‘normal’ (within 

two SD limits) conditions but then to know when an event of 

significance has occurred at to trigger appropriate responses. 

Bayesian Models 55 

 

Bayesian models have a number of characteristics that make them 

suitable to this type of application. The first is that they take as 

input both numeric input (such as the real time data) as well as 

state data (high | medium | low) or even simple presence absence 60 

data (bleaching present | absent). This allows for a range of data 

types and sources to be utilised by the model. 

The second characteristic is that as the model is a matrix of 

relationships between inputs and responses, the model can deal 

with uncertain or ‘fuzzy’ relationships. This more accurately 65 

reflects much of the real world knowledge of systems and so in-

exact relationships can be used25. For example the experimental 

data shows that daily average water temperatures over 31.5 °C 

will cause bleaching but in the model this can have a probability 

associated with it, so that rather than having to be a bleaching | no 70 

bleaching point it can have a probability of say 80%. In this way 

the model can better reflect real world experience where few 

events are all or nothing. It can also deal with information that 

has a high level of error or uncertainty and so data from various 

sources can be utilised, such as community science programs. 75 

The third characteristic is that, via the probability matrices, the 

relationship between an input and output (response) can be fine-

tuned. For example the experimental data shows that water 

temperatures at 31.0 °C for more than seven days can cause 

bleaching. It is expected that this is not a magical number but that 80 

as the number of days at or over 31.0 °C increases so the 

probability of bleaching gets higher until at around seven days it 

is close to 1. The model allows us to not just increase the 

probability with days in a linear fashion but rather fine tune the 

relationship so that the response is less intense for days one to 85 

four and then more responsive after that. 

To illustrate this, Fig 10 shows the response (change in output 

response probability from changes in input values) for the 

threshold at 31.0 and 31.1 °C. The 31.0 °C response is tolerant of 

a small number of days over the threshold (at day three the 90 

bleaching probability has only increased to 10%) with a small 

response early on and a larger response nearer to the final 

threshold value. The 31.1 °C response is the opposite; in this case 

we want to get some early warning, given that we would have 

already gone through the 31.0 °C threshold. 95 

The sensitivity can also be applied to the inputs. In the forecast 

model real time wind data along with forecast data from the 

Bureau of Meteorology are used to represent the future wind 

state. These two inputs form a probability matrix for the output of 

wind speed. Where the measured and forecast wind speeds agree 100 

then this goes directly into the model. Where they disagree we 

can specify what weight each has, in this case as the two disagree 

we give more probability to the measured values and less to the 

forecast wind data (Fig. 11). Where the forecast and measured 

winds agree the outcome is allocated 100% to that wind speed 105 

(such as in the first line of the matrix in Fig. 11). Where they 

disagree, for example in the fourth line of the matrix in Fig. 11, 

the probability of the forecast being correct is reduced (in this 

case to 40%) and the probabilities for other outcomes increased. 

We can therefore use multiple measures of the same phenomena 110 

and decide, via the probability matrix, the relative weighting of 

each given their agreement / disagreement. This allows proxy and 

other data sources to be used, but with their contribution 

determined by the probability matrix. 
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Fig.10 Probability response curves showing differing responses to 

changes in input values for the 31.0 (black line) and 31.1 (grey line) 

degree temperature thresholds. 

 5 

Fig. 11 Bayesian probability matrix between measured and forecast wind 

values showing how the relative influence of the forecast wind values 

changes with the agreement between the measured values. 

Social Media 

The feed to Twitter was updated daily via the program that runs 10 

the Bayesian models and so involved no extra work. The uptake 

or interest in the Twitter feed has been only small with a few 

followers. This reflects the weak engagement of the local 

communities with products such as Twitter, unlike the web site. 

Links to Management Outcomes 15 

There is a need to link any monitoring or forecast system with 

resulting management outcomes. This has not been specifically 

investigated for the Torres Strait but has for the Great Barrier 

Reef to the immediate south20, 22, 41, 42. 

Marshall and Shuttenberg20 describe the direct link between early 20 

warning systems and management outcomes as: “to initiate rapid 

assessments of ecological impacts and increased communication 

activities which can include senior managers and the media”. 

Berkelmans22 takes this further: “allows for early management 

responses to be put in place, including the instigation of formal 25 

monitoring programs to assess the extent and severity of 

bleaching and, where appropriate, take local action to ameliorate 

the risk of further damage to reefs from such activities as 

dredging, coastal development and point-source pollution”. 

While direct links are valuable there are other more subtle 30 

linkages, also of value. This was touched on by Berkelmans22: 

“reef managers value such warning systems because they allow 

them to be the source of timely and credible information about 

bleaching risk for decision makers, stakeholders and the media”. 

The ability of management agencies to know of potential issues 35 

in advance allows them to take a positive role in raising issues, in 

asking for and allocating resources, and in communicating their 

message. It also gives them a position of credibility from which 

more direct links to potential actions can be forged. The 

importance of credibility with the general public was repeatedly 40 

raised by reef managers at a recent workshop on satellite 

monitoring of coral reefs in a changing climate43. 

For the work in the Torres Strait the lack of knowledge of, and 

ability to respond, to the 2009-10 bleaching event was a source of 

concern within the management agencies. While often there are 45 

few practical steps that can be taken to reduce the impact of 

environmental events at large scales, early warning has an 

important role to play. It allows for some type of response to 

occur, for agencies to take a positive role in dealing with the 

event, in allowing in-situ science to be done to understand the 50 

event, and in developing an awareness of larger scale issues that 

potentially can feed into higher level discussions. 

Future Work 

For the next summer, a direct-email system will be trialled to 

deliver warnings to an identified list of key clients and 55 

stakeholders. This will be complimented with a RSS (Rich Site 

Summary) web feed which can be advertised and allow additional 

interested users to subscribe to the warning feeds. Additional 

public data kiosks are being installed to increase the exposure to 

the real time data and forecasts along with direct involvement 60 

with the local communities. 

An additional real time station is planned for the northern part of 

the Torres Strait with a further unit under consideration for the 

eastern part. This network will allow for a broader scale 

representation of bleaching risk to be developed and allow the 65 

system to provide regional information complimentary to the 

broad scale remote sensing measures. 

The Bayesian models are being developed to include more real 

time parameters, such as water quality, nutrients and underwater 

light, to include some process based measurements (such as coral 70 

/ symbiont energetics) and to reflect more of the experimental 

work being undertaken. This will give more robust models of 

coral health, rather than just bleaching stress, which can be 

applied to a wider range of situations including species or system 

specific responses. 75 

Conclusions 

We present here an alternative to the numerically based early 

warning systems for coral bleaching currently in use36, 38, 44. The 

Bleaching Risk Bayesian model, presented here, provides a way 

to embody the current level of understanding about what causes 80 

bleaching into a single system. The features of this system 

include the ability to incorporate fuzzy logic and poorly defined 

relationships as well as the use of probability matrices. The 

system incorporates both a now-casting component which 

assesses the risk of bleaching based on current and historical 85 

conditions and a forecasting component which modifies the risk 

if the water column is likely to continue accumulating heat, or 

reduces the risk if it is likely to lose or dissipate heat. The two 

models work together to identify potential coral bleaching (risk), 

and how this risk will change in the near future (forecast). 90 
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Future work will see the model incorporate a range of other 

observing parameters that contribute to bleaching stress. These 

will include tide level (low tides during the day can increase 

localised warming), turbidity (which can reduce in-water light 

levels), underwater light and input from community observations. 5 

This model was trialled using real time data for the 2012-13 

summer in the Torres Strait, a remote part of northern Australia 

with a majority indigenous population. Engagement with the 

local resource managers and communities was by a number of 

tailored data kiosk displays, web displays and mobile phone apps. 10 

The real time weather data was broadcast by a local radio station 

as part of its scheduled weather service, the issue of coral 

bleaching was also communicated via a series of interviews and 

community information programs as well as via social media. 

Improving community engagement in uptake will be an area of 15 

continual improvement. 
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Widespread coral bleaching occurred in the Torres Straits for the first time in 2009-10. Previously 

equatorial areas were thought immune as the most significant bleaching has been in more southern 

latitudes. As a result there has been little emphasis on monitoring and responding to coral bleaching 

in this region. This paper details a new approach to developing indices of current and future 

bleaching risk using real time ocean data, climatologies and Bayesian models. This information is 

delivered to local managers and communities via web sites, social media and a local radio station. 

The work aims to raise awareness of coral bleaching and climate change in the region along with 

improving our understanding of the causes and impacts of coral bleaching. 
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