Environmental Science Processes & Impacts

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

rsc.li/process-impacts

1	Quantitative Passive Soil Vapor Sampling for VOCs: Field Experiments
2	Todd McAlary ^{1,2*} , Hester Groenevelt ¹ , Paul Nicholson ¹ , Suresh Seethapathy ² , Paolo Sacco ³ ,
3	Derrick Crump ⁴ , Michael Tuday ⁵ , Heidi Hayes ⁷ , Brian Schumacher ⁶ , Paul Johnson ⁸ , Tadeusz
4	Górecki ² and Ignacio Rivera-Duarte ⁹
5	Table of Contents Entry

- "Passive soil vapor sampling can now be used to quantify concentrations of VOC vapors, no 6
- longer just the relative mass" 7

A STATE OF A DATE OF A DAT	
A SUMPLY OF A DAY OF	
PARTICIPATION OF A DESCRIPTION OF A DESC	
A REAL PROPERTY AND A REAL PROPERTY.	
Number of the owner own	
Contraction of Contra	
Number of the other of the othe	
A NUMBER OF A DATE OF A DA	
Contraction of the local distance of the loc	
Contraction of the Contraction o	
A SHORE OF A DAMAGE AND A DAMAGE	
Distance of the other of the ot	
Number of the owner own	
A NUMBER OF COMPANY OF COMPANY	
And a state of the	
Distance of the Distance of th	
Distance of the owner o	
District of the District of th	
District of the owner o	
District of the owner o	
Printer of the Control of the Contro	
Number of the State of the Stat	
Number of the owner own	
Distance of the other of the ot	
Number of the Association of the	
Contraction of the Contraction o	

^{*} Corresponding Author - phone: (519) 822-2230 ext 239; fax (519) 822-3151; e-mail: tmcalary@geosyntec.com

Environmental Impact Statement To accompany the submission of the draft paper entitled: Quantitative Passive Soil Vapor Sampling for VOCs: Field Experiments McAlary et al, 2013

Conventional soil vapor sampling for VOC analysis can be impractical in lowpermeability soils and time-consuming if quality control measures are implemented to verify the absence of leaks. Passive adsorptive sampling has been an alternative to conventional active sampling for decades, but the uptake rate of the sampler has never been well understood or controlled, so passive sampling has been considered a qualitative or semi-quantitative method. This paper provides the results of a series of controlled field sampling experiments, which demonstrate that passive soil vapor sampling can provide quantitative concentration measurements when the uptake rate is low enough to avoid the starvation effect and the sorbent is strong enough to retain the compounds of interest over the sampling period.

1	Quantitative Passive Soil Vapor Sampling for VOCs: Field Experiments
2	Todd McAlary ^{1,2*} , Hester Groenevelt ¹ , Paul Nicholson ¹ , Suresh Seethapathy ² , Paolo Sacco ³ ,
3	Derrick Crump ⁴ , Michael Tuday ⁵ , Heidi Hayes ⁷ , Brian Schumacher ⁶ , Paul Johnson ⁸ , Tadeusz
4	Górecki ² and Ignacio Rivera-Duarte ⁹
5	¹ Geosyntec Consultants, Inc. 130 Research Lane, #2, Guelph, Ontario, N1G 5G3
6	² University of Waterloo, Waterloo, Ontario Canada
7	³ Fondazione Salvatore Maugeri, Padova, Italy
8	⁴ Cranfield University, Cranfield, UK
9	⁵ Columbia Analytical Services, Simi Valley, CA
10	⁶ USEPA, Las Vegas, NV
11	⁷ Eurofins/Air Toxics, Inc. (formerly Air Toxics Ltd.), Folsom, CA
12	⁸ Arizona State University, Tempe, AZ
13	⁹ SPAWAR Systems Center Pacific, San Diego, CA
14	ABSTRACT
15	Volatile organic compounds (VOCs) are commonly associated with contaminated land and may
16	pose a risk to human health via subsurface vapor intrusion to indoor air. Soil vapor sampling is
17	commonly used to assess the nature and extent of VOC contamination, but can be complicated
18	because of the wide range of geologic material permeability and moisture content conditions that
19	might be encountered, the wide variety of available sampling and analysis methods, and several
20	potential causes of bias and variability, including leaks of atmospheric air, adsorption/desorption

21 interactions, inconsistent sampling protocols and varying levels of experience among sampling

Environmental Science: Processes & Impacts Accepted Manuscript

^{*} Corresponding Author - phone: (519) 822-2230 ext 239; fax (519) 822-3151; e-mail: tmcalary@geosyntec.com

22 personnel. Passive sampling onto adsorbent materials has been available as an alternative to 23 conventional whole-gas sample collection for decades, but relationships between the mass sorbed 24 with time and the soil vapor concentration have not been quantitatively established and the 25 relative merits of various commercially available passive samplers for soil vapor concentration 26 measurement is unknown. This paper presents the results of field experiments using several 27 different passive samplers under a wide range of conditions. The results show that properly 28 designed and deployed quantitative passive soil vapor samplers can be used to measure soil 29 vapor concentrations with accuracy and precision comparable to conventional active soil vapor 30 sampling (relative concentrations within a factor of 2 and RSD less than about 80%) where the 31 uptake rate is low enough to minimize starvation and the exposure duration is not excessive for 32 weakly retained compounds.

33 1. INTRODUCTION

34 Quantitative passive vapor samplers of the kinetic variety provide time-weighted average 35 concentrations (C) of vapors in the media (usually indoor or outdoor air) to which they are 36 exposed. C is calculated by dividing the mass of each analyte sorbed (M) by the analyte-specific uptake rate of the sampler (UR) and the sample time (t) 1 . Analyte uptake rates for quantitative 37 38 samplers can be determined experimentally or estimated theoretically and they are typically 39 supplied by the vendor of the passive sampler. This distinguishes the quantitative samplers tested in this study from qualitative or semi-quantitative passive samplers (e.g., Gore[™] Modules 40 ², Beacon BeSure Passive Soil Gas Technology^{TM 3}, EMFLUX Cartridges^{TM 4}, Petrex tubes^{TM 5,6} 41 42 and similar devices) that are not specifically designed to constrain and uniformly control analyte 43 uptake rates. To date, passive soil vapor samplers have been shown to provide qualitative or 44 semi-quantitative soil vapor data; however, the ability to quantify soil vapor concentrations from

the mass retained on the sampler has not been established 2,4,7 . As a result, many regulatory 45 46 guidance documents caution that passive soil gas sampling should only be used as a qualitative or semi-quantitative screening tool 8,9 . Even when a passive sampler is designed in a way that 47 allows the analyte uptake rates to be controlled (e.g. by incorporation of a well-defined diffusion 48 49 or permeation barrier between the sampled medium and the sorbent), soil gas sampling creates 50 unique challenges. On the one hand, the sampler uptake rate must be high enough to allow 51 quantification of concentrations of concern for an acceptable sampling duration. On the other 52 hand, the uptake rate must be low enough that the sampler itself does not remove analyte vapors 53 faster than they are transported to its face from the surrounding medium, because this would 54 result in a localized reduction in the vapor concentrations near the sampler compared to the 55 surrounding soil, and a low bias in the vapor concentrations (sometimes referred to as the "starvation effect")¹⁰. 56

57 This paper describes a series of controlled field experiments designed to elucidate the optimal 58 approach to soil gas sampling using kinetic passive samplers. The tests were conducted over a 59 wide range of operating conditions: sample durations from 20 minutes to 11.7 days, concentrations from about 100 to about 60,000 μ g/m³, uptake rates from about 0.05 to 80 60 61 mL/min, several different chlorinated VOCs, 2.4 to 10 cm (1 to 4 inch) diameter and 2.5 to 46 62 cm (1 to 18 inch) tall void spaces, ambient temperatures during sample collection from about 15 63 to about 30 °C, analysis by several different laboratories and different extraction methods 64 (solvent extraction and thermal desorption) for each of several different types of commerciallyavailable passive samplers and sorbent media. This provides a previously unavailable set of data 65 66 with which to assess the capabilities and limitations of passive soil vapor sampling for VOC

67 concentration measurement. A companion paper¹⁰ provides theoretical information based on
68 mathematical modeling to support the experimental results provided herein.

69 2. EXPERIMENTAL

70 Materials and Methods

The quantitative passive samplers used in this study included: SKC Ultra^{TM 11} from SKC, Inc.; 71 Radiello®¹² from Fondazione Salvatore Maugeri; OVM 3500^{TM 13} from 3M; Waterloo 72 Membrane SamplerTM or WMS^{TM 14,15} from SiREM Laboratory, and Passive ATD tube 73 samplers^{16,17} from Perkin Elmer. Some of these samplers are available with different sorbents 74 and uptake rates, which allowed different combinations to be evaluated, as described for each 75 76 test site. The uptake rates used in the study were either supplied by the vendor or estimated from the free-air diffusion coefficients¹⁸ for diffusive samplers. In the case of the WMS sampler, 77 78 which uses a polydimethylsiloxane (PDMS) membrane as the rate-limiting barrier, the uptake 79 rates for compounds for which they had not been determined experimentally were estimated 80 from the correlation between the UR and the linear temperature-programmed retention indices of the analytes on PDMS-coated GC columns¹⁴. Laboratory analytical methods are described in 81 82 the Supplemental Information.

83 Sampling Locations

Samples were collected at: 1) the US Navy San Diego Old Town Campus (OTC), 2) the Arizona
State University (ASU) study house in Layton, Utah (near Hill Air Force Base) and 3) Naval Air
Station Jacksonville, Florida (NAS JAX), all of which were known to have VOCs in the
subsurface near occupied structures, in which case regulatory guidance recommends assessment
of potential health risks using lines of evidence including soil vapor concentration measurement

for individual compounds. Sub-slab samples were collected immediately below concrete slabs at
OTC and NAS JAX and deeper soil gas samples were collected at the Layton house and NAS
JAX. For vapor intrusion assessments, most regulatory guidance documents recommend that
soil gas samples be collected 1.5 m (5 feet) or deeper below ground surface. The experimental
designs were as follows:

94 **Navy OTC:** passive sub-slab samples were collected immediately below the concrete slab-on-95 grade ground cover in two locations with five passive devices and one active sample (Summa canister with analysis by EPA Method $TO-15^{19}$) in each location. Both locations were outside of 96 97 a building where a concrete slab was accessible for drilling and coring. Initial screening with a 98 photoionization detector showed total ionizable vapor concentrations in the 0.1 to 10 parts per 99 million v/v (ppm_v) range. The primary contaminant of concern (COC) was trichloroethene 100 (TCE). Sampler deployment durations were 2 h at location SS-2 where the field screening data 101 showed higher concentrations and 15 h at location SS-5 (where the field screening readings 102 showed lower concentrations) in order to assure that sufficient mass would be collected to 103 provide detectable results, but minimize the risk of overloading the sorptive capacity of the 104 samplers. All five passive samplers were used for sub-slab sampling in configurations (uptake 105 rate and adsorbent) described in Table 1. Samplers were placed in holes drilled or cored through 106 the concrete (depending on the diameter needed to accommodate the sampler), located in a circle 107 of ~ 1 m diameter, with the Summa canister sample collected in the center of the circle. The 108 volume of the void space in which the samplers were deployed ranged from about 25 mL for the 109 1-inch diameter drill holes to about 100 mL for the 2-inch diameter coreholes. Immediately after 110 the passive sampler deployment, one liter of soil gas was purged to remove any atmospheric air 111 that may have entered the hole, and the hole was sealed using a rubber stopper wrapped in

aluminum foil to provide a flexible and inert plug. The purged gas was screened to confirm
consistent total ionizable vapor concentrations with a Phocheck+™ photoionization detector
(PID) from Ionscience (Cambridge, UK), which was field-calibrated according to manufacturer's
instructions.
Layton House: six passive soil gas monitoring probes were installed to a depth of about 4 m (12

117 ft) in a circular pattern with a radius of about 1 m using a 10-cm (4-in) diameter hand-auger. 118 Each probe was constructed of 3 m (10 ft) length of 5 cm (2-in) diameter Schedule 40 PVC pipe, 119 with stilts on the bottom to suspend the pipe 0.6 m (2 ft) above the bottom of the borehole. The 120 volume of the void space in which the samplers were deployed was about 5 L. A gasket 121 wrapped in aluminum foil isolated the region above the void space, and the annulus between the 122 PVC pipe and borehole wall above the gasket was filled with a hydrated bentonite slurry (Figure 123 1). The soil consisted of cohesive brown fine sandy silt with trace clay, with moisture content 124 increasing as the depth approached the water table ($\sim 4 \text{ m depth}$). The primary VOCs were 125 trichloroethene (TCE) and 1,1-dichloroethene (1,1-DCE) at concentrations of several hundred $\mu g/m^3$. To minimize the risk of non-detect results, samples were collected from just above the 126 127 water table, where soil vapor concentrations were expected to be highest. The deployment 128 durations ranged from 1 to 11.7 days, with each of six sampler types deployed once in each probe, plus one repeat of the first set of samples (a Latin Square design²⁰). Active samples were 129 130 collected after purging at least 6 L from each probe using a vacuum chamber and a Tedlar bag at 131 the beginning and end of the experiment, plus at the start of each new deployment period. Field 132 screening was performed using a field-calibrated Phocheck+TM PID to verify steady readings 133 prior to active sample collection. Most of the active samples were analyzed with a HapsiteTM

134	transportable GC/MS (Inficon) via a Tedlar bag and vacuum chamber, and two rounds of active
135	samples were collected in Summa [®] canisters and analyzed by EPA Method TO-15.
136	FIGURE 1
137	The passive samplers used at the Layton House were customized as follows:
138	• A 12-hole cap was used with the SKC Ultra Sampler to reduce the uptake rate and
139	minimize the starvation effect; charcoal was the sorbent.
140	• The ATD Tube sampler was used with two different sorbents (Carbopack B and Tenax
141	TA) to assess their relative performance.
142	• The WMS sampler was also used in two configurations, the regular variety (1.8 mL vial)
143	and an ultra-low uptake variety for which the membrane was covered with an aluminum
144	shield with a 1/16" diameter hole drilled through it. The results for the ultra-low uptake
145	rate variety were below limits of detection for most analytes, so the data are not
146	presented.
147	NAS JAX: Three types of samples were collected at NAS JAX: 1) sub-slab samples inside a
148	single-story, slab-on-grade office building, 2) exterior soil gas samples in cased probes similar to
149	those used at the Layton House and, 3) exterior soil gas samples in an uncased hole. The water
150	table was about 1.5 m (5 ft) below ground surface and the vadose zone was a relatively uniform,
151	cohesionless, medium-textured sand. To avoid the risk of contact with groundwater, the passive
152	samplers were deployed just above the water table. The primary VOCs were tetrachloroethene
153	(PCE), TCE, cis-1,2-dichloroethene (cis-1,2-DCE) and trans-1,2-dichloroethene (trans-1,2-
154	DCE).

155 Exterior passive soil gas samples were collected using three 5 cm (2-in) diameter schedule 40 156 PVC probes in 10 cm (4-in) diameter hand-augered holes with void space lengths of about 15, 30 157 and 45 cm (6, 12 and 18-in) to assess whether the void volume (1.2 L, 2.4 L and 3.6 L, 158 respectively) affected the results. The samplers were deployed for 20, 40 and 60 minutes to 159 assess whether the deployment duration affected the results. A total of seven passive samples were collected using each of the 5 samplers and 35 Summa[®] canister samples were collected for 160 161 analysis by EPA Method TO-15 (1:1 ratio). This experimental design was a randomized 2factor, one-half fraction, fractional factorial with triplicates at the center-points²⁰ (40 minute 162 163 sample time in the 30 cm tall void). 164 The annular seal was constructed by placing fine sand into the annulus between the 2-in PVC 165 well pipe and the 13 cm (5-in) diameter flexible polyethylene sleeve (Figure 2) and tamping the

166 sand with a wooden dowel to cause the plastic sleeve to expand out to the wall of the 10-cm (4-167 in) diameter borehole. After placing the seal, each probe was purged until PID readings

168 stabilized, then left capped overnight to equilibrate.

169 **FIGURE 2**

170 Passive soil gas samplers were suspended by nylon lines attached to the bottom of the slip cap and cut to a length just longer than the PVC pipe, so that the samplers were suspended in the 171 172 open region below the pipe during sampling. Immediately after the passive samplers were 173 deployed and the slip-caps secured, purging was conducted through a 1/4-in compression fitting 174 in the top of the slip-cap. Field screening readings were made by continuously purging each 175 probe and monitoring the effluent with a field-calibrated ppbRAETM PID by RAE Systems of 176 San Jose, CA. PID readings were consistently within the range of 1.0 to 1.5 ppm_v for all three 177 probes, and generally stabilized within about 20 to 30 seconds. Purge rates were about 3 L/min,

0
5
0
2
\mathbf{O}
D
U
()
S
i i i
7
U
~
O
XA
5
B S
Ses
Ses
SSes
SSes
esses
cesses
cesses
ocesses
ocesses.
rocesses
Processes
Processes
Processes
: Processes
e: Processes
ce: Processes
ce: Processes
nce: Processes
ince: Processes
ence: Processes
ience: Processes
cience: Processes
cience: Processes
Science: Processes
Science: Processes
Science: Processes
Il Science: Processes
al Science: Processes
tal Science: Processes
Ital Science: Processes
ntal Science: Processes
ental Science: Processes
ental Science: Processes
nental Science: Processes
mental Science: Processes
Imental Science: Processes
nmental Science: Processes
Inmental Science: Processes
onmental Science: Processes
ronmental Science: Processes
ironmental Science: Processes
vironmental Science: Processes
vironmental Science: Processes
nvironmental Science: Processes
invironmental Science: Processes

so the purge volume was typically about 1 to 1.5 liters, which corresponded to about 1 casingvolume for the probe pipe.

Low-uptake varieties of the Radiello sampler (yellow body), SKC Ultra Sampler (12-hole cap)
and WMS sampler (WMS-LU - 0.8 mL amber vial) were used to minimize the starvation effect.
The ATD tube sampler already has a relatively low uptake rate and was not modified with a lowuptake cap to avoid having results below the limits of detection. The 3M OVM 3500 sampler
does not have a low-uptake variety.

A 1-L Summa canister sample was collected immediately after purging via a 1/8-in stainless steel drop-tube (see Figure 2) that extended through a compression-fitting in the slip cap to a depth just below the bottom of the PVC pipe (i.e., top of the void space), such that the canister sample was collected below the PVC pipe. The canister was filled quickly (over about 10 seconds) so that the passive sampler would not be biased by advection from the active sample collection during most of the passive sampling period.

Sub-slab vapor samples were collected at three locations. It was not possible to drill 5 cm
diameter holes through the floor (needed to accommodate the 3M OVM and SKC samplers)
because steel reinforcing bars were repeatedly encountered and eventually broke the teeth on the

194 concrete hole-saw. The ATD, WMS and Radiello passive samplers were tested through a 1-inch

195 diameter hammer-drill hole in the floor slab. In each of the three locations, one sample was

196 collected with each type of passive sampler (1 h duration was sufficient because the

197 concentrations were >1,000 μ g/m³) and one Summa[®] canister. Immediately after passive sampler

deployment, the hole was purged to remove any atmospheric air entrained during drilling or

199 removal of the prior passive sampler using a vacuum chamber and a 1-L Tedlar bag, which was

200 screened with a field-calibrated ppbRAE[®] PID to measure the total VOC vapor concentration.

201 At least two successive purge measurements were made to assure stable PID readings, after 202 which the hole was capped using a foil-covered rubber stopper. The passive samplers were 203 surrounded by a stainless steel wire cage to protect them from direct contact with the soil. The 204 low-uptake rate cap was used for the ATD tube in the sub-slab samples. The WMS and Radiello 205 samplers were the same low-uptake rate configurations used for the external soil gas sampling. 206 Temporary passive soil gas samples were also collected at NAS JAX in a single hole drilled to a 207 depth of 1.6 m (5 ft) with a 2.54-cm (1-in) diameter hammer-drill bit. No PVC pipe was installed 208 in the temporary drilled hole. The low-uptake WMS sampler was deployed for durations ranging 209 from 1.7 to 18.9 hours (randomized). The hole was sealed during the deployment period using a 210 polyurethane foam plug inside a polyethylene bag of 1-in diameter, which was set to a depth of 211 1.2 m (4 ft) below ground. The location of the temporary probe was only a few feet from the

exterior passive soil gas probes, so the Summa canister data from the nearest exterior passive soilgas probe was used as a baseline for comparison.

214

3. RESULTS AND DISCUSSION

The results of sampling at the Navy OTC site are shown in Table 1. The compounds detected in the Summa canisters included TCE and cis-1,2-DCE, in the range of 450 to 63,000 μ g/m³. The passive sub-slab samplers had a low bias of about 10X to 100X relative to the active samples collected via Summa canister. The magnitude of the low bias generally increased as the uptake rate of the sampler increased, which is consistent with expectations from mathematical modeling ¹⁰. Based on these results, lower uptake rate samplers were used at the Layton House and NAS JAX.

222 **TABLE 1**

McAlary

223 At the Layton house, TCE and 1,1-DCE were the primary compounds detected, typically in the range of 100 to 500 μ g/m³ in the active samples (Table 2). The average active sample 224 225 concentrations in Table S1 and S2 (Supplementary Information) were calculated as the mean of 226 the concentrations measured at the beginning and end of the associated passive sampler sample 227 interval, with the exclusion of a few samples that appeared to be biased compared to others from 228 the same probe (shown in bold and italics in Table 2). The concentrations measured with the 229 passive soil vapor samplers (C) were divided by the average active concentration (Co) as shown 230 in Figure 3. These data showed several trends that were consistent with expectations based on 231 transient and steady-state mathematical models of radial vapor diffusion to a borehole in which a passive sampler would be deployed¹ and experience with active (pumped) sorptive sample 232 233 collection:

The sampler with the highest uptake rate (Radiello: 79 and 69 mL/min for 1,1-DCE and TCE, respectively) generally showed the lowest concentrations, which is most likely attributable to the starvation effect.

237 Three data sets showed low bias in the longer-duration samples (ATD with Tenax TA for • 238 both 1,1-DCE and TCE, and ATD Carbopack B for 1,1-DCE). These compounds are not 239 strongly retained on these sorbents as evidenced by experimental data reported by Supelco, who report recommended maximum sample volumes²¹ of 0.2, 1.0 and 0.2 L, 240 241 respectively for these compounds and sorbents. The recommended maximum sample 242 volume is the volume of air that can be drawn through an automatic thermal desorption 243 tube containing a certain mass of a given compound before the compound is liberated 244 from the sorbent and losses become significant via breakthrough. The ATD sampler with Carbopack B showed good retention for TCE, which has a recommended maximum 245

246		sample volume of 20 L or more for this sorbent. These data indicate that the low bias is
247		likely attributable to poor retention for the sorbent/analyte combinations with low SSV
248		values and long sample durations.
249	•	The SKC sampler (low uptake cap and charcoal) and WMS sampler (1.8 mL vial and
250		Anasorb 747) showed data very comparable to the active samplers with no apparent lack
251		of retention in the longer-term samples. The SKC and WMS samplers had similar uptake
252		rates to the ATD samplers, so the improved performance in the longer-duration samples
253		is apparently attributable to better retention of 1,1-DCE and TCE by stronger activated
254		carbon-based sorbents.

255 FIGURE 3a,b

256 The results of the active (Hapsite and Summa) samples at the Layton house showed the ranges of 257 variability that are typically observed with active soil gas sampling (Table 2). Temporal 258 variability can be assessed by comparing the concentrations measured in each probe over 9 259 events in 6 weeks, while spatial variability can be assessed by comparing the concentrations 260 from 6 probes within one meter of one another. The relative standard deviation (RSD, standard 261 deviation divided by the mean) ranged from 23% to 57% for temporal variability and 31% to 262 84% for spatial variability. The pooled mean concentration and RSD for 1,1-DCE were 250 263 $\mu g/m^3$ and 38%, respectively. The pooled mean concentration and RSD for TCE were 350 264 $\mu g/m^3$ and 28%, respectively.

265 **TABLE 2**

A similar calculation of the mean, standard deviation and relative standard deviation (RSD) for the passive samplers (Table 3) showed that the WMS sampler had an RSD of 40% and 55% for

268 TCE and 11DCE, respectively. The SKC sampler had RSDs of 52% to 80% for TCE and 269 11DCE, respectively. The ATD with Carbopack B had an RSD for TCE of 72%. These are all 270 comparable to the active sampler variability, which is encouraging considering the passive samples were collected in different probes, so each set included both spatial and temporal 271 272 variability. The WMS sampler and SKC Ultra Low-Uptake samplers provided concentrations 273 that were on average within a factor of 2 of the active soil gas sample concentrations. Low 274 biases for the TCE and 11DCE with the Radiello sampler and 11DCE with the ATD tube sampler were consistent with expectations of the starvation effect¹ and poor retention²¹. 275 276 respectively. As a result, the NAS JAX test used the low-uptake variety of the Radiello (yellow 277 body) and the stronger sorbent (Carbopack B) in the ATD tubes. 278 TABLE 3 279 The results of passive sampling at NAS JAX (Table S3) showed a broader range of concentrations (~100 to ~30,000 μ g/m³) than the previous data sets (Table S2), so the data are 280 281 presented on x-y scatter plots with the active and passive concentrations as the x and y axes, 282 respectively and logarithmic scales (Figures 4a and 4b). The exterior soil gas passive sampler 283 concentrations (Figure 4a) all yielded regression lines with slopes ranging from 0.67 to 1.46 and correlation coefficient (\mathbb{R}^2) values of 0.80 to 0.96. The regression lines for the WMS and 284 285 Radiello samplers fell within the +/-25% range (inner dashed lines in Figure 4a) and the WMS 286 sampler had a better correlation coefficient than the Radiello (0.96 vs. 0.80). Only 8 of the 117 287 detectable results for all the samplers fell outside the +/- 50% range (outer dotted lines), of which

- 288 4 were for TCE in SKC samplers, which may be related to trip blank contamination. Some
- results fell below the reporting limits ("U-qualified"), including trans-1,2-DCE for the WMS
- sampler, TCE for the Radiello and some of the PCE and trans-1,2-DCE values for the Radiello.

291 FIGURE 4a,b

Statistical analysis of the fractional factorial design via analysis of variance (ANOVA) at the 5%
level of significance (Table S4) showed that the sampler type was a significant factor for all four
compounds detected, sampling duration was not statistically significant, and the void volume
was only statistically significant for trans-1,2-DCE and TCE.

296 The interior passive sub-slab samples at NAS JAX also showed strong positive correlations with

297 active sample results (Figure 4b). The passive samplers all yielded regression lines with slopes

ranging from 0.51 to 1.88 and R^2 values of 0.71 to 0.95. The regression line for the WMS

samplers fell within the +/- 25% range, with a correlation coefficient of 0.95. The regression

300 lines for the ATD and Radiello samplers were within the \pm -50% range of an ideal (1:1)

301 correlation, with slightly lower correlation coefficients (0.86 and 0.71, respectively) than the

302 WMS sampler.

The exterior passive soil gas samples from a temporary (uncased) hole also showed good 303 304 correlation to the active (Summa canister) samples (Figure 5), which indicates that uptake rates 305 of 0.5 to 1.1 mL/min for the four compounds detected are low enough to avoid a low bias via 306 starvation for these compounds in a small diameter (2.5 cm) drillhole in sandy soil. This is encouraging because this is consistent with expectations based on mathematical modeling¹ and 307 308 temporary sampling is a common application of passive soil vapor monitoring because the costs 309 of deployment are much lower compared to the installation of a probe that can be sampled on 310 multiple occasions. Note that the combination of sandy soil and a low-uptake rate sampler were 311 used in this test, which minimizes the risk of a low bias attributable to the starvation effect.

312 **FIGURE 5**

Environmental Science: Processes & Impacts

313	The data presented here span a wide range of sample durations, concentrations, uptake rates,
314	several different chlorinated VOCs, void space volumes, ambient temperatures, and methods of
315	sorption and desorption prior to laboratory analysis by several different laboratories using several
316	different samplers and types of sorbent media, which provides unique insight into the capabilities
317	and limitations of passive soil vapor sampling. Three potential challenges were identified:
318	• Retention: combinations of adsorbents and analytes with low recommended maximum
319	sampling volumes (11DCE:Carbopack B, 11DCE:Tenax TA and TCE:Tenax TA at the
320	Layton house, and Chromosorb 106 with TCE and cisDCE at OTC) showed low biases,
321	particularly for longer-term samples. Poor retention can be avoided by selecting
322	adsorbents with higher recommended maximum sampling volumes for the compounds of
323	concern.
324	• Starvation: low biases were more common for samplers with high uptake rates. Figure
325	6a shows the relative concentration (C/C _o = passive concentration / active sample
326	concentration) as a function of the uptake rate. Starvation was minimal on average for
327	samplers with uptake rates of about 1 mL/min or less. Some samplers with higher uptake
328	rates showed good accuracy, which is related to the third challenge.
329	• Probe Design: samplers were deployed in probes with void volumes ranging from 25 mL
330	to 5 L to assess whether this had an effect on the passive sampling results. Figure 6b
331	shows the relative concentration as a function of the ratio of the effective sample volume
332	(UR x t) divided by the void space volume. Low biases were more common for cases
333	where the samplers were deployed in void spaces that were smaller than the effective
334	sample volume (i.e., UR x t/void volume <1), as shown in Figure 6b. In these cases, the
335	mass of vapors in the void-space is not sufficient to satisfy the needs of the sampler and

336vapors must diffuse into the void-space from the surrounding soil to avoid starvation, and337this is a much slower process than diffusion to the sampler though the air inside the void338space. This challenge can be avoided either by: 1) designing a void space larger than339(UR x t) and purging after placement of the passive sampler, 2) by using low-uptake rate340samplers that will not induce starvation even if the void-space is small¹⁰, or 3) using a341short sample duration if the vapor concentrations are high enough to obtain a detectable342result.

343 FIGURE 6

344 **4. CONCLUSIONS**

The passive soil gas concentrations with low uptake rates, strong adsorbents and (UR x t) values similar to or less than the void volume show a better quantification of soil vapor concentrations compared to active sampler results than any previously published comparisons that the authors are aware of.

349 Additional testing is warranted to evaluate a wider range of site conditions. In the near term, the 350 confidence in the accuracy of passive soil vapor sampling can be improved with some on-going 351 benchmark testing via collection of side-by-side duplicate samples (e.g. one conventional active 352 soil gas sample for every ~10 passive-diffusive samples). The comparison between the active 353 sample data and the passive sampler data can be used to derive site-specific and media-specific 354 uptake rates for the compounds that are detectable in both samples. With proper 355 calibration/benchmarking, the low variability of the passive samplers is encouraging, and other 356 benefits such as simplicity, ease of shipping, and lower costs provide sufficient incentive to 357 justify the calibration/benchmarking effort.

	<u> </u>
	O
	-
	U)
1.1	
	\mathbf{O}
	1
	Y
	D
	.
	O
	~
	U
_	
	4
	10
	U)
	1
	65
	\bigcirc
	\Box
- 6	X
	U)
	4
	Y
	t N
	Ś
	Ś
	B S
	COS:
	Ces:
	Sees :
	OCes
	roces
	roces
	Proces
	Proces :
	: Proces:
	Process
(e: Process
(Ce: Process
(ICE: Proces
(nce: Proces
(ance: Process
(ence: Process
(ience: Proces
(cience: Process
(cience: Process
	Science: Process
	Science: Process
	Science: Proces
	I Science: Proces
	al Science: Proces
	tal Science: Process
	ital Science: Process
-	ntal Science: Process
	antal Science: Process
	ental Science: Proces
	nental Science: Proces
-	mental Science: Proces
	mental Science: Process
-	nmental Science: Process
	nmental Science: Process
	onmental Science: Proces
	onmental Science: Process
-	ronmental Science: Proces
	ironmental Science: Process
	vironmental Science: Process
	NVIRONMENTAL SCIENCE: Process
	nvironmental Science: Process
	:nvironmental Science: Proces

358 ACKNOWLEDGEMENTS

359 Funding for this work was provided by the Environmental Security Technology Certification 360 Program (ESTCP) with Sam Brock of the Air Force Civil Engineering Center and Andrea 361 Leeson of ESTCP as the DOD Liaisons and the U.S. Navy SPAWAR Systems Center Pacific 362 under the Improved Assessment Strategies for the Vapor Intrusion project, which is funded by 363 the Navy's Environmental Sustainability Development to Integration (NESDI) Program under 364 subcontract to Richard Brady and Associates and Computer Sciences Corporation with Bart 365 Chadwick and Ignacio Rivera-Duarte as contracting officers. We gratefully acknowledge 366 Arizona State University and Mike Singletary of Naval Air Station Jacksonville for assistance 367 and site access for sample collection and Caterina Boaretto of Fondazione Salvatore Maugeri for 368 GC analysis of the Radiello samplers.

369 **REFERENCES**

- 1. T. Górecki and J. Namiesnik, *Trends in Anal. Chem.*, 2002, 21, 276-291.
- 371 2. Environmental Technology Verification Report, Soil Gas Sampling Technology, W. L.
- 372 *Gore & Associates, Inc. GORE-SORBER Screening Survey*, U.S. EPA Office of Research
 373 and Development. EPA/600/R-98/095, 1998.
- Beacon, 2013. <u>http://www.beacon-usa.com/services/passive-soil-gas-surveys/</u>, accessed on
 December 26, 2013.
- 376 4. Environmental Technology Verification Report, Soil Gas Sampling Technology, Quadrel
- 377 Services, Inc., EMFLUX Soil Gas System, U.S. EPA Office of Research and Development.
 378 EPA/600/R-98/096, 1998.
- 379 5. D.C. Gomes, M. Alarsa, M.C. Salvador and C. Kupferschmid, *Water Sci. Technol.* 1994,
 380 29, 161.

- 381 6. M. Anderson and G. Church, J. Environ. Eng. 1998, 124, 555.
- 382 7. ASTM Standard D7758. *New Practice for Passive Soil Gas Sampling in the Vadose Zone*
- 383 for Source Identification, Spatial Variability Assessment, Monitoring and Vapor Intrusion
- 384 *Evaluations* ASTM International, West Conshohocken, PA, www.astm.org, 2011.
- 385 8. Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor
- *Air (Vapor Intrusion Guidance)*, California Environmental Protection Agency/Department
 of Toxic Substances Control (EPA/DTSC), October 2011.
- 388 9. *Vapor Intrusion Pathway: A Practical Guideline* Interstate Technology and Regulatory
 389 Council (ITRC), 2007. http://www.itrcweb.org/Documents/VI-1.pdf
- 390 10. T.A. McAlary, X. Wang, A. Unger, H. Groenevelt and T. Górecki, Quantitative Passive
- 391 Soil Vapor Sampling Part I: Theory. Submitted to *Env. Sci.: Proc. & Impacts,*392 DOI:10:1039/C3EM00652B.
- 393 11. K. Bergemalm-Rynell, B. Strandberg, E. Andersson and G. Sallsten, *J. Environ. Monit.*,
 394 2008, 10, 1172–1178.
- 395 12. V. Cocheo, C. Boaretto and P. Sacco, Am. Ind. Hyg. Assoc. J., 1996, 57, 897-904.
- 396 13. J.T. Purdham, A.M. Sass-Kortsak and P.R. Bozek, Ann. Occup Hyg. 1994, 38, 721-740.
- 397 14. S. Seethapathy and T. Górecki, J Chromatogr A, 2011, 1218, 143-155.
- 398 15. S. Seethapathy and T. Górecki, J Chromatogr. A, 2010, 1217, 7907-7913.
- 399 16. S. Batterman, T. Metts and P. Kalliokoski, J. Environ. Monit., 2002, 4, 870–878.
- 400 17. V. M. Brown, D.R. Crump and D. Gardiner, *Environ. Technol.*, 1992, 13, 367–375.
- 401 18. USEPA On-Line Tool for Site Assessment Calculation Diffusion Coefficients:
 402 http://www.epa.gov/athens/learn2model/part-two/onsite/estdiffusion.html.
- 403 19. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient

404		Air, Second Edition, Compendium Method TO-15 - Determination Of Volatile Organic
405		Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By
406		Gas Chromatography/ Mass Spectrometry (GC/MS), Center for Environmental Research,
407		Information Office of Research and Development, U.S. EPA, Cincinnati, OH, January
408		1999, EPA/625/R-96/010b
409	20.	D.C. Montgomery, Design and Analysis of Experiments, 7th ed., John Wiley & Sons, Inc.,
410		Hoboken, NJ, 2009, 656 pp.
411	21.	A Tool for Selecting an Adsorbent for Thermal Desorption Applications:
412		http://www.sigmaaldrich.com/etc/medialib/docs/Supelco/General_Information/t402025.Par.0001.File.tmp/t402025.pdf
413		accessed December 30, 2013.

415 Table 1: Active and passive soil vapor concentrations in sub-slab samples from Navy OTC, San

416 Diego, along with uptake rates for the passive samplers.

Compound	Sampler	Passive Concentration (ug/m ³)	Active (Summa/TO-15) Concentration (ug/m ³)	C/C _o (Passive / Active)	Sampler Uptake Rate (mL/min)	Uptake rate x sample time (mL)
	WMS (Anasorb 747)	1,400	13,000	0.11	1.9	228
cis-1,2-DCE	3M OVM 3500	130	13,000	0.01	29	3,480
(120 min	ATD (Chromosorb 106)	570	13,000	0.04	0.47	56
sample)	Radiello (Charcoal)	<26	13,000	< 0.002	64	7,680
	SKC (Chromosorb 106)	57	13,000	< 0.01	14	1,680
TCE	WMS (Anasorb 747)	3,800	63,000	0.06	3.3	396
Probe SS-2	3M OVM 3500	640	63,000	0.01	31	3,720
sample)	ATD (Chromosorb 106)	2,700	63,000	0.04	0.50	60
	Radiello (Charcoal)	75	63,000	0.001	69	8,280
	SKC (Chromosorb 106)	72	63,000	0.001	15	1,800
	WMS (Anasorb 747)	<6.6	450	< 0.015	3.3	2,970
TCE Drobe SS 5	3M OVM 3500	8.8	450	0.020	31	27,900
(15 hr sample)	ATD (Chromosorb 106)	37	450	0.082	.50	450
	Radiello (Anasorb 747)	1.9	450	0.004	69	62,100
	SKC (Chromosorb 106)	8.1	450	0.018	15	13,500

- 418 Table 2: TCE and 11DCE concentrations measured in active soil gas samples analyzed by the
- 419 Hapsite transportable GC/MS (H) or Summa® canister and TO-15 (S) at the Layton house, Utah.
- 420 Bold and italics indicate samples suspected of low bias because of incomplete purging.

	Temporal Variability									Spatial Variability		
11DCE ($\mu g/m^3$)	*	SGP-1	SGP-2	SGP-3	SGP-4	SGP-5	SGP-6	mean	std.dev.	RSD (%)		
21-Jul-10	Н	360	350	490	460	160	370	360	110	31		
22-Jul-10	S	290	440	480	480	160	240	350	140	39		
03-Aug-10	Н	26	260	210	180	59	66	140	98	72		
04-Aug-10	Н	310	540	430	120	100	300	300	170	57		
05-Aug-10	Н	270	480	450	200	100	300	300	140	48		
07-Aug-10	Н	260	340	280	250	77	230	240	87	37		
17-Aug-10	S	110	350	200	110	16	80	140	120	81		
25-Aug-10	Н	200	390	330	180	49	250	230	120	52		
02-Sep-10	Н	210	230	220	230	56	170	190	68	36		
Mean		230	370	340	240	86.6	220	250	120	50		
std.dev		100	98	120	140	49.3	100	83				
RSD (%)		46	26	35	56	57	46	33				
TCE ($\mu g/m^3$)		SGP-1	SGP-2	SGP-3	SGP-4	SGP-5	SGP-6	mean	std.dev.	RSD (%)		
21-Jul-10	Н	450	560	480	440	150	370	410	140	35		
22-Jul-10	S	290	430	420	320	110	190	290	130	43		
03-Aug-10	Η	36	520	380	240	95	96	230	190	84		
04-Aug-10	Н	530	570	470	400	140	300	400	160	40		
05-Aug-10	Н	450	570	530	220	120	280	360	180	50		
07-Aug-10	Н	450	540	450	320	98	290	360	160	44		
17-Aug-10	S	240	520	400	200	39	110	250	180	72		
25-Aug-10	Н	450	890	790	390	100	300	490	300	62		
02-Sep-10	Н	390	490	470	330	87	220	330	150	46		
Mean		370	570	490	320	100	240	350	180	53		
std.dev		150	130	120	85	31	91	82				
RSD (%)		42	23	25	27	30	38	24				

Inter-Sampler Variability for 11DCE (µg/m ³)									Spatial and Temporal Variability		
Duration (days) 1 2 2.2 7.9 8.1 9.8 11.7							mean	std.dev.	RSD (%)		
ATD CPB	180	280	430	70	15	75	22	150	170	110	
Radiello	15	<1.5	17	13	2	49	14	19	18	93	
SKC		210	99	30	390	130		170	140	80	
ATD Tenax	110	100	51	79	4	7	3	41	43	100	
WMS	350	250	35	250	330	130	360	230	120	55	
Mean	110	170	110	75	130	67	83	122	98	89	
std.dev	140	110	160	91	180	56	160	89			
RSD (%)	130	68	150	120	150	83	190	73			
Int	er-Samp	ler Vari	ability f	or TCE	(μg/m ³)			Spa	itial and Te Variabili	mporal ty	
Duration (days)	1	2	2.2	7.9	8.1	9.8	11.7	mean	std.dev.	RSD (%)	
ATD CPB	340	610	610	77	100	290	280	330	240	72	
Radiello	65	7.0	48	43	22	69	21	35	23	64	
SKC	77	540	350	110	730	510		450	230	52	
ATD Tenax	150	300	320	290	13	63	11	170	150	91	
WMS	210	180	53	300	350	220	240	220	100	46	
Mean	120	220	190	120	180	150	100	240	150	65	
std.dev	110	240	220	120	250	180	120	160			
RSD (%)	93	110	110	100	140	120	120	65			

422	Table 3: TCE and 11DCE	concentrations measured	in passive	samplers at the	ne Layton House
-----	------------------------	-------------------------	------------	-----------------	-----------------

424	Figure 1: Schematic diagram of the probe for passive soil vapor sampling at the Layton house,		
425	Utah		
426	Figure 2: Schematic diagram of the probe for passive soil vapor sampling at NAS Jacksonville		
427	Figure 3: Relative concentration (passive/active, or C/Co) at the Layton House, Utah, near Hill		
428	AFB for (a) 11DCE and (b) TCE, respectively.		
429	Figure 4: Correlation Between Passive Samples and Summa® Canister Samples at NAS		
430	Jacksonville with linear regressions and correlation coefficients (R^2) for (a) soil gas		
431	and (b) sub-slab samples, respectively, including PCE, TCE, cis-1,2-DCE and trans-		
432	1,2-DCE.		
433	Figure 5: Relative Concentration (passive/Summa® canister) for WMS/low-uptake sampler in a		
434	1-inch (2.54 cm) diameter open borehole open from 4 to 5 feet below ground at NAS		
435	Jacksonville.		
436	Figure 6: Relative concentration ($C_{passive}/C_{active}$) versus (a) uptake rate, and (b) (UR x t)/Void		
437	Volume		

444 445

Figure 3

449 450

451 Figure 5

453

454 Figure 6