Dalton Transactions

A colorimetric "naked-eye" Cu(II) chemosensor and pH indicator in an 100% aqueous solution

Journal:	Dalton Transactions			
Manuscript ID:	DT-COM-12-2013-053637.R2			
Article Type:	pe: Communication			
Date Submitted by the Author:	03-Feb-2014			
Complete List of Authors:	 Kim, Cheal; Seoul National University of Science & Technology, Fine Chemistry Noh, Jin; Seoul Univ. of Sci and Technol, Fine Chemistry Park, Gyeong Jin; Seoul National University of Science & Technology, Fine Chemistry Na, Yu; Seoul National University of Science & Technology, Fine Chemistry Jo, Hyun; Seoul National University of Science & Technology, Fine Chemistry Lee, Seul; Seoul National University of Science & Technology, Fine Chemistry 			

SCHOLARONE[™] Manuscripts Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

A colorimetric "naked-eye" Cu(II) chemosensor and pH indicator in an 100% aqueous solution

Jin Young Noh,^a Gyeong Jin Park,^{*a} Yu Jeong Na,^a Hyun Yong Jo,^a Seul Ah Lee^a and Cheal Kim^{*a}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

A new, highly selective and sensitive colorimetric chemosensor 1 for detection of Cu²⁺ ions in aqueous solution was developed. Receptor 1 detected Cu²⁺ ions by changing its color from colorless to yellow. Moreover, the Cu²⁺-sensitive ¹⁰ compound was used as a colorimetric pH detector based on a color change due to 1-Cu²⁺ complex formation identifiable via naked eve.

Copper, an essential trace element, plays a critical role in many environmental, biological, and chemical systems.¹ However, ¹⁵ copper ion can have detrimental effects on humans and animals when overexposure to Cu²⁺-polluted water occurs. Excess exposure to high concentrations of Cu²⁺ has been implicated in the development of Alzheimer's and Parkinson's disease.² The U.S. Environmental Protection Agency (EPA) has set the safe ²⁰ limit of copper in drinking water at 1.3 ppm (ca. 2.0 x 10⁻⁵ M).³ Therefore, a reliable method for determination of trace amounts of Cu²⁺ in biological and environmental samples is essential.

Unlike some analytical techniques, such as atomic absorption spectrometry^{4a}, fluorescence techniques^{4b}, and electrochemical ²⁵ methods^{4c}, colorimetric methods can conveniently and easily monitor target ions in the visible range with high sensitivity, specificity, simplicity, low cost, and rapid tracking of analytes in biological, toxicological, and environmental samples.^{1c,5} Therefore, the colorimetric methods have attracted considerable ³⁰ attention in detection of toxic metal ions, including Cu²⁺.

In addition, determination of pH is essential in many processes in agriculture, industry, and human health.⁶ While the majority of pH chemosensors reported to date are fluorescence intensitybased⁷ or fluorescence ratiometry-based⁸ with advantages

- ³⁵ including high sensitivity, ease of use, real-time visualization, and quick response times compared to the traditional glass pH electrodes^{6a,9}, pH chemosensors based on color change are relatively rare.¹⁰ Also, the colorimetric pH sensors reported to date have suffered from limitations such as complicated synthetic
- ⁴⁰ procedures, high detection limits, and use of organic solvents. Thus, the development of a new sensitive colorimetric pH chemosensor working in mild environments by simple synthetic approach is of great interest.

Herein, we report synthesis and characterization of a simple ⁴⁵ colorimetric sensor **1** based on combination of triaminoguanidinium and furfural moieties for selective detection of copper ions in 100% aqueous solution. The receptor **1** detected Cu²⁺ ions by color change from colorless to yellow with a fast response time.

Scheme 1 Synthesis of receptor 1.

⁵⁰ Moreover, we were able to determine a certain range of pH simply by observing the color change of the receptor **1** in the presence of Cu²⁺ ions.

The receptor **1** was obtained by a condensation reaction of triaminoguanidinium chloride and furfural with an 85% yield in ⁵⁵ ethanol at room temperature (Scheme 1). **1** was characterized by ¹H-NMR, ¹³C-NMR, ESI-mass spectrometry and elemental analysis.

The colorimetric sensing abilities of **1** were primarily investigated in bis-tris buffer (10 mM, pH 7.0) containing 0.1% ⁶⁰ distilled water (DW) with various metal ions (Cu²⁺, Al³⁺, Ca²⁺, Cd²⁺, Co²⁺, Cr³⁺, Fe³⁺, Fe²⁺, Ga³⁺, In³⁺, K⁺, Mg²⁺, Mn²⁺, Na⁺, Ni²⁺, Pb²⁺ and Zn²⁺). Upon the addition of 6 equiv of each cation, only Cu²⁺ induced a distinct spectral change, while other metal ions showed either none or minimal change in the absorption ⁶⁵ spectra relative to the free receptor **1** (Fig. 1a). Consistent with the UV-Vis spectral change, the solution of **1** in the presence of Cu²⁺ ion changed color from colorless to yellow (Fig. 1b), indicating that

Fig. 1. (a) UV-Vis spectra changes of 1 (30 μ M, buffer-DW (999:1, v/v)) upon the addition of 6 equiv of metal ions. (b) Colorimetric changes of

receptor 1 (30 $\mu M)$ upon the addition of various metal ions (6 equiv) in buffer-DW solution.

Fig. 2. (a) UV-Vis spectra changes of 1 (10 μ M) in the presence of 5 different concentrations of Cu²⁺ ions in buffer-DW (999:1, v/v) solution. (b) Absorption at 331 nm versus the number of equiv of Cu²⁺ added.

receptor 1 could serve as a potential candidate for "naked-eye" chemosensor of Cu^{2+} in aqueous solutions.

- The binding properties of **1** with Cu^{2+} were further studied by ¹⁰ UV-Vis titration experiments. Upon addition of Cu^{2+} ions to the solution of **1**, a sharp absorption band at 325 nm significantly decreased, while two new broad bands at 275 and 425 nm gradually reached maxima at 6 equiv of Cu^{2+} (Fig. 2). At the same time, a clear isosbestic point was observed at 387 nm, ¹⁵ implying the conversion of the free receptor **1** to a copper
- complex. Furthermore, the new absorption peak at 425 nm ($\epsilon = 0.8 \times 10^4 \text{ M}^{-1}\text{cm}^{-1}$) in the visible region might be due to the ligand-to-metal-charge-transfer (LMCT) and indicate the formation of a complex between receptor 1 and Cu²⁺ ions. A Job ²⁰ plot analysis showed a 1:1 stoichiometry for the 1-Cu²⁺ complex (Fig. S1[†]).¹¹

To further examine the binding mode between 1 and Cu^{2+} , a positive-ion ESI mass experiment was carried out. A peak at m/z 227.57 assigned to $[1+Cu+H_2O]^{2+}$ was observed (calcd. 227.13)

- ²⁵ (Fig. S2[†]). In addition, Infrared (IR) spectroscopy was employed to gain a better understanding of the structure of $1-Cu^{2+}$ complex. The bands at 1633 cm⁻¹ and 1302 cm⁻¹ of the IR spectrum of **1** (Fig. S3 (a)[†]) are associated with C=N group and ether group of the furan moiety, respectively. IR spectrum of the solid state **1**-
- ³⁰ Cu²⁺ complex obtained from the reaction of Cu²⁺ and 1 showed that the band 1633 cm⁻¹ of the imine absorption region was shifted to 1614 cm⁻¹, while the ether group was little shifted (Fig. S3 (b)†). These results suggest that Cu²⁺ may coordinate to the nitrogen atoms of the imine moieties of 1. In order to further
- ³⁵ confirm the coordination mode between 1 and Cu²⁺, we took IR spectra of two 1-Ni²⁺ and 1-Cd²⁺ complexes, which might have the same coordination geometry as 1-Cu²⁺ complex (Fig. S3 (c)[†] and Fig. S3 (d)[†]). IR spectra of the solid state 1-Ni²⁺ and 1-Cd²⁺ complexes also showed that the band 1633 cm⁻¹ of imine ⁴⁰ absorption region was shifted to 1605 cm⁻¹ and 1597 cm⁻¹, respectively, while the ether group band (1302 cm⁻¹) showed almost no change. These IR studies further support that Cu²⁺ might bind to the nitrogen atoms of the imine groups of 1, not the

45 Scheme 2 Proposed structure of a 1:1 complex of 1 and Cu²⁺

Fig. 3. (a) Colorimetric competitive experiment of 1 (30 μ M) in the presence of Cu²⁺ (6 equiv) and other metal ions (6 equiv) in buffer-DW 50 (999:1, v/v) solution. (b) Competitive selectivity of 1 (30 μ M) towards Cu²⁺ (6 equiv) in the presence of other metal ions (6 equiv) in buffer-DW solution.

oxygen atoms of the ether moieties. Based on the Job plot, ⁵⁵ Infrared (IR) spectra, and ESI-mass spectrometry analysis, we propose the structure for a 1:1 complex of **1** and Cu²⁺ (Scheme 2).

Based on UV-Vis titration, the association constant (K_a) of 1 with Cu2+ ion was calculated using Benesi-Hildebrand equation (Fig. S4[†]).¹² The K_a value turned out to be 1.1×10^5 M⁻¹, which 60 is within the values $(10^4 \sim 10^5)$ previously reported for Cu²⁺binding chemosensors.^{2b,13} For a comparison, we carried out Job plot and UV-vis titration of 1 toward Ni2+ to obtain the association constant K_a (Fig. S5^{\dagger} and Fig. S6^{\dagger}),¹⁴ because it is well known that Cu2+ and Ni2+ may have a very similar 65 coordination geometry. Based on this UV-vis titration experiment, we calculated the association constant (7.14 x 10^2 M⁻¹) of 1 and Ni^{2+} (Fig. S7[†]). The K_a value of 1- Ni^{2+} complex is much lower than that of $1-Cu^{2+}$ complex, which imply the high selectivity of 1 toward Cu2+ among other metal ions. The detection limit of ⁷⁰ receptor **1** as a colorimetric sensor for the analysis of Cu²⁺ ions was found to be 2.7 x 10^{-6} M (Fig. S8^{\dagger}).¹⁵ The U. S. Environmental Protection Agency (EPA) has set the (a)

(b)

Fig. 4. (a) The color changes of $1-Cu^{2+}$ complex at different pH (2-12) in buffer solution. (b) UV-vis spectra of $1-Cu^{2+}$ complex at different pH values (2-12) in buffer solution.

Fig. 5. (a) The color changes of $1-Cu^{2+}$ complex at different pH values (5.1-5.9) in buffer-DW (999:1, v/v) solution. (b) UV-vis spectra changes of receptor **1** (30 μ M) after the addition of 6 equiv of copper (II) ions at different pH values (pH 5.1-5.9). Inset: Change of the absorption ¹⁰ intensities with pH increase from 2.0 to 12.0.

safe limit of copper in drinking water at 2.0×10^{-5} M. Hence with its much lower detection limit for Cu²⁺ ions, receptor **1** could be a powerful tool for the detection of copper ions in drinking water.

The preferential selectivity of **1** as a colorimetric chemosensor ¹⁵ for the detection of Cu²⁺ was studied in the presence of various competing metal ions. For competition studies, receptor **1** was treated with 6 equiv of Cu²⁺ in the presence of 6 equiv of other metal ions, as indicated in Fig. 3. There was no interference for detection of Cu²⁺ in the presence of Al³⁺, Ca²⁺, Cd²⁺, Co²⁺, Cr³⁺,

²⁰ Fe³⁺, Fe²⁺, Ga³⁺, In³⁺, K⁺, Mg²⁺, Mn²⁺, Na⁺, Ni²⁺, Pb²⁺, and Zn²⁺. Thus, receptor 1 could be used as a selective colorimetric sensor for Cu²⁺ in the presence of most competing metal ions.

The effect of pH on the absorption response of receptor **1** to Cu²⁺ ions was investigated in the pH range of 2 to 12 (Fig. 4). ²⁵ The color of **1**-Cu²⁺ complex remained in yellow color between pH 6 and 12, while its color changed to colorless between pH 2 and 5 (Fig. 4a). These results indicate that Cu²⁺ could be clearly detected by the naked eye or UV-Vis absorption measurements using receptor **1** over a wide pH range of 6.0-12.0.

³⁰ In order to measure the exact pH value showing the color change, we conducted pH titration from pH 5.1 to 5.9 (Fig. 5a). The solution of **1** in the presence of Cu^{2+} ion began to change color at pH 5.4. Thus, one can practically discern whether the pH

Scheme 3 Mechanism of pH response by protonation and deprotonation 35 of the receptor

Fig. 6. (a) Reversible color changes of $1-Cu^{2+}$ (30 μ M) after the sequential addition of HCl and NaOH in bis-tris buffer solution. (b) Reversible changes in absorbance of $1-Cu^{2+}$ complex (30 μ M) at 430 nm after the ⁴⁰ sequential addition of HCl and NaOH in bis-tris buffer solution.

of a certain solution is lower than 5.4 by observing the color change in the presence of the 1-Cu²⁺ complex. As shown in Fig. 5b with the pH increase from 5.1 to 5.9, the absorption peak at 45 325 nm of the 1-Cu²⁺ complex significantly decreased, and concomitantly a new absorption band at 425 nm was formed. There is a well-defined isosbestic point at 350 nm. The inset of Fig. 5b shows the UV-Vis spectral changes in absorbance at 425 nm of 1-Cu²⁺ complex as a function of pH. A steep increase of 50 absorbance was observed between pH 5 and 6. The changes in the UV-Vis spectrum with the decrease of pH could be possibly explained by the protonation of the imine moieties of receptor 1 (Scheme 3). At low pH, three protons bind to the nitrogen atoms of the three-imine moiety of receptor 1, which likely inhibits the 55 binding of Cu^{2+} to 1, resulting in generation of the colorless solution of 1. To further understand this phenomenon, we analysed absorbance change at 366 nm as a function of pH by using the Henderson-Hasselbach-type mass action equation¹⁶ (Fig. $S9^{\dagger}$). The pK_a of 1 from the plot was determined to $_{60}$ be 6. 25 which is in the range of pKa values (5.5-7.6)¹⁷ reported for the protonated imines. This result further confirms the proposed structure of the $1-Cu^{2+}$ complex as shown in Scheme 3. Importantly, the pH-dependent changes in the solution color (Fig. 6a) and the UV-Vis absorption (Fig. 6b) were reversible even 65 after several cycles of sequential alternative addition of HCl and NaOH. These results indicate that the 1-Cu²⁺ complex could be used as a novel and reversible optical pH indicator in a fully aqueous solution.

Since the color change of the 1-Cu²⁺ complex was observed ⁷⁰ above pH 5.4 in 100% aqueous solution, we expected that 1-Cu²⁺ complex might be a novel candidate for a pH probe. Therefore, we have further tested the practical use of the 1-Cu²⁺ complex as a pH indicator by observing the color change in real environmental samples. As shown in Fig. 7, the colorimetric ⁷⁵ experiments were conducted with three samples to estimate their approximate pH values. The colors of distilled and tap water

Fig. 7. The color changes of the three samples (A: distilled water, B: tap water, and C: Soda) in the presence of the 1-Cu²⁺ complex (30 μ M).

- ⁵ samples in the presence of **1**-Cu²⁺ complex changed from colorless to yellow, while no color change was observed in a soda sample. Based on these results, the pH of the soda sample was expected to be lower than 5.4, and those of the distilled and tap water samples were expected to be greater than 5.4. A pH meter
- ¹⁰ showed that the soda had a pH of 3.15, while the distilled and tap water samples had pHs of 6.18 and 7.09, respectively. These results indicate that $1-Cu^{2+}$ complex could be used as a reliable pH indicator for environmental analyses.
- In conclusion, we prepared a simple colorimetric receptor 1 ¹⁵ with high selectivity and sensitivity for Cu²⁺ in water solution. Importantly, the detection limit (2.7 μ M) of 1 for Cu²⁺ falls sufficiently below the limit criterion of drinking water (20 μ M). Moreover, we showed that 1-Cu²⁺ complex can also be used as a colorimetric pH indicator in real environmental samples. Based
- $_{\rm 20}$ on these results, we believe that receptor 1 will be an excellent prototype for the development of a novel colorimetric Cu $^{2+}$ -chemosensor and pH probe.

Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of

²⁵ Education, Science and Technology (2012001725 and 2012008875) are gratefully acknowledged. We thank Prof. Mi Sook Seo (Ewha Womans University) for ESI-mass running and helpful comments.

Notes and references

³⁰ ^a Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 139-743, Korea. Fax: +82-2-973-9149; Tel: +82-2-970-6693; E-mail: qkrdnd112@naver.com and chealkim@seoultech.ac.kr

† Electronic Supplementary Information (ESI) available: [Experimental 35 procedure, Job plots, Benesi-Hildebrand equation plot and detection limit]. See DOI: 10.1039/b000000x/

- (a) M. Liu, T. Wei, Q. Lin and Y. Zhang, *Spectrochim. Acta. Part A*., 2011, **79**, 1837. (b) J. Y. Jung, M. Kang, J. Chun, J. Lee, J. Kim, J. Kim J, Y. Kim, S. Kim, C. Lee and J. Yoon, *Chem. Comm.*, 2013,
- 49,176. (c) Y. Li, X. Zhang, B. Zhu, J. Xue, Z. Zhu and W. Tan, *Analyst*, 2011, 136, 1124. (d) Y. Ruan, C. Li, J. Tang and J. Xie, *Chem. Commum.*, 2010, 46, 9220. (e) Y. K. Jang, U. C. Nam, H. L. Kwon, I. H. Hwang and C. Kim, *Dyes Pigments*, 2013, 99, 6.
- 2 (a) N. R. Chereddy and S. Thennarasu, *Dyes Pigments*, 2011, 91,
 378. (b) F. Yu, W. Zhang, P. Li, Y. Xing, L. Tong, J. Ma and B. Tang, *Analyst*, 2009, 134, 1826. (c) H. Wang, L. Xue, Z. Fang, G. Li and H. Jiang, *New J. Chem.*, 2010, 34, 1239. (d) K. B. Kim, H. Kim, E. J. Song, S. Kim, I. Noh and C. Kim, *Dalton Trans.*, 2013, 42, 16569-16577.

⁵⁰ 3 G. Lan, C. Huang and H. Chang, *Chem. Commun.*, 2010, **46**, 1257.

- 4 (a) J. Chen and K. C. Teo, *Anal. Chim. Acta*, 2001, **450**, 215. (b) Y. Zheng, Q. Huo and P. Kele, *Org. Lett.*, 2001, **3**, 3277. (c) A. Liu, D. Chen, C. Lin, H. Chou and C. Chen, *Anal. Chem.*, 1999, **71**, 1549.
- 5 (a) H. S. Jung, P. S. Kwon, J. W. Lee, J. I. Kim, C. S. Hong, J. W.
 ⁵⁵ Kim, S. Yan, J. Y. Lee, J. H. Lee, T. Joo and J. S. Kim, *J. Am. Chem. Soc.*, 2009, **131**, 2008. (b) I. Kim and U. H. F. Bunz, *J. Am. Chem. Soc.*, 2006, **128**, 2818. (c) C. Huang and H. Chang, *Chem. Commun.*,
 2007, 1215. (d) L. Jiao, J. Li and S. Zhang, *New J. Chem.*, 2009, **33**,
 1888.
- 60 6 (a) Y. Wang, B. Tang and S. Zhang, *Dyes Pigments*, 2011, 91, 294.
 (b) B. Seger, K. Vinodgopal and P. V. Kamat, *Langmuir*, 2007, 23, 5471.
 (c) M. Kordač and V. Linek, *Ind. Eng. Chem. Res.*, 2008, 47,

1310. (d) M. Zhang, M. Li, Q. Zhao, F. Li, D. Zhang, J. Zhang, T. Yi and C. Huang, *Tetrahedron Lett.*, 2007, **48**, 2329.

- ⁶⁵ 7 (a) A. Herland, K. P. R. Nilsson, J. D. M. Olsson, P. Hammarröm, P. Konradsson and O. Inganäs, *J. Am. Chem. Soc.*, 2005, **127**, 2317. (b) J. Han and K. Burgess, *Chem. Rev.*, 2010, **110**, 2709.
 - 8 S. Zhu, W. Lin and L. Yuan, Dyes Pigments, 2013, 99, 465.
- 9 Y. Tan, J. Yu, J. Gao, Y. Cui, Z. Wang, Y. Yang and G. Qian, *RSC Adv.*, 2013, 3, 4872.
 - (a) X. Chen, Z. Li, Y. Xiang and A. Tong, *Tetrahedron Lett.*, 2008, 49, 4697. (b) K. M. Wong, W. Tang, X. Lu, N. Zhu and V. W. Yam, *Inorg. Chem.*, 2005, 44, 1492.
 P. Job, *Ann. Chim.*, 1928, 9, 113.
- 75 12 H. A. Benesi and J. H. Hildebrand, J. Am. Chem. Soc., 1949, 71, 2703.
- 13 (a) Y. Xiang, A. Tong, P. Jin and Y. Ju, Org. Lett., 2006, 8, 2863. (b)
 S. Wu, K. Du and Y. Sung, Dalton Trans., 2010, 39, 4363. (c) G. H.
 Wu, D. X. Wang, D. Y. Wu, Y. Gao and Z. Q. Wang, J. Chem. Sci.,
 2009, 121, 543.
- 14 A Job plot analysis showed a 1:1 stoichiometry for the $1-Ni^{2+}$ complex (Fig. S5†). UV-vis titration of 1 toward Ni²⁺ was carried out at high concentration (120 μ M) of 1, because there is little absorbance change at its low concentration. See Fig. S6 in supporting information.
 - 15 Y. K. Tsui, S. Devaraj and Y. P. Yen, Sens. Actuators B, 2012, 161, 510.
 - (a) C. N. Baki and E. U. Akkaya, J. Org. Chem., 2001, 66, 1512. (b)
 P. Mukerjee and K. Banerjee, J. Phys. Chem., 1964, 68, 3567.
- 90 17 (a) C. Menardo, M. Nechtschein, A. Rousseau and J. Travers, P. Synth. Met., 1988, 25, 311. (b) J. Qian, Y. Xu, X. Qian and S. Zhang, Chem. Phys. Chem., 2008, 9, 1891. (c) Z. Jin, Y. Su and Y. Duan, Sens. Actuators B, 2000, 71, 118. (d) E. Shoji and M. S. Freund, J. Am. Chem. Soc., 2001, 123, 3383.

95

100

105

A highly selective and sensitive colorimetric Cu^{2+} -chemosensor and pH probe for practical use in water soultion has been developed.

10			
15			
20			
25			
30			
35			
40			
45			
50			
55			