This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Combining oxime-based [Mn₆] clusters with cyanometalates: 1D chains of [Mn₆] SMMs from [M(CN)₂]⁻ (M= Au, Ag)

Sergio Sanz, Jamie M. Frost, Giulia Lorusso, Marco Evangelisti, Mateusz B. Pitak, Simon J. Coles, Gary S. Nichol and Euan K. Brechin

The linear [M(CN)₂]⁻ (M= Au, Ag) anions can be used as metalloligands in oxime-based Mn chemistry to afford 1D chains of [Mn₃] Single-Molecule Magnets (SMMs). Supramolecular assemblies are multicomponent systems in which molecular units, or building blocks, are assembled into various architectures in 0-3D. With the realisation that intermolecular interactions may play an important, non-innocent role in influencing the properties of molecules, synthetic chemists have successfully devised multiple strategies to construct such discrete or polymeric materials, harnessing different types of interactions, from simple coordination-driven self-assembly to hydrogen bonding and π-π stacking. Design is often driven by the demand for multifunctional materials with tunable magnetic, conducting or optical properties. Assembling Single-Molecule Magnets (SMMs) into coordination polymers is an area of great interest for chemists and physicists, both for the preparation of organised materials in the solid state and for the study of, and ultimately control over, the effects of inter-SMM interactions.

We recently constructed a large family of oxime-based [Mn₃] and [Mn₆] complexes of general formula [Mn₃III,O(R-sao)(L)_2(Si)₂]ₙ (R = H, Me, Et, Ph; saoH₂ = salicylaldoxime; L = carboxylate, phosphinate, halide, perchlorate etc; S = ROH, H₂O, py etc; n =1,2) whose magnetic properties can be tuned via the twisting of the Mn-N-O-Mn unit (Figure 1). All family members are high yielding, stable in solution and soluble in a variety of solvents. Both contain multiple terminally bonded ligands, solvent molecules and/or counter anions (depending on the reaction conditions) that can be sequentially substituted, whilst maintaining the structural integrity of the magnetic core. This means that we can regard both [Mn₃] and [Mn₆] as simple molecular building blocks from which to construct novel molecule-based, potentially multifunctional, materials. Indeed we have already exploited coordination of the axial, facial acceptor sites (Figure 1, red arrows) and the equatorial donor sites (Figure 1, blue arrows) to construct families of 1-3D coordination polymers.

Thus far, the moieties linking the [Mn₃] and [Mn₆] units via the axial acceptor sites have largely been based on carboxylate or pyridine ligands; the great advantage of both is their sheer number, diversity and ease of synthesis. Another ligand or metalloligand type which falls into this category are the cyanometalates. Indeed, by combining the triangular [MnIII₃,O(oxime)]ₙ-based building blocks with cyanometalate precursors there is the potential to create hybrid materials that incorporate the advantageous physical properties of each building block, i.e. the tunable SMM behaviour of the former and the predictable structure-directing effects and redox activity of the latter. Given the expansive breadth of chemistry already developed for both families of compounds, such hybrid materials may offer a plethora of novel molecule-based magnets possessing interesting physical properties. Herein we present our initial foray into this field by linking [MnIII₆] SMMs into 1D chains through use of the dicyanoaurate and dicyanoargentate anions [M(CN)₂]⁻ by exploiting their linear structure-directing ability and the subsequent aurophilic and argentophilic interactions.

Figure 1. (A) Schematic representation of the [Mn₆O(oxime)]₇⁻ building block highlighting the red, axial acceptor sites and the blue, equatorial donor sites. (B) The [Mn₆O₂(oxime)]₇⁻ core common to the [MnIII₆] family of cluster complexes, highlighting the “free” upper and lower triangular faces. Colour code: Mn = purple, O = red, N = blue.

The reaction of Mn(NO₃)₂·4H₂O, Et-saoH₂, 3-e-py (3-ethynylpyridine), KAu(CN)₂ and LiOMe in MeOH results in the formation of black rod-like crystals of [{MnIII₃(μ₃-O)(Et-sao)₃(3-e-py)₂(Au(CN)₂)₂}]₂MeOHₙ (1) after slow evaporation of the filtered mother liquor after 4 days. Using KAg(CN)₂ and Me-saoH₂ in an otherwise identical reaction yields the analogous species [{Mn₆μ₃-O(Me-sao)₃(3-e-py)₂(Ag(CN)₂)₂}]ₙ (2; see the ESI for full details). Both crystallise in triclinic systems, with structure solution obtained in the P-1 space group.
Dalton Transactions

Figure 2. The structures of complexes (1; A) and (2; B). Colour code as Figure 1. Au = gold, Ag = silver. H-atoms, some C-atoms and solvent molecules have been removed for clarity.

The \{Mn^{III}\}_6 cores in both complexes are analogous to other members of this family \(^5,6\) and comprise two oxo-centred triangular \(\text{[Mn}^{III}\text{]}\) triangles linked along each edge of the triangle and between triangles through the -N-O- moiety of the oxime ligand; the latter also being mediated via two phenolic O-atoms.

The triangular faces contain one terminally bonded 3-e-py molecule and two \(\text{[M(CN)}_2\text{]}^\text{2-}\) anions. Interestingly these anions are bonded to different Mn ions in 1 and 2, as can be seen in Figure 2; Mn2 and Mn3 in the former and Mn1 and Mn2 in the latter. All Mn ions are in the 3+ oxidation state, as confirmed by a combination of bond-length considerations, BVS calculations, and charge-balance. All are six-coordinate adopting distorted octahedral geometries with their Jahn-Teller axes approximately perpendicular to the \([\text{Mn}_3]\) plane and parallel to the axis of propagation of the chain. The Mn-N-O-Mn torsion angles are 31.64°, 30.42° and 39.26°; and 34.95°, 23.78° and 36.15° for 1 and 2 respectively. The former has two angles close to (one above, one below) the 31° mark previously suggested as the tipping point between ferro- and antiferromagnetic nearest-neighbour exchange. \(^5,6\) In general the torsion angles are smaller in 2 than in 1 reflecting the replacement of the larger Et-sao\(^2-\) with the smaller Me-sao\(^2-\). In addition, the angles are somewhat smaller than those seen in their molecular counterparts, likely due to the “flattening” influence of the two \(\text{[M(CN)}_2\text{]}^\text{2-}\) ions and the 3-e-py ligand that sit on top of the triangular faces. The μ_2-O\(^2-\) which sits at the centre of this triangle lies 0.157 Å and 0.073 Å above the [Mn\(^3\)] plane toward the [M(CN\(_\text{2}\)]\(^2\) ions, in 1 and 2, respectively.

There are several intra- and intermolecular H-bonding interactions: in both, the terminally bonded alcohols H-bond to phenolic and oximic O-atoms (\(-2.9\text{-}3.0\text{Å}\)), with the former also H-bonded to the MeOH solvent of crystallisation (~2.9 Å) in 1. The closest inter-chain interaction occurs between oxime ligands with the C…C distances between neighbouring Ph and Et/Me groups of the order of 3.3-3.9 Å. The closest Mn…Mn separation in 1 is over 10 Å. In 2 the closest inter-molecular interactions occur between neighbouring 3-e-py ligands, and between the terminally bonded MeOH molecules and the Ph rings of the oxime ligands at a C…C distance of ~3.4 Å. The closest Mn…Mn separation is ~7.4 Å, somewhat shorter than that in 1, presumably as a result of the absence of any interstitial solvent. Distances between neighbouring Au and Ag ions are ~3.6 Å, within the range expected for auro- and argentophilic interactions. \(^10\)

Direct current magnetic susceptibility studies were performed on polycrystalline samples of 1 and 2 in the 5–300 K range in an applied field of 0.1 T. The results are plotted as the χ_M vs. \(T\) in Fig. 3. The 300 K values of 17.8 and 17.5 cm\(^3\) K mol\(^{-1}\) for 1 and 2 respectively are close to the spin-only value of 18 cm\(^3\) K mol\(^{-1}\) expected for six non-interacting high-spin Mn\(^{III}\) (3d\(^4\)) ions with $g = 2.0$. For 1 the value of χ_M remains relatively constant until ~100 K, rises slightly to a maximum value of 18.0 cm\(^3\) K mol\(^{-1}\) at 80 K, from where it falls abruptly to a value of 3.17 cm\(^3\) K mol\(^{-1}\) at 5 K. The value of χ_M of 2 follows a very similar path in the high temperature (300 - 100 K) region, but deviates at lower temperatures, dropping to a small “plateau” or “shoulder” in the \(T = 20\text{-}10\text{ K}\) interval with a value between 14-15 cm\(^3\) K mol\(^{-1}\), before dropping more abruptly to reach a minimum value of 10.85 cm\(^3\) K mol\(^{-1}\) at 5 K. Both behaviours are indicative of the presence of competing and weak ferro- and antiferromagnetic exchange interactions. We were able to successfully fit the data for 1 and 2 (down to \(T = 25\text{ K}\) to avoid the effects of zfs and/or any inter-molecular interactions) adopting the model schematically shown in the inset of Figure 3. The chosen coupling scheme is a reflection of the different Mn-O-N-Mn torsion angles present, in accordance with previous magneto-structural correlations for this family of complexes. \(^5,6\) A fit of the experimental data to a Hamiltonian of the type

$$
\hat{H} = -2J_{1}(\hat{S}_1 \cdot \hat{S}_2 + \hat{S}_3 \cdot \hat{S}_4 + \hat{S}_5 \cdot \hat{S}_6 + \hat{S}_7 \cdot \hat{S}_8 + \hat{S}_9 \cdot \hat{S}_{10} + \hat{S}_{11} \cdot \hat{S}_{12}) - 2J_{2}(\hat{S}_1 \cdot \hat{S}_3 + \hat{S}_5 \cdot \hat{S}_7) + \mu_B B g \sum_i S_i
$$

where J is the isotropic exchange interaction parameter, \hat{S} is a spin-operator, \(i\) runs from 1 to 6, μ_B is the Bohr magneton, B is the applied magnetic field, $g = 2$ is the g-factor of the Mn\(^{III}\) ions, affords $J_1 = +2.56\text{ cm}^{-1}$, $J_2 = -5.25\text{ cm}^{-1}$ for 1, and $J_1 = +2.77\text{ cm}^{-1}$, $J_2 = -6.17\text{ cm}^{-1}$ for 2. The ground state in both cases is an $S = 4$,
state consistent with other family members with similar topologies.4–6 Isothermal field-dependencies (Figure S1) are also consistent with this picture, showing a tendency to reach a saturation value of ~8 NμB at higher fields.

In order to investigate the possibility of interactions along the chain between different [Mn] moieties we performed ac susceptibility measurements in the 1.8 – 10 K temperature range with a 3.5 G ac field oscillating at frequencies up to 1284 Hz (Fig. S2). Both I and 2 exhibit a clear frequency-dependence in both the real and imaginary components. An Arrhenius plot constructed from the χ’M vs. T data (τ = τo exp(Ueff/kBT)) where τo is the pre-exponential factor, τ is the relaxation time, Ueff is the barrier to the relaxation of the magnetisation and kB is the Boltzmann constant) gave τo = 1.5 x 10^-10 s and Ueff = 39.9 K for I, and τo = 5.4 x 10^-10 s and Ueff = 50.7 K for 2 (Figures S3-4). The presence of significant intra-chain interactions between individual [Mn] moieties would be expected to slow down the spin dynamics at low temperatures and this would be manifested in a smaller frequency shift, k. For the experimentally accessed range of frequencies, using the average value of blocking temperature TkB = 2.5 and 3.4 K for I and 2, respectively, the frequency shift of TkB is calculated as k = ΔTkB/ (TkB Δlog f), where ΔTkB is the change in TkB for the frequency change Δlog f = 1.7 and 2.2 for I and 2, respectively. This calculation provides the k = 0.14 and 0.15 for I and 2, respectively, which are within the range expected for super-paramagnets and close to those reported for molecular [Mn] complexes. This suggests that the relaxation is in accordance with SMM behaviour, where for ideal non-interacting superparamagnets 0.1 ≤ k ≤ 1.11 and is not attributed to long range interactions mediated through the [M(CN)2]2- (M = Au, Ag) units.

Conclusions

Initial reactions combining [in situ generated] oxime-based [Mn]n building blocks with cyanometalate precursors have produced chains of [Mn]n SMMs. Their construction highlights the potential of incorporating magnetically tuneable SMM building blocks with the structure-directing effects and redox activity of Prussian Blue materials. The capacity to develop an enormous array of new materials is clear, and such hybrid materials may offer a plethora of novel molecule-based magnets possessing interesting physical properties.

Acknowledgements

We thank MINECO (MAT2012-38318-C03), the EC for a Marie Curie-IEF to GL (PIEF-GA-2011-299356) and the EPSRC.

Notes and references

Combining oxime-based [Mn₆] clusters with cyanometalates: 1D chains of [Mn₆] SMMs from [M(CN₂)]⁻ (M= Au, Ag)

Sergio Sanz, Jamie M. Frost, Giulia Lorusso, Marco Evangelisti, Mateusz B. Pitak, Simon J. Coles, Gary S. Nichol and Euan K. Brechin

The linear [M(CN)₂]⁻ (M= Au, Ag) anions can be used as metalloligands in oxime-based Mn chemistry to afford 1D chains of [Mn^{III}_6] Single-Molecule Magnets (SMMs).