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deposition of Ni on the FTO substrate (Fig. S31). A Faradaic 
yield of approximately 60 to 71% was observed for all four 
deposits on glassy carbon and FTO glass modified with the Ni. 
The   total  amount  of  H2  generated  varied  widely  on  glassy  
carbon (10 to 2000 µmol after 20 h bulk electrolysis), but was 
more reproducible on FTO coated glass (9 to 55 µmol after 10 h 
electrolysis, Fig. S32 and Table S1). 

Modifying the FTO electrode with Ni(NO3)2·6H2O by the 
same procedure resulted in the formation of comparable 
amounts of H2, but with a reduced Faradaic yield of only 32%, 
suggesting that the molecular precursor does not only have an 
effect on the composition and morphology of Ni deposit, but 
also on the activity of the Ni-modified electrodes. We also 
compared the Ni particle electrodes with the benchmark proton 
reduction catalyst Pt.19 A metallic Pt foil with the same 
geometrical surface area (approximately 1.6 cm2) was therefore 
tested as the working electrode under the same experimental 
conditions. The activity of the Pt foil is approximately an order 
of magnitude higher than the Ni particle modified FTO 
electrodes. 

Conclusions 

We have demonstrated the synthesis and characterisation of the 
first series of complexes, which resemble the primary 
coordination sphere of the Ni site in [NiFeSe] hydrogenases. 
Single crystal X-ray structures are reported for all complexes. 
Two complexes, [Ni(LS)(MesSe)]– and [Ni(LSe)(MesS)]–, display 
the key structural features of the Se-containing enzyme such as 
a distorted four-coordinate ‘NiS3Se’ environment. 
   Aerobic oxidation of complex [Ni(LS)(MesSe)]– results in the 
oxidation of the monodendate selenium ligand to form a 
dichalcogenide, whereas Ni remained in the +2 oxidation state. 
The same behaviour was observed in the active site of D. 
vulgaris [NiFeSe] hydrogenase after exposure to O2.

9f, 9g 
Reactivity of [Ni(LS)(MesSe)]– with HBF4 leads to protonation 
of the selenolate ligand, indicating that the selenium atom is 
indeed a plausible protonation site during H2 cycling in 
[NiFeSe] hydrogenases. Although unrelated to the biomimetic 
composition of the Ni molecules, the complexes also act as 
precursors to Ni-containing particles on an electrode surface, 
which show high electroactivity in pH neutral aqueous protons. 
Work is currently in progress to introduce iron in our Ni site 
precursors and assemble a full structural [NiFeSe] hydrogenase 
model complex. 

Experimental Section 

Materials and Methods. Unless otherwise stated all compounds 
were prepared using an anhydrous and anaerobic MBraun glovebox 
or Schlenk techniques. All starting materials were purchased from 
commercial suppliers in the highest available purity for all analytical 
measurements and used without further purification. Organic 
solvents were dried and deoxygenated prior to use. Mesityl selenol20 
and [Ni(LS)]n

11l (Scheme 1) were prepared according to literature 
procedures. 

Physical Measurements. 1H and 13C NMR spectra were recorded on 
a Bruker DPX-400 MHz spectrometer and the spectra referenced 
against the solvent peak. The 77Se NMR spectrum was recorded on a 
Bruker Avance 500 MHz BroadBand NMR spectrometer and 
referenced against dimethyl selenide in d-benzene as an external 
reference at 0 ppm. The mass spectrum of (‘LSe-H’)2 was carried out 
on a Waters ZQ HPLC-MS. The mass spectrum of ‘LSe’-H2

 and 
dimesityl diselenide were recorded by the University of Cambridge 
Mass Spectrometry Service using a Bruker Bio Apex 4.0 FTICR EI 
MS. The mass spectra of the metal complexes and inorganic salts 
were recorded on a Waters Quattro LC electrospray ionisation mass 
spectrometer. Expected and experimental isotope distributions of 
[Ni(LE)(MesE’)]– were compared. Elemental analysis was carried out 
by the microanalysis service of the Department of Chemistry, 
University of Cambridge. IR spectra were recorded on a Perkin 
Elmer SpectrumOne FTIR spectrometer with an ATR sampling 
accessory. Electronic absorption spectra were recorded on a Varian 
Cary UV-Vis 50 Bio spectrometer. The SEM images were obtained 
using a Philips XL30 132-10 electron microscope. Energy-
dispersive X-ray spectroscopy (edax PV7760/68 ME) was used at a 
15 kV acceleration voltage, spot size 4.0 and an acquisition time of 
at least 100 s. The elements were assigned and atomic ratios were 
identified using the built in software (EDAX). 
X-ray Crystallographic Studies. All data were recorded with Mo 
Kα radiation (λ = 0.71073 Å) on a Nonius Kappa CCD 
diffractometer fitted with an Oxford Cryosystems Cryostream 
cooling apparatus. The single crystals were mounted in Paratone N 
oil on the tip of a glass fibre and kept under a stream of N2. Structure 
solution was carried out using direct methods and refined by least 
squares (SHELXL-97)21 using Chebyshev weights on Fo

2. The 
weighted R-factor, wR and goodness of fit (GOF) are based on F2. 
The hydrogen atoms were assigned to idealised positions and given 
thermal parameters of 1.5 (methyl hydrogens) or 1.2 (non-methyl 
hydrogens) times the thermal parameter of the carbon atom to which 
they were attached. The tridentate ‘LSe’ in the complexes (n-
Bu4N)[Ni(LSe)(MesS)] and  (n-Bu4N)[Ni(LSe)(MesSe)] exhibits the 
same sort of disorder, in each case modelled as two poorly resolved 
S/Se sites. Crystal data, data collection parameters, and structure 
refinement details for the complexes are given in Table 2. Selected 
bond lengths and angles are shown in Table 1. The mean bond 
lengths and angles for the discussion in the paper were calculated as 
follows: for a sample of n observations xi, a weighted mean value 
(xu) with its standard deviation (σ) was calculated using the 
following equations: xu =  Σi xi/n, σ ={ Σi (xi − xu)

2/[n(n − 1)]}1/2. 

Electrochemical Measurements. CVs were recorded at room 
temperature under Ar using an IviumStat or CompactStat 
potentiostat. A standard three electrode cell was used for all 
measurements with a glassy carbon disc working (3 mm diameter), a 
platinum foil counter and a Ag/Ag+ (organic solutions) or 
Ag/AgCl/KCl(sat) (aqueous solutions) reference electrode. For CVs 
recorded in acetonitrile containing n-Bu4NBF4 (0.1 M, 
electrochemistry grade, Sigma Aldrich), the Fc/Fc+ couple was used 
as an external reference and potentials were converted to the normal 
hydrogen electrode (NHE) by adding 630 mV in acetonitrile.22 For 
CVs in a pH 7 aqueous phosphate solution (0.1 M), potentials were 
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converted by adding 0.2 V to the potential against 
Ag/AgCl/KCl(sat).

23 

Controlled potential electrolysis (CPE). CPE in phosphate solution 
(0.1 M, pH 7) was carried out using a fluoride doped tin oxide (FTO) 
coated glass electrode (geometrical surface area in contact with 
electrolyte solution approximately 1.6 cm2), a platinum mesh counter 
and a Ag/AgCl reference electrode. CPE was carried out in an 
airtight electrochemical cell containing N2 with 2% methane as 
internal standard for gas chromatography, GC, analysis. The 
headspace gas was analysed using an Agilent 7890A GC equipped 
with a 5 Å molecular sieve column, using N2 carrier gas with a flow 
rate of approximately 3 mL min–1. The GC columns were kept at 40 
ºC and a thermal conductivity detector (TCD) was used. 
Measurements were taken every 2 h and the cell was purged to 
remove all hydrogen following each GC measurement. All 
measurements were repeated at least three times. Faradaic efficiency 
(%) = 100 [H2 (mol) × 2F/ Q (C)] 

Synthesis of ‘LSe’-H2. The first step of this reaction must be 
carried out under argon. Lithium (25% dispersion in oil, Sigma 
Aldrich) was washed with hexane (3 x 2 mL). To the de-oiled 
Li metal (0.080 g, 11.53 mmol) was added 4,4’-di-tert- 
butylbiphenyl (DTBB, 0.115 g, 432 µmol) in tetrahydrofuran (3 
mL) and the reaction mixture was cooled to –90 oC 
(acetone/liquid N2 bath), resulting in the formation of a bright 
blue solution of a radical anion of DTBB.14 Thianthrene (1.25 
g, 5.76 mmol) in tetrahydrofuran (15 mL) was added at –90 oC 
and the resulting beige solution was stirred for eight hours 
during which time the temperature of the reaction mixture was 
allowed to slowly reach –50 ºC. Selenium powder (0.455 g, 
5.76 mmol) was added in one batch and the orange solution was 
allowed to reach room temperature slowly overnight. Degassed 
water (50 mL) was slowly added and the aqueous layer was 
extracted with diethyl ether (4 x 50 mL) to remove DTBB and 
any remaining unreacted starting material. The aqueous layer 
was then acidified with aqueous HCl (2 M, 50 mL) and 
extracted with dichloromethane (3 x 25 mL). The combined 
organic layers were washed with aqueous HCl (2 M, 25 mL), 
and the solvent was removed under vacuum to give a yellow 
gum of crude (‘LSe–H’)2, which was used for the next step 
without further purification.24 The crude (‘LSe–H’)2 was 
dissolved in tetrahydrofuran (15 mL) and added dropwise to a   
solution of LiAlH4  (68 mg, 1.79 mmol)  in  tetrahydrofuran  (3  mL)  
with stirring at room temperature. The resulting colourless solution 
was stirred overnight. Aqueous HCl (2 M, 12 mL) was then added 
dropwise and the product was extracted with diethyl ether (3 x 20 
mL). The combined extracts were washed with aqueous HCl (2 M, 
12 mL) and the solvent was removed under high vacuum at room 
temperature to give the product as a white solid, which was purified 
by recrystallisation from a saturated solution in tetrahydrofuran at 
-35 ºC. Yield: 494 mg, 29%. 1H NMR (400 MHz, CDCl3) δ/ppm = 
7.47 (1H, dd), 7.33 (1H, dd), 7.00-7.19 (6H, m), 4.05 (1H, s, SH), 
1.91 (1H, s, SeH); EI-MS (CHCl3) +ive: 297.94 (30%, LSe); 

elemental analysis calculated (%) for C12H10S2Se C 48.48, H 3.39; 
found C 48.67, H 3.39. 

Synthesis of [NiLSe]n. A solution of ‘LSe’-H2 (200 mg, 671 µmol) in 
tetrahydrofuran (3 mL) was added dropwise to a solution of 
Ni(OCOCH3)2·4H2O (167 mg, 671µmol) in methanol (0.5 mL). The 
dark brown suspension was heated to reflux for four hours, 
whereupon an insoluble black precipitate was separated by filtration, 
washed with tetrahydrofuran (3 x 2 mL) and dried under vacuum at 
room temperature. Yield 208 mg, 87%. Elemental analysis 
calculated (%) for [C12H8NiS2Se]n C 40.72, H 2.28; found C 40.78, 
H 2.31. ATR-IR ṽ/cm-1 = 3040, 1568, 1441, 1424, 1239, 1154, 1085, 
1038, 757, 746. [NiLSe]n is insoluble in any common organic 
solvent. 
General procedure for synthesis of (n-Bu4N)[Ni(LE)(MesE’)]. To 
a solution of NaOMe in methanol was added mesityl thiol or selenol. 
The solution was stirred for 20 min and then added to a stirred 
suspension of [NiLE]n in tetrahydrofuran at room temperature. The 
reaction mixture was stirred for one hour until [NiLE]n fully 
dissolved giving a brown solution. A solution of n-Bu4NOH·30H2O 
in methanol was added and the solution was stirred for an additional 
20 min. All solvents were removed under high vacuum at room 
temperature and the brown residue was taken up in tetrahydrofuran 
and filtered through a Millex FG PTFE microfilter (pore size 20 
µm). Hexane was layered on top of the tetrahydrofuran solution and 
the undisturbed mixture gave brown crystalline needles of the 
product after several days. The crystals were separated by filtration 
and washed with hexane. X-ray diffraction quality single crystals 
were selected directly from the reaction vessel. 
(n-Bu4N)[Ni(LSe)(MesS)]. NaOMe (28 mg, 525 µmol) in methanol 
(1 mL), mesityl thiol (79 µL, 525 µmol), [Ni(LSe)]n (186 mg, 525 
µmol) in tetrahydrofuran (4 mL), n-Bu4NOH·30H2O (420 mg, 525 
µmol) in methanol (0.75 mL). Yield 280 mg, 71%. 1H NMR (400 
MHz, THF-d8) δ/ppm = 7.52 (1H, d, LSe) 7.43 (1H, d, LSe), 7.38 (1H, 
d, LSe), 7.30 (1H, d, LSe), 6.79-6.97 (6H, m, LSe and MesS), 3.34 (8H, 
m, n-Bu4N) 2.79 (6H, s, MesS), 2.46 (3H, s, MesS), 1.59 (8H, m, n-
Bu4N), 1.56 (8H, m, n-Bu4N), 1.37 (12H, t, n-Bu4N); ESI-MS 
(CH2Cl2) –ive: 505 (100%, [Ni(LSe)(MesS)]–), +ive: 242 (100%, n-
Bu4N

+); elemental analysis calculated (%) for C37H55NiS3Se C 
59.44, H 7.41, N 1.87; found C 59.17, H 7.36, N 1.90. 
(n-Bu4N)[Ni(LSe)(MesSe)]. NaOMe (7.6 mg, 141 µmol) in methanol 
(2mL), mesityl selenol (28.1 mg, 141 µmol), [Ni(LSe)]n (50 mg, 141 
µmol) in tetrahydrofuran (3 mL), n-Bu4NOH·30H2O (113 mg, 
141µmol) in methanol (1 mL). Yield 77 mg, 68%. 1H NMR (400 
MHz, THF-d8) δ/ppm = 7.59 (1H, d, LSe), 7.52 (1H, d, LSe), 7.26 
(1H, dd, LSe), 7.17 (1H, d, LSe), 6.78-6.88 (4H, m, LSe), 6.66 (2H, s, 
MesSe), 3.41 (8H, m, n-Bu4N) 2.71 (6H, s, MesSe), 2.11 (3H, s, 
MesSe), 1.66 (8H, m, n-Bu4N), 1.35 (8H, m, n-Bu4N), 0.90  (12H, t, 
n-Bu4N); ESI-MS (CH2Cl2) –ive: 553 (100%, [Ni(LSe)(MesSe)]–), 
+ive: 242 (100%, n-Bu4N

+); elemental analysis calculated (%) for 
C37H55NiNS2Se2 C 55.93, H 6.98, N 1.76; found C 55.85, H 6.94, N 
1.81.  
(n-Bu4N)[Ni(LS)(MesSe)]. NaOMe (17.6 mg, 326 µmol) in methanol 
(2mL), mesityl selenol (64.9 mg, 326 µmol), [Ni(LS)]n (100 mg, 163 
µmol) in tetrahydrofuran (3 mL), n-Bu4NOH·30H2O (261 mg, 326 
µmol) in methanol (1 mL). Yield 50 mg, 72%. 1H NMR (400 MHz, 
THF-d8) δ/ppm = 7.60 (2H, d, LS), 7.09 (2H, d, LS), 6.83 (2H, t, LS), 
6.72 (2H, t, LS), 6.66 (2H, s, MesSe), 3.41 (8H, m, n-Bu4N) 2.73 (6H, 
s, MesSe), 2.11 (3H, s, MesSe), 1.67 (8H, m, n-Bu4N), 1.36 (8H, m, n-
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Bu4N), 0.90 (12H, t, n-Bu4N); ESI-MS (CH2Cl2) –ive: 505 (100%, 
[Ni(LS)(MesSe)]–), +ive: 242 (100%, n-Bu4N

+); elemental analysis 
calculated (%) for C37H55NiNS3Se C 59.44, H 7.41, N 1.87; found C 
59.59, H 7.35, N 1.93.  
(n-Bu4N)[Ni(LS)(MesS)]. NaOMe (65 mg, 1.21 mmol) in methanol 
(3 mL), mesityl thiol (182 µL, 1.21 mmol), [Ni(LS)]n (400 mg, 651 
µmol) in tetrahydrofuran (9 mL), n-Bu4NOH·30H2O (966 mg, 1.21 
mmol) in methanol (3 mL). Yield 672 mg, 79%. 1H NMR (400 
MHz, THF-d8) δ/ppm = 7.62 (2H, d, LS), 7.12 (2H, d, LS), 6.92 (2H, 
d, LS), 6.79 (2H, d, LS), 6.71 (2H, s, MesS), 3.49 (8H, m, n-Bu4N), 
2.77 (6H, s, MesS), 2.17 (3H, s, MesS), 1.75 (8H, m, n-Bu4N), 1.43 
(8H, m, n-Bu4N), 0.98 (12H, m, n-Bu4N); ESI-MS (CH2Cl2) –ive: 
457 (100%, [Ni(LS)(MesS)]–), +ive: 242 (100%, n-Bu4N

+); elemental 
analysis calculated (%) for C37H55NNiS4 C 63.41, H 7.91, N 2.00; 
found C 63.46, H 7.92, N 2.08. 
Synthesis of (PPh4)[Ni(LS)(MesSe)]. Elemental Se (24 mg, 300 
μmol) was added to mesityl magnesium bromide (300 μL of a 1 M 
solution in diethyl ether). The solution was stirred overnight until the 
Se powder has dissolved and the colour changed from orange to 
yellow. Tetrahydrofuran (2 mL) was added followed by [Ni(LS)]n 
(96 mg, 300 μmol) and this was stirred for one hour until  [Ni(LS)]n 
dissolved giving a brown solution. A solution of PPh4Br (126 mg, 
300 μmol) in methanol (0.5 mL) was added and the solution was 
stirred for 20 min. The solution was concentrated to dryness under 
reduced pressure. The brown residue was dissolved in 
tetrahydrofuran (3 mL) and filtered to through a Millex FG PTFE 
microfilter (pore size 20 µm). Diethyl ether was added to precipitate 
the brown product which was separated by filtration, washed with 
diethyl ether and dried under vacuum. Yield 169 mg, 67%. 1H NMR 
(400 MHz, CDCl3) δ/ppm = 7.66 (4 H, m, PPh4), 7.52 (8H, m, PPh4), 
7.49 (8H, m, PPh4), 7.42 (2H, d, LS), 7.04 (2H, d, LS), 6.79 (2H, dd, 
LS), 6.70 (4H, m, LS and MesSe), 2.52 (6H, s, MesSe), 2.08 (3H, s, 
MesSe); 13C NMR (500 MHz, CDCl3) δ/ppm = 156.6, 143.8, 134.4 
(PPh4), 133.0, 130.8 (PPh4), 129.8, 128.3, 127.0, 126.9, 120.2, 117.8 
(PPh4), 117.1 (PPh4), 27.2 (MesSe),  21.1 (MesSe); 77Se NMR (500 
MHz, CD2Cl2) δ/ppm = 605.4; ESI-MS (CD2Cl2): –ive: 505 (100%, 
[Ni(LS)(MesSe)]-), +ive: 339 (100%, PPh4

+); Elemental analysis 
calculated (%) for C45H39NiPS3Se C 63.99, H 4.65, P 3.67; found C 
63.60, H 4.50, P 3.60. 
Synthesis of (PPh4)[Ni(LS)(MesS)]. To a solution of NaOMe in (17 
mg, 309 μmol) in methanol (1 mL) was added mesityl thiol (50 μL, 
309 μmol). The solution was stirred for 20 min and then added to a 
stirred suspension of [NiLS]n (100 mg, 309 μmol) in tetrahydrofuran 
(3 mL) at room temperature and the solution was stirred for one hour 
until [NiLS]n fully dissolved giving a brown solution. A solution of 
PPh4Br in methanol was added and this was stirred for 20 min. The 
solution was concentrated to dryness under reduced pressure. The 
brown residue was dissolved in tetrahydrofuran (3 mL) and filtered 
through a Millex FG PTFE microfilter (pore size 20 µm). Diethyl 
ether was added to precipitate the brown product which was 
separated by filtration, washed with diethyl ether and dried under 
vacuum. Yield 158 mg 64%. 1H NMR (400MHz, CD2Cl2) δ/ppm = 
7.92 (4H, m, PPh4), 7.78 (8H, m, PPh4), 7.62 (8H, m, PPh4), 7.49 
(2H, d, LS), 7.14 (2H, d, LS), 6.89 (2H, dd, LS), 6.80 (2H, m, LS and 
MesS), 2.59 (6H, s, MesS), 2.17 (3H, m, MesS); 13C NMR (500 MHz, 
CD2Cl2) δ/ppm = 155.4, 142.9, 140.3, 135.7, 134.4 (PPh4), 134.1, 

130.7, 130.6 (PPh4), 129.2, 127.3, 127.3, 120.4, 117.8 (PPh4), 117.1 
(PPh4), 24.2 (MesS), 20.8 (MesS); ESI-MS (CH2Cl2); –ive: 457 
(100%, [Ni(LS)(MesSe)]-), +ive: 339 (100%, PPh4

+); Elemental 
analysis calculated (%) for C45H39NiPS4 C 67.75, H 4.93, P 3.88; 
found C 67.40, H 4.95, P 3.91. 
Reaction of (PPh4)[Ni(LS)(MesSe)] with Oxygen. 
(PPh4)[Ni(LS)(MesSe)] (116 mg, 137 μmol) in dichloromethane (5 
mL) was exposed to atmospheric O2 for one day with stirring to give 
a brown solution containing dimesityl diselenide with a black 
precipitate characterised as [Ni(LS)]n. Isolation and characterisation 
of precipitate containing as [Ni(LS)]n: The solid was separated by 
filtration and washed with dichloromethane, methanol and diethyl 
ether and dried under vacuum. ATR-IR spectroscopy, elemental 
analysis and single crystal X-ray analysis identified the solid product 
as [Ni(LS)]n

12l
  (22 mg, 53%). ATR-IR ṽ/cm–1 = 3036, 1442, 1425, 

1251, 1092, 759, 727. Isolation and characterisation of filtrate 
containing (MesSe)2: Diethyl ether (15 mL) was added to the filtrate 
solution to precipitate a tetraphenyl phosphonium salt as a pink solid 
which was separated by filtration and washed with diethyl ether (42 
mg). 1H NMR (400 MHz, CD2Cl2) δ/ppm = 7.66 (4 H, m, PPh4), 
7.52 (8H, m, PPh4), 7.49 (8H, m, PPh4), ESI-MS (CD2Cl2): +ive: 
339 (100%); λmax/nm (acetonitrile) 226 nm. The solvent was 
removed from the resulting filtrate to give crude dimesityl diselenide 
as a yellow solid, which was purified by filtration through silica in 
diethyl ether (10 mg, 36%) 1H NMR (400 MHz, CDCl3) δ/ppm = 
6.77 (2H, s), 2.18 (3H, s), 2.14, (6H, s), EI-MS 398.0); λmax/ nm 
(acetonitrile) 289. 
Reaction of (PPh4)[Ni(LS)(MesS)] with Oxygen. 
(PPh4)[Ni(LS)(MesSe)] (30.7 mg, 43.8 μmol) in dichloromethane (5 
mL) was exposed to atmospheric O2 for five days under stirring to 
give a brown solution containing diemesityl disulfide with a black 
precipitate, characterised as [Ni(LS)]n. Isolation and characterisation 
of precipitate containing as [Ni(LS)]n: The solid was separated by 
filtration and washed with dichloromethane, methanol and diethyl 
ether and dried under vacuum. ATR-IR spectroscopy and elemental 
analysis identified the solid product as [Ni(LS)]n

12l
  (9.6 mg, 72%). 

Isolation and characterisation of filtrate containing (MesSe)2: 
Diethyl ether (15 mL) was added to the filtrate to precipitate a 
tetraphenyl phosphonium salt as a pink solid which was separated by 
filtration, washed with diethyl ether and dried under vacuum (11 
mg). The solvent was removed from the resulting filtrate to give 

crude dimesityl disulfide as a pale yellow solid, which was purified 
by filtration through silica in diethyl ether, (5.8 mg, 88%) 1H NMR 
(400 MHz, CDCl3) δ/ppm = 6.82 (2H, s), 2.18 (3H, s), 2.14 (6H, s). 
Reaction of (n-Bu4N)[Ni(LE)(MesE’)] with Oxygen. Reaction 
of (n-Bu4N)[Ni(LE)(MesE’)]– with a n-Bu4N cation gives the 
dichalocogenides (MesE’)2 along with a mixture of insoluble 
products which could not be unequivocally isolated and 
characterised. 

Reaction of (n-Bu4N)[Ni(LS)(MesSe)] with HBF4. To a 
solution of (n-Bu4N)[Ni(LS)(MesSe)] (20 mg, 26.7 µmol) in 
dichloromethane (3 mL) was added HBF4⋅Et2O (3.7 µL, 26.7 
µmol) in dichloromethane (2 mL) and the reaction mixture was 
stirred for 30 min, whereupon [Ni(LS)]n (5.5 mg, 64%) formed 
as a black precipitate. The solid was separated by filtration and 
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washed with dichloromethane, methanol and diethyl ether, 
dried under vacuum and characterised by ATR-IR and 
elemental analysis. Diethyl ether was added to the remaining 
filtrate to precipitate crude n-Bu4NBF4, which was separated by 
filtration, washed with diethyl ether and dried under vacuum, 
1H NMR (400MHz, CDCl3; δ/ppm = 3.20 (8H, m), 1.62 (8H, 

m), 1.44 (8H, m), 1.00 (12 H, t), ESI MS (CHCl3); –ve: 87 
(100%, BF4

–) +ive: 242 (100%, n-Bu4N
+). Diethyl ether was 

removed from the remaining filtrate under vacuum to yield 
mesityl selenol (4.3 mg, 79%). 1H NMR (400 MHz, CDCl3) 
δ/ppm = 6.88 (2 H, s), 2.34 (6H, s), 2.23 (3H, s), 1.24 (1H, s). 

Table 2. Crystal data and structure refinement for complexes shown in Fig. 3 (for selected bond lengths and angles see Table 1). 

    (a) R1 = Σ||Fo|–|Fc||/Σ|Fo|. (b) wR2 = {Σ[w(Fo
2–Fc

2)2]/ Σ[w(Fo
2)2]}1/2. 

 
Reaction of (n-Bu4N)[Ni(LS)(MesS)] with HBF4. To a solution 
of (n-Bu4N)[Ni(LS)(MesS)] (50 mg, 71.3 µmol) in 
dichloromethane (4 mL) was added HBF4⋅Et2O (9.7 µL, 71.3 
µmol) in dichloromethane (2 mL) and this was stirred for 30 
min. [Ni(LS)]n (20.9 mg, 83%) and mesityl thiol (8 mg, 74%) 
formed in analogy to the reaction of (n-Bu4N)[Ni(LS)(MesSe)] 
with HBF4 and were characterised by the same methods. 1H 
NMR of mesityl thiol (400MHz, CDCl3) δ/ppm = 6.81 (2H, s), 
3.04 (1H, s), 2.27 (6H, s), 2.17 (3H, s). 
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