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Structural relationships among LiNaMg[PO4]F and Na2M[PO4]F (M = 
Mn-Ni, and Mg), and the magnetic structure of LiNaNi[PO4]F  
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Lingc   
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The new compound LiNaMg[PO4]F has been synthesized by wet chemical reaction route. Its crystal 
structure was determined from single-crystal X-ray diffraction data. LiNaMg[PO4]F crystallizes with the 
monoclinic pseudomerohedrally twinned LiNaNi[PO4]F structure, space group P21/c, a = 6.772(4), b = 
11.154(6), c = 5.021(3) Å, β = 90.00(1) ° and Z = 4. The structure contains [MgO3F]n chains made up of 10 

zigzag edge-sharing MgO4F2 octahedra. These chains are interlinked by PO4 tetrahedra forming 2D-
Mg[PO4]F layers. The alkali metal atoms are well ordered in between these layers over two atomic 
positions. The use of group-subgroup transformation schemes in the Bärnighausen formalism enabled us 
to determine precise phase transition mechanisms from LiNaNi[PO4]F- to Na2M[PO4]F-type structures 
(M = Mn-Ni, and Mg) (see video clip1 and 2). The crystal and magnetic structure and properties of the 15 

parent LiNaNi[PO4]F phase were also studied by magnetometry and neutron powder diffraction. Despite 
rather long interlayer distance, dmin(Ni+2-Ni+2)~6.8 Å, the material develops long-range magnetic order 
below 5 K. The magnetic structure can be viewed as antiferromagnetically coupled ferromagnetic layers 
with moments parallel to the b-axis.  

1. Introduction 20 

There have been a number of studies on compounds of the 
formula AMPO4, where A is an alkali atom and M is a transition 
metal.1and ref. therein The crystal structures of AMPO4 depend 
strongly on the size of the monovalent A+ cation. With A = Li, the 
AMPO4 compounds adopt the olivine-type structure. Since the 25 

study of its electrochemical properties by Goodenough et al.,2 
LiFePO4 has been extensively studied among the olivine series 
LiMPO4. Several studies have shown that LiFePO4 is a promising 
high-potential cathode material for rechargeable Li-ion batteries.3-

5 With A = Na, the AMPO4 (M = Mn-Co) compounds have the 30 

maricite-type structure.6 
 When the LiMPO4 (M = Mg, Co, Ni) compounds are mixed 
with LiF, the Li2MPO4F fluorophosphates are formed and they 
crystallize with the 3D-Li2NiPO4F-type structure. 7-8 The 
Li2MPO4F (M = Mn, Fe) phases could not be synthesised using 35 

conventional synthesis routes. However, these phases could be  
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obtained by electrochemical ion exchange starting from the 
Na2MnPO4F and by lithium intercalation into the tavorite 
LiFePO4F.9-11 When the NaMPO4 (M = Mn-Ni and Mg) 
compounds are mixed with NaF, the Na2MPO4F fluorophosphates 40 

are formed and they crystallize with three different layered 
structures strongly related to each other. 12 and ref. therein 
 Since, the crystal structures of the A2MPO4F compounds are 
very sensitive to any volume change, related to the size of the 
alkali metal or the transition metal atoms, our research group has 45 

recently focused on the synthesis and the study of the physical 
properties of new compositions. Indeed, we succeeded to 
discover several phases (LiNaCo[PO4]F, Li2-xNaxFe[PO4]F, 
LiNaFe1-xMnx[PO4]F, and Li2Mg[PO4]F crystallizing with the 
Li2Ni[PO4]F-type structure and LiNaMg[PO4]F, LiNaNi[PO4]F, 50 

and Na2Ni[PO4]F crystallizing with two different layered 
structures).12-16 Furthermore, we discovered Li9Mg3[PO4]4F3 
which crystallizes with a new structure type closely related to 
Na2Mn[PO4]F and which exhibits a high ionic conductivity σ of 
10−4 S cm−1 at 300 °C.17   55 

 In this paper, we report the crystal structure study of the new 
compound LiNaMg[PO4]F and discuss in details its structural 
relationship to the Na2M[PO4]F (M = Mn-Ni, and Mg) 
compounds. We also characterized the parent LiNaNi[PO4]F 
phase by powder neutron diffraction and magnetic susceptibility 60 

measurements. This work is a complement to the previously 
studied Li2-xNaxNi[PO4]F system.  
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Table 2. Interatomic distances (in Å) and bond valence sums 
(BVS) for LiNaMg[PO4]F. Average distances are given in 
brackets. 
 distance BV  distance BV 
Li-F 1.922(4) 0.219 Na-O4 2.384(2) 0.208 
Li-O1 1.994(4) 0.240 Na-O1 2.396(2) 0.201 
Li-O4 1.977(4) 0.251 Na-F 2.4878(18) 0.112 
Li-O3 2.034(4) 0.215 Na-O3 2.550(2) 0.133 
Li-F 2.722(4) 0.025 Na-O1 2.550(2) 0.133 
Li-O2 2.766(4) 0.030 Na-O1 2.613(2) 0.112 
<Li-X> 1.982[4] 0.925[4] a Na-F 2.6372(18) 0.075 
Mg-F 1.9937(16) 0.390 <Na-X> 2.5168[7] 0.974[7] a 
Mg-O4 2.0464(19) 0.385    
Mg-O2 2.047(2) 0.384 P-O1 1.5252(18) 1.282 
Mg-F 2.0554(17) 0.330 P-O4 1.5313(17) 1.261 
Mg-O3 2.063(2) 0.368 P-O2 1.5393(19) 1.234 
Mg-O2 2.076(2) 0.355 P-O3 1.5438(19) 1.219 
<Mg-X> 2.0469[6] 2.212[6] a <P-O> 1.5349[4] 4.996[4] a 
a bond valence sum, BV = exp{(r0–r)/b} with the following parameters: b = 
0.37, r0 (LiI–O) = 1.466, r0 (LiI–F) = 1.36, r0 (NaI–O) = 1.803, r0 (NaI–F) = 
1.677, r0 (MgII–O) = 1.693, r0 (MgII–F) = 1.645 and r0 (P

V–O) = 1.617 Å.21, 22 

 
 In LiNaMg[PO4]F, the MgO4F2 octahedra are regular in shape 5 

with Mg-X distances ranging from 1.9937 to 2.076 Å and an 
average value of 2.0469 Å. No significant difference in Mg 
coordination is observed compared to Li2Mg[PO4]F and 
Na2Mg[PO4]F, although the latter structures belong to a different 
structure types.17, 23 The PO4 tetrahedra are also quite regular, 10 

with P-O distances ranging from 1.5252 to 1.5438 Å with an 
average value of 1.5349 Å, only slightly lower than the value of 
1.55 Å estimated from the effective ionic radii of the four-
coordinated P5+ and O2-.24 The sodium atoms are coordinated to 
five oxygen and two fluorine atoms (Fig. 4a). The Na-X distances 15 

range from 2.384 and 2.6372 Å with an average value of 2.5168 
Å. This sodium environment is similar to sodium polyhedra in 
LiNaNi[PO4]F (Fig. 4b). The lithium atoms are four coordinated 
to three oxygen and one fluorine atoms (Fig. 4a). The Li-X 
distances range from 1.922 and 2.034 Å with an average value of 20 

1.982 Å. The BVS of 0.925, 0.974, 2.212, and 4.996 are in very 
good agreement with the expected value of +1, +1, +2, and +5 for 
Li+, Na+, Mg2+, and P5+, respectively.    

Fig. 4. Surrounding of the sodium and lithium atoms in 
LiNaMg[PO4]F (a), and LiNaNi[PO4]F (b). 25 

3.3. Structural relationship of A2M[PO4]F (A = Li and Na; M 
= Mn-Ni, and Mg) to other known oxides. 

In the supplementary information section, we have demonstrated 
that each Na2M[PO4]F unit cell is a supercell of an orthorhombic 
subcell, similar to LiNaNi[PO4]F (Table S3).25-44 Consequently, 30 

starting from an orthorhombic subcell (ao1 ~ 6.75 Å, bo1 ~ 5 Å, 
and co1 ~ 11 Å) and using the geometric relationships given in Fig. 
5q, it is possible to build an orthorhombic supercell (ao2 = ~ 13.5 
Å, bo2 = bo1 ~ 5 Å, and co2 = co1 ~ 11 Å) (Fig. 5o) or a monoclinic 
supercell (am = ~ 13.5 Å, bm= bo1 ~ 5 Å, and cm= ~ 12.9Å) (Fig. 35 

5p) which are very similar to the Na2M[PO4]F unit cells Fig. 5a-c. 
  A projection view of the fluorophosphates along the short axis 
(~5 Å) shows the layered character of the structures (Fig. 5a-e). 
In all cases, the structures are built of M[PO4]F layers with the 
interlayer spaces filled by the alkali metal atoms. The only 40 

exception is the manganese phase, for which a mixture of 
manganese and sodium atoms is observed in and between the 
layers. A projection view perpendicular to the layers provide 
more structural details (Fig. 5f-j). LiNaM[PO4]F (M = Ni and 
Mg) contains infinite chains of edge-sharing octahedra (Fig. 5j), 45 

whereas Na2M[PO4]F (M = Mn-Ni, and Mg) contain infinite 
chains of dimer units (face-sharing octahedra) sharing corners 
(Fig. 5f-i). Depending on the size of the transition metal, the 
dimer units point to different directions (Fig. 5k-n). In 
Na2M[PO4]F(M = Fe, Co, and Mg) all the dimer units point to the 50 

same direction (Fig. 5k), whereas in Na2M[PO4]F(M = Ni and 
Mn), we observe an alternation of two chains with the dimer units 
pointing to the right and two chains with the dimer units pointing 
to the left (Fig. 5l, m). The structural transition from edge- to 
face-sharing octahedra is mainly due to the tilting of a few PO4 55 

tetrahedra. Furthermore, since the tilted tetrahedra are different 
from phase to phase, this induces different orientations for the 
dimer units built of face-sharing octahedra (Fig. 5k-n). From a 
theoretical point of view, it would also be possible to build a 
theoretical structure in which one chain with the dimer units 60 

pointing to the right alternates with one chain with the dimer 
units pointing to the left (Fig. 5d, i, n). The predicted 
crystallographic data of this theoretical phase are given in Table 3. 

Table 3. Crystallographic data of the A2M[PO4]F theoretical 
structure (P21212, Z = 4, a = 5.1991 Å, b = 11.6557 Å, c = 6.8489 65 

Å, and V = 415.04 Å3). 

Atom Wyck. x y z 
A1 4c 0.25367 0.83112 0.75500 
A2 4c 0.24405 0.57990 0.49245 
M 4c 0.78012 0.92680 0.97370 
P 4c 0.29525 0.83807 0.23435 
O1 4c 0.08875 0.64283 0.79617 
O2 4c 0.65387 0.59587 0.92930 
O3 4c 0.74525 0.79147 0.78667 
O4 4c 0.71836 0.61910 0.56725 
F1 2a 1/2 1/2 0.24880 
F2 2b 0 1/2 0.18910 
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