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Direct Amine-Functionalisation of γ-Fe2O3 Nanoparticles and Increased γ/ α Transition 
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Ferrofluids of direct amine-functionalised γ-Fe2O3 nanoparticles were prepared via a novel and simple 

route. These nanoparticles showed enhanced thermal stability. 
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A novel and simple preparation of amine-modified γ-Fe2O3 nanoparticles is described. The 
presence of amine groups on the surface, instead of hydroxyl groups, will allow conjugation of 
biologically active molecules to the iron oxide nanoparticles without the need for a size 
increasing silica shell. Furthermore, the outer amine-layer increases the temperature of the γ-
Fe2O3 to α-Fe2O3 structural transition in a similar way to previously reported cationic 
substitutions. This may suggest the formation of an oxide-nitride outer layer. Re-dispersion of the 
amine-modified γ-Fe2O3 nanoparticles led to the preparation of stable ferrofluids.  

Introduction 

 A simple route was used to prepare a 
ferrofluid from nanoparticles directly 
functionalised with amine groups. Ferrofluids 
are generally made of nanoparticles of iron 
oxide dispersed into a liquid medium to form a 
stable colloidal solution.1 The magnetic 
moment carried by the nanoparticles makes 
these dispersions responsive to external 
magnetic fields2 opening up a number of 
interesting potential applications.3-5 In order to 
obtain stable ferrofluids, aggregation between 
the magnetic nanoparticles must be avoided 
and, generally, this is achieved by 
functionalisation, e.g. surface binding of 
molecules to create steric hindrance,6 either 
directly on the nanoparticles’ surface or 
through additional silica shells. By careful 
choice of the molecule, the properties of 
ferrofluids can be tailored towards different 
applications. Direct functionalisation can be 
achieved by bonding molecules to hydroxyl 
groups present on the surface of the 
nanoparticles, the advantage being that the size 
of the nanoparticles is maintained as there is no 
need for an additional silica shell. The 
requirement for amine- functionalised 
nanoparticles is dictated by certain types of 
molecules, for example complex biologically 
active molecules, which will bind to the 
nanoparticles via an amide bond.7 
 Ferrofluids are most commonly dispersions 
of either -Fe2O3 (maghemite) or Fe3O4 
(magnetite) nanoparticles or a mixture of both. 
The two structures of -Fe2O3 and Fe3O4  are 
both based on a FCC lattice of O2– anions, with 
Fe3O4 containing both Fe2+ and Fe3+ cations, 
and γ-Fe2O3 Fe3+ cations and cation vacancies 
to maintain charge neutrality.8-10 Under thermal 
treatment cubic, ferromagnetic maghemite 

transforms irreversibly into the rhombohedral 
antiferromagnetic hematite (α-Fe2O3).

11 This 
structural transition is being investigated with 
the aim of increasing the temperature limit of 
stability of the maghemite phase to maintain its 
magnetic properties and widen the applicability 
of -Fe2O3. For example, -Fe2O3 shows high 
sensitivity and selectivity in sensors for 
hydrocarbon gases, without the need of a noble 
metal.12 Cation doping of γ-Fe2O3 
nanoparticles seems to be the most effective 
way to increase the temperature of the γ-Fe2O3 
/ -Fe2O3 transition, but very little has been 
reported on transition temperature variations 
caused by functionalisation. Here we report 
that reacting -Fe2O3 nanoparticles with NH3 
(g) at 200 C for 2-4 hours lead to direct 
functionalisation of the nanoparticles with 
amine groups and increases the temperature of 
the structural transition from -Fe2O3 
(maghemite) to -Fe2O3 (hematite) up to 550 
C. This suggests the possibility of the 
formation of an outer layer of iron oxide-
nitride. 

Experimental 
Preparation of nanoparticles of γ-Fe2O3 

 Iron oxide nanoparticles were prepared via a 
sol-gel process.13 A solution of iron (II) and 
iron (III) chlorides in water was reacted with 
ammonium hydroxide to form magnetite 
(Fe3O4) nanoparticles. After washing with 
acetone and ether, the nanoparticles were re-
dispersed in nitric acid. Reaction with iron (III) 
nitrate at boiling point oxidised the 
nanoparticles to maghemite (γ-Fe2O3). 
 
Amination of γ-Fe2O3 nanoparticles with NH3 (g) 

 Dried nanoparticles of γ-Fe2O3 were placed 
into a small ceramic reaction boat, which was 
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placed at the centre of the tube in a tube 
furnace. The flow rate of ammonia gas was 4.0 
L h−1 and excess was removed by an HCl 
scrubber. The temperature was raised to 200°C 
at 5 °C min−1 and maintained between 1 and 2 
hours. At the end of the reaction, the tube was 
flushed with nitrogen to remove unreacted 
ammonia and the product transferred to a glove 
box for storage under argon. 
 Ferrofluids were prepared by dispersion of γ-
Fe2O3 nanoparticles and amine-modified γ-
Fe2O3 nanoparticles. A sample of 
approximately 100 mg was added to 2 ml of 
aqueous solution of HNO3 (pH = 2). This 
suspension was then subjected to 30 minutes of 
ultrasonic radiation to break the larger 
aggregates. The resulting colloidal dispersions 
were left to rest for 24 hours to test their 
stability. 
 
 Powder X-ray diffraction was carried out 
using a Siemens D5000 diffractometer using 
the Cu Kα radiation. Data were recorded from 
2θ = 10 ° to 2θ = 110 ° over 72 hours, with step 
size 0.02 . 
 Thermogravimetric analyses were carried out 
using a Mettler TGA/DSC 1 Starsystem. 10-15 
mg of nanoparticles were placed in an alumina 
pan and heated at a constant rate (30 °C min−1) 
to 900 °C under air, with weight pattern and 
heat flow recorded as functions of the 
temperature. 
 The nitrogen content of the N-doped samples 
was measured using a CE Instruments 1108 
CHN analyzer and results expressed as weight 
percentages. 
 Nitrogen adsorption isotherms were recorded 
on a Micromeritics Tristar 3000. Size 
distribution was calculated from this data using 
the BJH model. 
 To demonstrate qualitatively the presence of 
surface amine groups, portions of ferrofluids 
formed with -Fe2O3 nanoparticles (top) and -
Fe2O3 nanoparticles reacted with ammonia 
were reacted for 1h with a solution of 
fluorescamine (4'-phenylspiro[2-benzofuran-
3,2'-furan]-1,3'-dione) in acetone (1 mg in 5 
mL). The nanoparticles were then removed by 
filtration and the presence of fluorophors was 
revealed by examining the solutions under UV 
light. 
 Mössbauer spectra were recorded in zero 
magnetic field at 80 K on an ES-Technology 
MS-105 Mössbauer spectrometer with a 900 
MBq 57Co source in a rhodium matrix at 
ambient temperature. Spectra were referenced 
against a 25 μm iron foil at 298 K and 
spectrum parameters were obtained by fitting 

with Lorentzian curves. Samples were ground 
with boron nitride before mounting in the 
sample holder. 

Results and Discussion 

 The size of the nanoparticles, calculated from 
nitrogen adsorption data, show sizes 
distributed between 4.5 nm and 6.0 nm for 
initial -Fe2O3 particles and between 5.5 nm 
and 7.0 nm for -Fe2O3 reacted with ammonia; 
the reaction with ammonia caused only limited 
increase of the size of the -Fe2O3 
nanoparticles, although aggregation took place 
after reaction with ammonia gas, as shown by 
TEM images (figure 1).   

 
Figure 1. TEM images of -Fe2O3 
nanoparticles (top) and -Fe2O3 nanoparticles 
reacted with ammonia at 200 C for 2 hours 
(bottom). 
 
Stable colloidal suspensions (ferrofluids) were 
obtained by sonication in de-ionised water 
using both γ-Fe2O3 nanoparticles and γ-Fe2O3 
nanoparticles reacted with ammonia 
Powder X-ray diffraction (PXRD) of γ-Fe2O3 
nanoparticles and γ-Fe2O3 nanoparticles reacted 
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