Catalysis Science & Technology

Accepted Manuscript

Catalysis Science & Technology

This is an *Accepted Manuscript*, which has been through the RSC Publishing peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This Accepted Manuscript will be replaced by the edited and formatted Advance Article as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication.

More information about *Accepted Manuscripts* can be found in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard **Terms & Conditions** and the **ethical guidelines** that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these *Accepted Manuscript* manuscripts or any consequences arising from the use of any information contained in them.

www.rsc.org/catalysis

RSCPublishing

Catalysis Science & Technology

RSCPublishing

ARTICLE

Cite this: DOI: 10.1039/x0xx00000x

Received ooth January 2012, Accepted ooth January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

The role of surface Zn^{2+} ions in the transesterification of vegetable oils over ZnO supported on Al_2O_3 and Fe_2O_3

K. Thirunavukkarasu^{*}, ^a T.M. Sankaranarayanan^{a, b}, A. Pandurangan^b, R. Vijaya Shanthi^a and S. Sivasanker^a,

Samples of ZnO-Al₂O₃ and ZnO-Fe₂O₃ with different loadings of ZnO (5 – 20 wt%) were prepared by impregnation of the supports (γ -Al₂O₃ and α -Fe₂O₃) with ZnNO₃ and calcining at 873 K. XRD of the calcined samples revealed that the ZnO had reacted with the support to form the corresponding spinels, ZnAl₂O₄ and ZnFe₂O₄. The catalytic activity of the supported spinel samples, and samples of stoichiometric ZnAl₂O₄ and ZnFe₂O₄ prepared by coprecipitation were examined for the transesterification of sunflower, waste cooking oil and jatropha oil. A linear relationship between the spinel content, estimated by XRD, and surface Zn concentration estimated by XPS and transesterification activity of the samples is obtained. XVB (x-ray valence band) studies provide evidence to suggest that Zn 3d electrons may take part to a major extent in the electronic excitation of the spinels (ZnAl₂O₄ and ZnFe₂O₄) and, presumably, their catalytic activity..

1. Introduction:

Fatty acid methyl esters (FAME; biodiesel), the key product of transesterification of vegetable oils, are among the important renewable transportation fuels in use today. Their increased use is expected to decrease the rate of CO₂ build up in the atmosphere. The transesterification of vegetable oils is at present mostly carried out using soluble alkali catalysts. The disadvantages of using alkali catalysts are soap formation, poor quality of byproduct glycerol, wastewater generation and nonsuitability for oils containing free fatty acids (FFA). Though many solid catalysts were reported¹⁻⁵ as alternative for the homogeneous acid catalyst, a ZnAl2O4 based catalyst was developed for transesterification by the Institut Francais du Petrole (IFP) and was commercialized by Axens^{6,7} ZnAl₂O₄ belongs to AB₂O₄ spinel oxides and possess good thermal stability, no/least leaching during reactions, hydrophobicity and ease of preparation with large external areas. Apart from transesterification, ZnAl₂O₄ is known to be active as a heterogeneous catalyst for reactions like

active as a heterogeneous catalyst for reactions like dehydration, hydrogenation, dehydrogenation, cracking, synthesis of fine chemicals⁸⁻¹³ and in photocatalytic reactions^{14,15}. ZnFe₂O₄, another important candidate in the AB₂O₄ spinel oxides, is reported to be active heterogeneous catalyst for N-alkylation reactions^{16,17}, water gas shift

reaction¹⁸, O-acylation¹⁹, and oxidative dehydrogenation nbutane^{20,21}, and as a photocatalyst for water splitting reactions²², decomposition of organic pollutants²³ and hydrogen production²⁴. In AB₂O₄ spinel oxides, more of octahedral sites are exposed on the surface than the tetrahedral sites according to Low Energy Ion Scattering (LEIS) studies^{25,26}, i.e., more B atoms are present in the surface than A atoms.

After Axens process, many reports on $ZnAl_2O_4$ catalysts for transesterification of vegetable oils started to emerge in the literature²⁷⁻³¹. Many of them mainly deal with the engineering aspects of the process and reveal the importance of large surface area and pores. Jiang et al²⁹ observed that the transesterification reaction on Zn/Al mixed oxide catalysts was more feasible due to its basic sites. Liu et al³⁰ reported that strong basicity and large pores were beneficial for the Laloaded ZnAl₂O₄ catalysed transesterification reaction. They found that La-loading of 5.5 wt% showed highest activity though they had strongly basic catalysts with higher Laloadings. To contradict these studies, a recent literature report on transesterification reaction reveals that ZnAl₂O₄ surface contains more acidic sites than basic sites³¹.

Interaction of ZnO with the γ -Al₂O₃ or α -Fe₂O₃ supports is reported in the literature. Strohmeier and Hercules³² observed that Zn²⁺ ions interact strongly with γ -Al₂O₃ support for >20%

loadings of ZnO to form surface spinels. An electronic interaction between Zn^{2+} and Fe^{3+} ions of $ZnFe_2O_4$ -ZnO catalysts was observed through Mossbauer spectroscopy by Armendariz et al²¹ though Zn^{2+} ions were not involved directly in the oxidative dehydrogenation reaction of n-butane. Unfortunately, the authors could not find the same with Fe_2O_3 - $ZnFe_2O_4$ catalysts as Zn is inactive in Mossbauer spectroscopy. The role of Zn ions in the spinel catalysis is recognised in the following studies. Sreekumar et al studied alkylation reactions Zn-Co mixed ferrites and observed that the catalyst with a ratio with more Zn^{2+} content is more active and selective for the N-methylation reaction of Zn^{2+} ions for the N-methylation reaction on Zn-Cu mixed ferrites and stabilizing Cu²⁺ ions during reaction by Zn²⁺ from XPS studies.

We now present our studies on the catalytic activity of ZnO supported on γ -Al₂O₃ and α -Fe₂O₃ in the transesterification of vegetable oils, viz. sunflower oil, waste (used) sunflower oil and jatropha oil, carried out as part of our ongoing research on the transesterification of vegetable oils with solid oxide catalysts and spinel oxides^{33,34}. Samples of ZnO/Al₂O₃ and ZnO/Al₂O₃ containing different amounts of ZnO were prepared by impregnation, characterized by physicochemical methods and their activity for the transesterification with methanol of sunflower oil, waste cooking oil and jatropha oil were evaluated in a batch reactor. XPS studies reveal the active role of Zn-ions in the transesterification reactions.

2. Experimental Section

2.1. Materials used and preparation of catalysts

Cooking grade sunflower oil, waste (used) sunflower oil and jatropha oil were procured locally. Their fatty acid compositions are reported in Table 1. Methanol (AR Grade; SRL, India) was distilled and dried over molecular sieve (4 Å) prior to use.

Fatty acid composition [%]	Sunflower oil	Waste cooking oil	Jatropha oil
Palmitic acid (C16:0)	6.5	6.3	17.9
Stearic acid (C18:0)	0.5	0.5	7.3
Oleic acid (C18:1)	22.5	21.9	41.8
Linoleic acid (C18:2)	70.5	68.8	25.0
Free Fatty acids (FFA)	-	$\begin{array}{c} 2.5 / [C_{16}, 0.2; \\ C_{18:1}, 0.9; \\ C_{18:2}, 1.4] \end{array}$	$\begin{array}{c} 8.0 \ / \ [C_{16}, \ 2.0; \\ C_{18:1}, \ 3.2; \\ C_{18:2}, \\ 2.4; \ C_{18}, \ 0.4] \end{array}$

Table 1 Composition of the vegetable oils.

Samples of ZnO-Al₂O₃ and ZnO-Fe₂O₃ with different loadings of ZnO (5 – 20 wt%) were prepared by impregnation of the supports (γ -Al2O3 and α -Fe2O3) with ZnNO₃, drying in air (353 K; 12 h) and calcining at 873 K (6 h). Additionally, the spinels ZnAl₂O₄ and ZnFe₂O₄ were prepared by mixing stoichiometric amounts of the required metal nitrate solutions (1:2 mole ratio; 40 ml) and adding rapidly to a solution of NH₄OH (25 wt%; vol. 25 ml) at room temperature (300 K) under constant and vigorous stirring. The precipitates were

2.2. Characterization of supports and catalysts

X-ray diffraction (XRD) patterns of the calcined materials were obtained using a Rigaku Miniflex II with Cu Ka radiation. The phases were identified by matching of the peaks with JCPDS (Joint Committee on Powder Diffraction Standards) data files. Surface area determination was performed by the BET method (Micromeritics ASAP 2020). Before analysis the samples were degassed at 623 K for 8 to 10 h. The acidity of the samples was measured by temperature-programmed desorption (TPD) of ammonia (AutoChem 2910, Micromeritics, USA). The standard procedure for the TPD measurements involved the activation of the sample in flowing He at 873 K (1 h), cooling to 323 K, adsorbing NH₃ from a He-NH₃ (10 %) mixture, desorbing in He at 323 K for 30 min, and finally carrying out the TPD experiment by raising the temperature of the catalyst in a programmed manner (10 K min⁻¹). The areas under the TPD curves were converted into meq NH₃ per gram of catalyst based on injection of known volumes of the He-NH₃ mixture under similar conditions.

Diffuse reflectance UV-Vis. spectra of the powder samples were recorded on a Thermoscientific Evolution-600 spectrometer. BaSO₄ (spectral grade) was used as a reference material. XPS measurements were carried out using a multiprobe system (Omicron Nanotechnology, Germany) equipped with a dual Mg/Al X-ray source and a hemispherical analyzer operating in constant analyzer energy (CAE) mode. The spectra were obtained with 50 eV pass energy for survey scan and 20 eV for individual scans. The Mg Ka X-ray source was operated at 300 W and 15 kV. The base pressure in the analyzing chamber was maintained at 1×10^{-10} mbar. The data were processed with the Casa XPS program (Casa Software Ltd., U.K.). The peak areas were determined by integration employing a Shirley-type background. Peaks were considered to be a mix of Gaussian and Lorentzian functions in a 70/30 ratio. The peaks were calibrated by taking the adventitious carbon's C 1s line as 284.9 eV. Fourier transform infrared (FT-IR) spectra for the samples were recorded using a Bruker Tensor-27 instrument.

2.3. Transesterification of vegetable oils

The catalytic activity of the samples was evaluated in a SS batch reactor (Parr, USA; 300 ml) at different run durations (2-10 h) and at different temperatures (393 - 453 K) using 1 g of finely ground catalyst (passing through ASTM 200 Mesh). The amount of oil used was 20 g; the amount of methanol used depended on the required oil/methanol mole ratio. The stirring speed for all the runs was maintained at 600 rpm. At the end of the desired reaction time, the autoclave was cooled to room temperature, the product was diluted with water (100 ml), and the catalyst was removed by filtration. The two liquid layers were separated using a separating funnel, the lower layer consisting of water, glycerol and methanol and the upper one containing fatty acid alkyl esters, unreacted oil and intermediate products.

2.4. Product analysis

The product composition was determined by analyzing the oil layer in a gas chromatograph (Perkin-Elmer Clarus 500) equipped with a FID detector using a high temperature metallic capillary column (PDMS; $6m \ge 0.53mm$, $1\mu m$ film thickness).

Page 3 of 10

Conversion and selectivity values are expressed as wt % in all the tables and figures.

3. Results and Discussion 3.1. Physicochemical properties

3.1.1. Surface area and acidity

Table 2 Textural properties and acidity of the samples.

Sample	Spinel Content (%)	$S_{BET} \ (m^2/g)$	Pore volume (ml/g) ^a [av. Pore size; nm] ^b	Acidity ^c (μmol/g) (350 - 800 K)
ZnAl ₂ O ₄	100.0	62	0.22 [12]	138.7
$ZnFe_2O_4$	100.0	12	0.10 [21]	40.3
ZnO	-	29	0.10 [15]	69.6
γ- Al ₂ O ₃	-	168	0.35 [8]	626.6
5ZnAl	11.3	133	0.40 [12]	465.5
10ZnAl	22.5	116	0.36 [12]	385.8
20ZnAl	45.0	99	0.30 [12]	292.0
α -Fe ₂ O ₃	-	6	0.06 [40]	21.1
5ZnFe	14.8	7	0.06 [34]	24.4
10ZnFe	29.6	10	0.08 [32]	27.8
20ZnFe	59.2	11	0.10 [32]	28.6

^a: From N₂ adsorption at liquid N₂ temperature, $p/p_o = 0.98$; ^b: by BJH method; ^c: µmoles of NH₃ desorbed/g of sample in the range, 350 - 800 K.

Surface area and acidity of the various oxides and mixed oxides including the two spinels, $ZnAl_2O_4$ and $ZnFe_2O_4$ are presented in Table 2. The surface areas of mixtures of Al_2O_3 and ZnOafter calcination at 873 K are smaller than those expected for physical mixtures of Al_2O_3 and ZnO. In fact, they are slightly closer to the values expected for mixtures of Al_2O_3 and $ZnAl_2O_4$ suggesting that ZnO and Al_2O_3 have reacted to form $ZnAl_2O_4$ spinel and the mixtures are probably $ZnAl_2O_4$ supported on Al_2O_3 . In the case of $ZnFe_2O_4$ it is difficult to analyze the data with reasonable accuracy due to the small areas involved. Even so, the values are close to those expected for mixtures of Fe_2O_3 and $ZnFe_2O_4$. XRD results (Section **3.1.2**) also confirm the formation of $ZnAl_2O_4$ and $ZnFe_2O_4$ in the mixtures.

The pores in $ZnAl_2O_4$ are broadened compared to γ -Al₂O₃ support with increasing Zn loading in the ZnO-Al₂O₃ system (Table 2). The pore volume/size values of Fe₂O₃ suggest that it has almost a flat surface. But increasing ZnO loading creates broad pores in the ZnO-Fe₂O₃ system. ZnO has an intermediate pore distribution between ZnAl₂O₄ and ZnFe₂O₄.

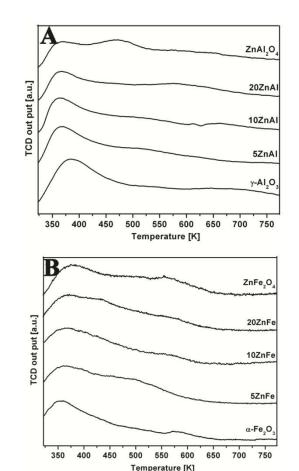
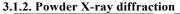



Figure 1. NH_3 -TPD of A) $ZnO-Al_2O_3$ with different ZnO loadings and $ZnAl_2O_4$; and B) $ZnO-Fe_2O_3$ with different ZnO loadings and $ZnFe_2O_4$.

The acidities of the samples as measured by TPD of NH₃ are also presented in Table 2. In order to understand the acidity characteristics of the samples better, the contributions from physical adsorption (if any) and from very weak acid sites (NH₃ desorbing below 350 K) were excluded and the amount of NH₃ that desorbed in the temperature range of 350 - 800 K is presented in the last column of Table 2. The acidities of ZnAl₂O₄, ZnFe₂O₄ are 139 and 40 meq/g. The acidities of the supports, y-Al₂O₃, Fe₂O₃ and ZnO are 627, 21 and 40 meq/g, respectively. Though the acidity of ZnAl2O4 decreases drastically compared to γ -Al₂O₃, ZnAl₂O₄ contains almost equal distribution of medium (peak at ~375 K) and strong (peak at ~475 K) acidic sites (Fig. 1.). But in γ -Al₂O₃, medium acidic sites are dominant than the strong acidic sites. The acidities of the supported samples are intermediate to those of the oxides and ZnO); acidity decreases in the case of Al₂O₃ and increases in the case of Fe₂O₃ with increasing ZnO loading. The less than proportionate change in acidity of the supports with ZnO loading suggests that ZnO has interacted strongly with the supports and the supported samples are not physical mixtures of the two oxides.

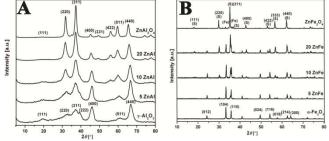


Figure 2. XRD patterns of A) $ZnO-Al_2O_3$ with different ZnO loadings and $ZnAl_2O_4$; and B) $ZnO-Fe_2O_3$ with different ZnO loadings and $ZnFe_2O_4$.

The XRD-patterns of supported ZnO (5 to 20 wt% of ZnO) samples prepared by impregnation of $Zn(NO_3)_2$ on γ -Al₂O₃ and Fe₂O₃ and calcination at 873 K are presented in Figure 1. γ -Alumina exhibits a diffraction pattern with broad, diffuse lines, typical of a microcrystalline material. With progressively increasing loading of ZnO, the lines due to γ -Al₂O₃ decrease in intensity along with a corresponding increase in the intensity of the spinel phase. A similar behavior is also seen in the patterns of the Fe₂O₃ supported ZnO samples (Fig. 1 B). The XRD patterns of ZnAl₂O₄ and ZnFe₂O₄ are typical of the expected spinel phases and are in agreement with JCPDS data (78-1601 and 86-2267). All the diffraction peaks matched well with the reported patterns. Lines due to individual oxides were barely discernible in the patterns.

3.1.3. UV-Vis spectroscopy

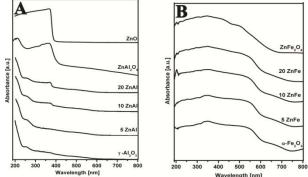
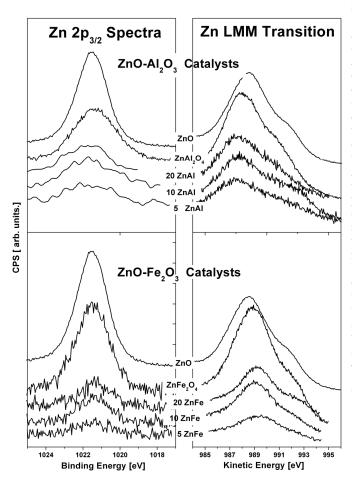


Figure 3. UV-visible spectra of A) ZnO, Al_2O_3 , ZnO- Al_2O_3 samples and ZnAl_2O₄, and B) Fe₂O₃, ZnO-Fe₂O₃ samples and ZnFe₂O₄.

Table 3 Assignement of the major bands in UV-vis. spectra(Fig. 3) of spinels and oxides


(11g. 5) 01	spiners and 0	Alues	
Sample	Absorpti on maxima ^a (nm)	Assignment/Geometry	Reference(s)
ZnAl ₂ O ₄	215 - 225(s) ~360	Filled O2p orbitals → empty Al3s orbitals Filled O2p→empty Zn4s orbitals (due to defects)	[34,35]
ZnFe ₂ O ₄	~275,~36 0(b) 400-700 (b)	Ligand to metal and L→M charge transfer for Oh Fe ³⁺	[36]
Al_2O_3	215- 225(b)	Filled O2p orbitals → empty Al3s orbitals	[34,35]
Fe ₂ O ₃	250(b) ~350, ~500 and ~550	O ²⁻ to Fe ³⁺ charge transfer Metal to metal charge transfer	[36]
ZnO	200- 400(b)	Filled O2p→empty Zn4s orbitals	[34,35]

^a: Letters in brackets refer to nature of the absorption lines: s, strong and b, broad.

UV-vis. spectra of ZnO impregnated on Al₂O₃ and Fe₂O₃ along with those of ZnO, Al₂O₃ and Fe₂O₃ are presented in Figure 3. Assignments of the spectral bands (Figure 3) of the oxides and spinels based on published literature are presented in Table 3. Examining the spectra presented in Figure 3A, a band at ≤ 215 nm is seen for the ZnO-Al₂O₃ samples, while ZnAl₂O₄ exhibits a band at \sim 215 nm. A band noticed at \sim 250 nm in the spectra of Al₂O₃ and ZnO-Al₂O₃ samples has been attributed by earlier workers to be due to electronic excitations (O 2p \rightarrow Al³⁺ 3s)³⁵, 36 . Additionally, with increasing Zn content, the band at ${\sim}360$ nm attributed to defect Zn²⁺ sites in ZnAl₂O₄ is found to increase with Zn loading confirming the presence of increasing amounts of the spinel structure in the samples. The spectrum of ZnO shows a very strong and broad absorption below 380 nm with a peak maximum at ~360 nm. The similarity in the absorption band is presumably because Zn^{2+} ions in both ZnO and the spinel are both in a coordination of O^{2-} ions³⁵.

Increasing spinel content in the ZnO-Fe₂O₃ system does not considerably alter the absorption spectra significantly due to the broad absorption of α -Fe₂O₃ (Figure 3B) in the entire UVvisible region (the samples are brown-black). However small changes are still seen. The broad absorption at ~250 nm is due to $O^{2-} \rightarrow Fe^{3+}$ charge transfer in α -Fe₂O₃. The weak band at ~350 becomes broader and more intense with increasing Zn loading due to $O^{2-} \rightarrow Zn^{2+}$ charge transfer. Octahedral Fe³⁺ exhibits a weak band at ~500 nm due to crystal field transition which is more clearly observed in the case of ZnFe2O4 compared to other samples of the series. Intense absorption in the visible region of α -Fe₂O₃ is mainly due to various types of CT transitions like metal to metal charge transfer (MT) transitions ($2Fe^{3+} \rightarrow Fe^{2+} + Fe^{4+}$). As Zn atoms are introduced in to α -Fe₂O₃, the decrease in Fe–O–Fe linkages between adjacent Fe^{3+} cations gradually reduces the intensity of the band at ~550 nm along with increasing formation of $ZnFe_2O_4^{37}$.

3.1.4. X-ray photoelectron spectroscopy

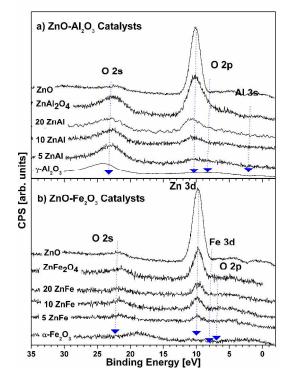
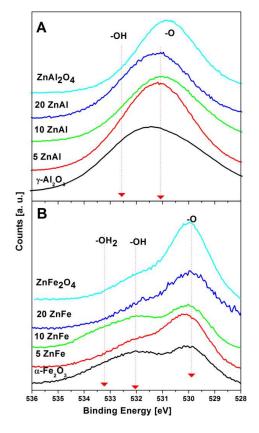

Figure 4. XP spectra of Zn $2p_{3/2}$ (left panels) and Zn LMM transitions from XAES (right panels) ZnO-Al₂O₃ and ZnAl₂O₄ (top panels) and ZnO-Fe₂O₃ catalysts and ZnFe₂O₄ (bottom panels). In top and bottom panels, XPS of Zn $2p_{3/2}$ (left panels) and XAES of Zn LMM transitions (right panels) of ZnO samples are also presented for comparison.

Table 4 Binding energies (in eV) of Zn in ZnO-Al₂O₃ and ZnO-Fe₂O₃, ZnAl₂O₄ and ZnFe₂O₄ (values in the parentheses are FWHM+ of the peaks in eV)

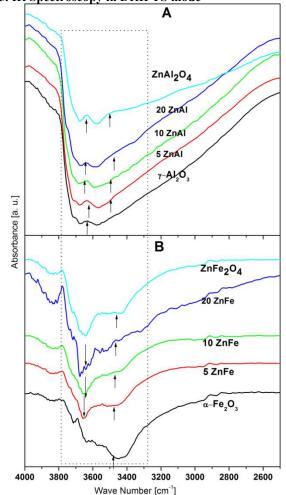
are 1 within of the peaks in ev)				
Sample	$Zn \ 2{p_{3/2}}^a \\ eV$	Zn LMM ^c eV	Auger Parameter, α eV	
5ZnAl	1021.0 (3.8) ^b	987.7	2008.7	
10ZnAl	1021.6 (3.1)	987.8	2009.4	
20ZnAl	1021.8 (2.6)	987.8	2009.6	
$ZnAl_2O_4$	1021.4 (2.7)	987.9	2009.3	
ZnO	1021.5 (2.0)	988.5	2010.0	
5ZnFe	1021.5 (2.3)	989.2	2010.7	
10ZnFe	1021.4 (2.0)	989.2	2010.6	
20ZnFe	1021.3 (2.1)	989.2	2010.5	
ZnFe ₂ O ₄	1021.4 (2.0)	989.0	2010.4	


^a: Binding energy; ^b: Full width at half maximum; ^c: Kinetic energy.

X-ray photoelectron spectroscopy (XPS) was used to further investigate ZnAl₂O₄, ZnFe₂O₄, and samples of ZnO-Al₂O₃ and ZnO-Fe₂O₃ with different ZnO loadings. Zn 2p_{3/2} core level (XPS) and Zn LMM transitions (XAES) of ZnO-Al₂O₃ and ZnO-Fe₂O₃ samples are presented in Figure 4. Though the 2p core level binding energy (BE) of Zn is insensitive to differentiate the chemical states, its modified Auger parameter (a) derived from Zn $2p_{3/2}$ BE and Zn LMM Auger lines differentiates Zn^{2+} and Zn^{0} states³⁷. From table 4, α values of all the catalysts prepared come around ~2009±1 eV characteristric of Zn²⁺ ions³⁸. The Full width at half maximum (FWHM) value for Zn 2p3/2 peak of ZnO is the least due to an unique -O-Zn- environment compared to all the catalysts presented in table 4 and therefore, in the other catalysts, Zn^{2+} ions should be present in spinel or supported spinel phase where different environments around Zn are possible as evidenced with XRD results (Section 3.1.1.). With increasing loading of ZnO in both the systems, the difference in environment vanishes till it reaches stoichiometric spinel composition. Moreover, at lower loadings of ZnO, the spinels might be present as smaller crystallites and this may be the reason for the higher FWHM values. Zn LMM transition is observed at the kinetic energy of 987.8±0.1 eV for ZnO-Al₂O₃, at 989.0±0.1 eV for ZnO-Fe₂O₃ and 988.5 eV for ZnO. The higher value for ZnO-Fe₂O₃ shows that Zn^{2+} ions in the ferrite are richer in electrons than in the aluminates and ZnO. A shoulder in the Zn LMM transition at ~991 eV for ZnO-Al₂O₃ samples and ~992 eV for ZnO-Fe₂O₃ samples is found to emerge with increasing Zn loading in both the systems. Strohmeier and Hercules³² have suggested that this is due to 1-s coupling of the Zn atom in oxide environment. The 1-s coupling is strong in case of ZnO than other catalysts.

Figure 5. Valence band (VB) spectra from XPS studies of a) ZnO-Al₂O₃ and b) ZnO-Fe₂O₃ samples with corresponding stoichiometric spinels. VB spectra of γ - Al₂O₃ and Fe₂O₃ have been rescaled (\div 10) to fit in the figure.

XP spectra in the valence band (VB) region of the ZnO-Al₂O₃ and ZnO-Fe₂O₃ samples are presented in Figure 5. The main VB appearing at 11 eV and 10 eV, respectively, in the top and bottom panels in the figure is associated with Zn 3d; the Zn 3d band of ZnO appears at 10.3 eV. Note that LMM Auger transition of Zn involves Zn 3d (L) and Zn 2p (M) electrons. In ZnO systems, the lowest valence band lies below the Zn 3d level.38 Other bands at 7eV in the top panel and 8 eV in both the panels are due to Fe 3d and O 2p levels16. Particularly, Fe 3d band appears to be very weak in all the catalysts of ZnO-Fe₂O₃ system including α -Fe₂O₃ probably due to the spinforbidden transition of Fe³⁺ ions d5 configuration. The band for O 2s orbital appears at ~23 eV for ZnO-Al₂O₃ samples and at ~22 eV for ZnO-Fe₂O₃ samples. The higher binding energy of O 2s band of ZnO-Al₂O₃ compared to ZnO-Fe₂O₃ is due to the greater ionic nature of Al-O bonds than Fe-O bonds⁴⁰⁻⁴². From the XVB spectra it is clear that the surface valence band is dominated by the Zn 3d orbitals in both the systems and the intensity of the Zn 3d peak increases with increasing Zn content in both the systems. From the valence band spectra, it is concluded that Zn 3d electrons are actively involved in the spinel formation for both the systems and likely to take part to a major extent in the electronic excitation of the spinels (ZnAl₂O₄ and ZnFe₂O₄) and, presumably, their catalytic activity.

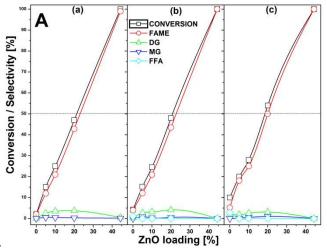

Figure 6. O 1s spectra from XPS studies of A) $ZnO-Al_2O_3$ and B) $ZnO-Fe_2O_3$ samples with corresponding stoichiometric spinels. O 1s spectrum of ZnO is also given in the figure for comparison.

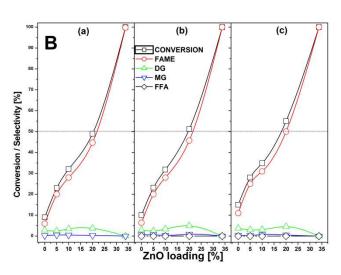
XP spectra of O 1s region of ZnO/Al_2O_3 and ZnO/Fe_2O_3 samples are presented in Figure 6. At Zn loadings up to 20%, O 1s peak is observed at 531.2±0.2 eV for ZnO/Al₂O₃ and at 530±0.2 eV for Zn/Fe₂O₃ samples. O 1s peak of adsorbed water (-OH₂) and basic hydroxide (-OH) generally observed at 533.2 \pm 0.1 eV and 532.2 \pm 0.1 eV, respectively^{43,44}, are also seen in the spectra (Figure 6B).

Catalysis Science & Technology

These peaks are, however, relatively less intense in ZnO/Al_2O_3 samples and it might probably due to relatively small BE difference between the basic hydroxide group with the main O 1s peak of support Al_2O_3 . From Figure 6B, it is clear that the intensity of peaks due to adsorbed water and basic hydroxide group decreases as the spinel phase is increasing. It might be due to the hydrophobic nature of the stoichiometric spinels.

3.1.5. IR Spectroscopy in DRIFTS mode


Figure 7. DRIFT IR spectra of A) ZnO, Al₂O₃, ZnO-Al₂O₃ samples and ZnAl₂O₄, and B) Fe₂O₃, ZnO-Al₂O₃ samples and ZnFe₂O₄.


The IR spectra in DRIFT mode for spinels were recorded at a sample temperature of 673 K under nitrogen atmosphere in order to avoid the interference of -OH vibrations due to moisture and presented in Figure 7. As the evolution of spinel phase with increasing ZnO loading could be clearly observed XRD, UV-Vis and XPS spectra, we concentrate in the –OH group region (4000-3000 cm⁻¹) of the IR spectra to understand the nature of surface hydroxyl groups in the spinel-type oxides in the present study. For γ -Al₂O₃ (Figure 7A), three distinct bands were observed around 3728, 3678 and 3560 cm⁻¹ respectively in the "–OH" region. The first peak corresponds to terminal –OH group mainly located on octahedrally

coordinated Al³⁺ and the other two distinct bands were assigned for bridging -OH and triply-bridging -OH⁴⁵. A new band appeared at \sim 3680 cm⁻¹ (ZnAl₂O₄) must be due to the hydroxyl group on tetrahedrally coordinated Zn²⁺ with increase in Zn wt% loading on alumina⁴⁶. However, a new band forming at 3580 cm⁻¹ because of the merging of bands at 3678 and 3560 cm⁻¹ might be attributed to the formation of Zn containing spinels and new bridging group Zn-O-Al surface. In the case of Fe₂O₃, IR spectra in Figure 7B exhibit multiple bands due to different types of -OH groups. The bands at 3660 and 3675 cm⁻ are attributed to the hydroxyl groups on octahedral Fe³⁺. A weak band at $\sim 3719 \text{ cm}^{-1}$ is observed for the terminal –OH group which lies on tetrahedral Fe³⁺ either non vacant or near cation vacancy for pure $Fe_2O_3^{46}$. The bands for bridging and triply bridging –OH group appear at $\sim 3550 \text{ cm}^{-1}$ and at ~ 3450 cm⁻¹ (a broad peak) respectivly⁴⁶. Similar to ZnAl₂O₄ samples, the intensity of the band at ~3680 cm⁻¹ increases with increasing ZnO content as the result of newly formed -OH groups on tetrahedral Zn^{2+} . Consequently, in $ZnAl_2O_4$ and ZnFe₂O₄, the intensity of the various hydroxyl groups decreases with increase in the ZnO percentage i.e formation of spinel phase. This indicates the formation of new hydrophobic sites on the spinel type oxide surface.

3.2. Studies on transesterification of vegetable oils

Evaluation of the catalytic activity of the different ZnO loaded Al_2O_3 and Fe_2O_3 samples in the transesterification of vegetable oils with methanol was carried out in a SS batch reactor using the three different vegetable oils, sunflower, and jatropha and waste oils.

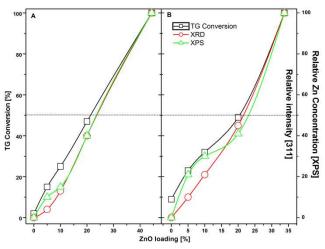


Figure 8. Influence of ZnO loading on transesterification activity of [A] ZnO/Al₂O₃ samples: a) sunflower oil, b) waste cooking oil and c) jatropa oil (conditions: catalyst, 1 g; 453 K; oil, 20 g; MeOH/oil (mole), 9; run duration, 10 h). [B] ZnO/Fe₂O₃ samples: a) sunflower oil, b) waste cooking oil and c) jatropa oil (conditions: catalyst, 1 g; 453 K; oil, 20 g; MeOH/oil (mole), 9; run duration, 10 h).

The transesterification activities of the supported spinel catalysts are given in Figure 8. Conversion of sunflower oil (triglycerides, TG) and the individual selectivity for the intermediates, the di and monoglycerides (DG and MG), and the final product FAME are presented in the figures as a function of % ZnO loading. The last point in the figures is for the stoichiometric spinel prepared by the coprecipitation method. It is seen that activity increases linearly with ZnO content, the linearity being more in the case of ZnO-Fe₂O₃ samples. In the case of the pure spinels, the (nearly) only product of the reaction is the mixture of fatty acid methyl esters (FAME). The other expected products, viz. the diglycerides (DG) and monoglycerides (MG) were together less than 0.5 wt% in the product. More of these intermediates, especially the MG, are found in the case of the less active samples. Even so, the amounts of these compounds are less than 4 % in all the products. It appears from these studies that Zn spinel phase is mainly responsible for activity of these calcined mixed oxides. The imaginary lines drawn in figure 8 clearly indicate that the transesterification activity is better for 5, 10 and 20 % loadings of ZnO of ZnO-Fe₂O₃ samples than ZnO-Al₂O₃ samples. Both the catalysts can be used for at least 5 cycles without noticeable loss in activity and can be used for fixed bed run for at least 48 hrs, according to our present study. The detailed results of the transesterification activity studies on ZnFe₂O₄ spinel catalyst with other spinel catalysts is discussed elsewhere³³

3.3. Structure-Activity Correlations

Figure 9. Relationships between ZnO loading, transesterification activity, relative spinel-content from XRD peak (311) intensity and relative intensity of Zn 2p peak in XPS for A) ZnO-Al₂O₃ and B) ZnO-Fe₂O₃ (conditions: catalyst, 1 g; 453 K; sunflower oil, 20 g; MeOH/oil (mole), 9; run duration, 10 h).

Characterization studies reported earlier revealed the formation of spinel-type phases in the samples, making them essentially spinels supported on Al_2O_3 and Fe_2O_3 . XRD studies revealed the formation of increasing amounts of the spinel species with increasing Zn-loading, while UV-vis. and XPS studies also provided indirect evidence for the formation of the spinel phases. The information on the surface hydroxyl groups of the mixed spinel-type oxides in the present study with XPS (O 1s region) and DRIFT-IR studies reveals the creation of hydrophobic sites with increasing ZnO content. Indeed, these hydrophobic sites facilitate the rapid adsorption of TG, which is also hydrophobic⁴⁷.

Plots of amount of Zn loaded in ZnO-Al₂O₃ and ZnO-Fe₂O₃ samples vs. their catalytic activity, relative bulk spinel content (as established by intensity of 311 peak in XRD) and relative intensity of Zn 2p measured by XPS are presented in Figure 9. Nearly linear relationships between Zn-loading, spinel-content, surface Zn-intensity (XPS) and activity (sunflower oil conversion) are noticed (Figure 9) confirming the role of the spinel phase in catalytic activity. Relative intensity values (XRD and XPS) were calculated with respect to the stoichiometric spinels prepared by the co-precipitation method (the last point in the figures). In case of ZnO-Fe₂O₃ samples relative surface Zn concentrations from XPS closely follow the transesterification activity than ZnO-Al₂O₃ samples, suggesting direct involvement of spinel phase to the activity in the former compared to the later. From the characterization studies, it is clear that ZnO-Al₂O₃ catalysts are highly porous with high surface area and ZnO-Fe₂O₃ catalysts are almost flat with low surface area. Therefore more transesterification activity of ZnO-Al₂O₃ catalysts than the surface Zn concentrations must be due to the higher surface area and porous nature of them; on the other hand, the activity of ZnO-Fe₂O₃ catalysts can be attributed to the surface concentrations of Zn^{2+} ions.

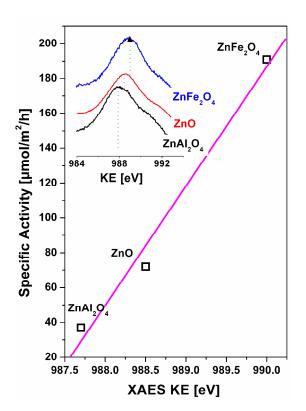


Figure 10. The linear relationship of Zn LMM (XAES) transitions with the specific transesterification activities of $ZnAl_2O_4$, ZnO and $ZnFe_2O_4$. The inset shows the corresponding Zn LMM transitions of $ZnAl_2O_4$, ZnO and $ZnFe_2O_4$.

Table 5 Comparison of activity of different spinels and oxides.

Sample	Surface area ^a (m ² /g)	Acidity μmol/g (350 - 800 K)	Activity (% conversion) at run time		Specific activity ^b (µmol/m ² /h) at run time	
			10 h	2 h	10 h	2 h
$ZnAl_2O_4$	62	138.7	100	20	35	37
$ZnFe_2O_4$	12	40.3	100	21	190	191
ZnO	29	69.6	98	17	79	72
γ -Al ₂ O ₃	168	626.6	2	-	0.2	-
α-Fe ₂ O ₃	6	21.1	9	2	33	38

^a:From N₂ adsorption, using BET equation; ^b:TG converted per mol per unit surface area per gram of catalyst (conditions: catalyst, 1 g; 453 K; sunflower oil, 20 g ; MeOH/oil (mole), 9.

The activity of the different oxides and the two spinels are compared (on wt and area basis) in Table 5. The conversions recorded on the two spinels, $ZnAl_2O_4$ and $ZnFe_2O_4$, at a run time of 10 h are similar, being about 100%. However, their activities are different when they are calculated on area basis. There is no direct relationship with surface area and acidity with the transesterification activity as can be seen in Table 5. Comparing the specific activities calculated on surface area basis at a run time of 2 h, it is found that $ZnFe_2O_4$ is much more active (191 µmol/m²/h) than $ZnAl_2O_4$ (37 µmol/m²/h). Though the activity of ZnO is also fairly large (72 µmol/m²/h), it is, however, found to leach into the reaction medium during, and hence not suitable as a catalyst. It is interesting to point out here that the specific activities of $ZnAl_2O_4$, $ZnFe_2O_4$ and ZnO for transesterification reaction increase in the same order of Zn LMM values, i.e., the electron density on Zn^{2+} ions. ($ZnAl_2O_4$, (987.7±0.1 eV) < ZnO (988.5 eV) < $ZnFe_2O_4$ (990±0.1 eV), Section **3.1.4.**) (see, Figure 10). The activity of the pure oxides are much lower, sunflower oil conversion being 9 and 2 % at 10 h, respectively, over Fe₂O₃ and Al₂O₃, though due to the low surface area of Fe₂O₃, its specific activity is, however, large (35 μ mol/m²/h).

Activation energy values based on biodiesel conversion gave an E_a value of 14.5 kCal/mole for $ZnAl_2O_4$ and 14 kCal/mole for $ZnFe_2O_4$ for sunflower oil (Figure S1, in supplementary information) suggesting the absence of diffusion effects at the experimental conditions used. Similar values have been reported by earlier workers during acid catalyzed transesterification of vegetable oils⁴⁸. This further proves that the ZnFe₂O₄ surface considerably reduces the activation energy of the reaction than ZnAl₂O₄ even though it has a flat surface and lower surface area but electron rich Zn-ions.

4. Conclusions

The studies reveal that when $Zn(NO_3)_2$ is impregnated on Al_2O_3 and Fe₂O₃ and calcined at 873 K, crystalline spinel phases of $ZnAl_2O_4$ and $ZnFe_2O_4$ are readily formed on the surface. Both ZnAl₂O₄ and ZnFe₂O₄ are active in the tranesterification of vegetable oils (sunflower, jatropa and waste cooking oils). A linear relationship between Zn-spinel content and transesterification activity is obtained for the supported catalysts. XVB (x-ray valence band) studies reveal that the surface valence bands of the two spinels are dominated by the Zn 3d orbitals and the intensity of the Zn 3d peak increases with increasing Zn content in the supported samples; this suggests that Zn 3d electrons are likely to take part to a major extent in the electronic excitation of the spinels (ZnAl₂O₄ and $ZnFe_2O_4$) during the reaction and, presumably, their transesterification activity. The electron densities of Zn-ions play a crucial role in the activity of the examined spinel samples.

Acknowledgements

The authors thank Head, NCCR, IIT Madras and DST, New Delhi.

Notes and references

^a National Centre for Catalysis Research, Indian Institute of Technology, Chennai-600 036. India.

Tel. 044-22574238

E-mail:<u>KThirunavukkarasu@gmail.com</u> (Dr. K. Thirunavukkarasu)

^bDepartment of Chemistry

Anna University

Chennai - 600 025. India.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

- Z. Helwani, M.R. Othman, N. Aziz, J. Kim, W.J.N. Fernando, *Appl. Catal. A: Gen.*, 2009, **363**, 1-10.
- 2 M. Di Serio, R. Tesser, L. Pengmei, E. Santacesaria, *Energ. Fuel*, 2008, **22**, 207-217.
- 3 G.R. Peterson, W.P. Scarrah, J. Am. Oil. Chem. Soc., 1984, 61, 1593-1597.
- 4 E. Lotero, Y. Liu, D.E. Lopez, K. Suwannakaran, D.A. Bruce, J.G. Goodwin, Jr., *Ind. Eng. Chem. Res.*, 2005, 44, 5353-5363.
- 5 D.-W. Lee, Y.-M. Park, K.-W. Lee, *Catal. Surv. Asia*, 2009, **13**, 63-77.
- 6 R. Stern, G. Hillion, J.-J. Rouxel, S. Leporq, US Patent 5908946, 1999, to Institut Francais du Petrole.
- 7 L. Bournay, G. Hillion, P. Boucot, J.-A. Chodorge, C. Bronner, A. Forestiere, US Patent 6878837, 2005, to Institut Francais du Petrole.
- 8 W.R. Cares, J.W. Hightower, J. Catal., 1971, 23, 193-203.
- 9 F. L. Peltier, P. Chaumette, J. Saussey, M. M. Bettahar, J. C. Lavalley, *J. Mol. Catal. A: Chem.*, 1998, **132**, 91-100.
- 10 R. Roesky, J. Weiguny, H. Bestgen, U. Dingerdissen, *Appl. Catal. A: Gen.*, 1996, **176**, 213-220.
- H. Grobowska, W. Mista, J. Trawczycz, M. Zawadzki, *Appl. Catal.* A: Gen., 2001, 220, 207-213.
- 12 T. E. Nabarawy, A. A. Attia, M. N. Alaya, *Mater. Lett.*, 1995, 24, 319-325.
- 13 G. Aguilar-Rios, M. Valenzuela, P. Salals, M. Armendariz, P. Bosh, G. Del Toro, R. Silva, V. Bertin, S. Castillo, A. Ramirez-soliz, I. Schiftler, *Appl. Catal. A: Gen.*, 1995, **127**, 65-75.
- 14 X. Li, Z. Zhu, Q. Zhao, L. Wang, J. Hazard. Mater., 2011, 186, 2089-2096.
- 15 L. Zhang, J. Yan, M. Zhou, Y. Yang, Y-N. Liu, Appl. Surf. Sci., 2013, 268, 237-245.
- 16 M. Vijayaraj, C. S. Gopinath, J. Catal., 2006, 241, 83-95.
- 17 K. Sreekumar, S. Sugunan, Appl. Catal. A: Gen, 2002, 230, 245-251.
- 18 P.T.A. Santos, A.C.F. Costa, H.M.C. Andrade, *Mater. Sci. Forum*, 2012, **727-728**, 1290-1295.
- 19 F.M. Moghadden, M. Doulabi, H. Saeidian, Sci. Iranica C, 2012, 19, 1597-1600.
- 20 H. Lee, J. C Jung, H. Kim, Y-M. Chung, T. J. Kim, S. J. Lee, S-H. Oh, Y. S. Kim, I. K. Song, *Catal. Lett.*, 2009, **131**, 344-349.
- H. Armendariz, G. Aguilar-Rios, P. Salas, M.A. Valenzuala, Schifter, H. Arrioka, N. Nava, *Appl. Catal. A: General*, 1992, **92**, 29-38.
- 22 Dom, R., Subasri, R., Hebalkar, N.Y., Chary, A.S., Borse, A.S., *RSC Adv.*, 2012, 2, 12782-12791.
- 23 G.Fan, J. Tong, F. Li, F., Ind. Eng. Chem. Res., 2012, 51, 13639-13647.
- 24 X. Xu, A.K. Azad, J.T.S. Irvine, *Catal. Today*, 2013, **199**, 22-26.
- 25 J-P. Jacobs, A. Maltha, J. G. H. Reintjes, J. Drimal, V. Ponec, H. Brongersma, J. Catal., 1994, 147, 294-300.
- 26 N. Nava, J. P. Jacobs, A. Garcla, J. J. W. M. Rosink, M. A. Valenzuela, L. J. Van Ijzendoorn, H. H. Brongersma, J. Radioanal. Nucl. *Chem. Lett.*, 1996, **212**, 431-443.
- 27 L. Bournay, D. Casanave, B. Delfort, G. Hillion, J.A. Chodorge, *Catal.Today*, 2005, **106**, 190-192.
- 28 V. Pugnet, S. Maury, V. Coupard, A. Dandeu, A-A. Quoineaud, J-L. Bonneau, D. Tichit, *Appl. Catal. A: Gen.*, 2010, **374**, 71-78.
- 29 W. Jiang, H-F. Lu, T. Qi, S-I.Yan, B. Liang, *Biotechnol. Adv.*, 2010, 28, 620-627.

- 30 Q. Liu, L. Wang, C. Wang, W. Qu, Z. Tian, H. Ma, D. Wang, B. Wang, Z. Xu, *Appl. Catal. B: Environ.*, 2013, **136–137**, 210–217.
- 31 C. T. Alves, A. Oliveira, S. A. V. Carneiro, A. G. Silva, H. M. C. Andrade, S. A. B Vieira de Melo, E. A. Torres, *Fuel Processing Technology*, 2013, **106**, 102-107.
- 32 B. R. Strohmeier, D. M. Hercules, J. Catal., 1984, 86, 266-279.
- 33 T.M. Sankaranarayanan, A. Pandurangan, M. Banu, S. Sivasanker, *Appl. Catal. A: Gen.*, 2011, **409-410**, 239-247.
- 34 T.M. Sankaranarayanana, R. Vijaya Shanthi, K. Thirunavukkarasu, A. Pandurangan, S. Sivasanker, J. Mol. Catal. A: Chemical, 2013, 379, 234-242.
- 35 S. K. Sampath, J. F. Cordaro, J. Am. Ceram. Soc., 1998, 81, 649 654.
- 36 S. Mathur, M. Veith, M. Haas, H. Shen, N. Lecerf, V. Huch, S. Hufner, R. Haberkorn, H.P. Beck., J. Am. Ceram. Soc., 2001, 84, 1921-1928.
- 37 L.G.J. de Haart, G. Blasse, J. Electrochem. Soc., 1985, 132, 2933-2938.
- 38 G. Moretti, J. Electron Spectrosc. Related Phenom., 1998, 95, 95-144.
- 39 L Ley, R. A. Pollak, F. R. McFeely, S. I'. Kowalczyk, D. A. Shirley, *Phys. Rev. B*, 1974, 9, 600-621.
- 40 R.H. French, J. Am. Ceram. Soc., 1990, 73, 471-489.
- 41 Y. Yourdshahyan, C. Ruberto, M. Halvarsson, L. Bengtsson, V. Langer, B.I. Lundqvist, J. Am. Ceram. Soc., 1999, 82, 1365–1380.
- 42 G. Rollmann, A. Rohrbach, P. Entel, J. Hafner, Phys. Rev. B: Condens. Mater., 2004, 69, 165107-165119.
- 43 K. Kotsis, V. Staemmler, *Phys. Chem. Chem. Phys.*, 2006, **8**, 1490-1498.
- 44 J.L. Junta-Rosso, M.F. Hochella Jr., Geochim. Cosmochim. Acta. 1996, 60, 305-314.
- 45 A.A. Tsyganenko, K.S. Smirnov, A.M. Rzhevskij, P.P. Mardilovich, Mater. Chem. Phys., 1990, 26, 35-46.
- 46 G. Busca, V. Lorenzelli, G. Ramis, R.J. Willey, *Langmuir*, 1993, 9, 1492-1499.
- 47 D.M. Reinoso, D.E. Damiani, G.M. Tonetto, *Appl. Catal. B: Environ*. 2014, **144**, 308–316.
- 48 B.Freedman, R.O.Butterfield, E.H.Pryde, J. Am. Oil Chem. Soc., 1986, 63, 1375-1380.