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SUMMARY 

Proteins are fascinating supramolecular structures, which are able to recognize ligands 

transforming binding information into chemical signals. They can transfer information 

across the cell, can catalyse complex chemical reactions, and are able to transform 

energy into work with much more efficiency than any human engine. The unique 

abilities of proteins are tightly coupled with their dynamics properties, which are 

coded in a complex way in the sequence and that have been carefully refined by 

evolution. Despite its importance, our experimental knowledge on protein dynamics is 

still rather limited, and mostly derived from theoretical calculations. I will review here, 

in a systematic way, the current state-of-the-art of theoretical approaches to protein 

dynamics, emphasizing the most recent advances, examples of use and the expected 

lines of development in the near future. 
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PROTEINS: THE MACHINES OF LIFE 

Proteins are large macromolecules responsible of the most complex processes in 

the cell. They are fascinating molecular machines able to accommodate structural and 

dynamical changes in response to external stimuli, such as alterations in the molecular 

environment (i.e. changes in membrane composition, temperature or pH), chemical 

modifications (i.e., phosphorylation), or the binding of other molecules. 

Conformational plasticity is crucial for protein function (1-7), and preservation of 

flexibility through specific deformation modes is instrumental for the functional role of 

proteins (1-8). It seems that evolution has not only refined the flexibility pattern of 

proteins, but it has also exploited it to create new proteins following a conservative 

low-risk paradigm (9-14).  

A comprehensive analysis of protein-protein complexes revealed that the 

movements required for effective dimerization are often just an extension of the 

spontaneous deformation modes of the unbound structures (15). Furthermore, large 

conformational transitions (in some cases more than 20 Å in RMSd) correlate very well 

with protein deformation patterns (16-17).  

The impact of dynamics in the properties of proteins is of particular relevance in the 

case of “intrinsic disordered proteins (IDPs)”. These proteins, which were ignored for 

structural biology for decades, account for nearly 40% of human proteome, and are 

especially involved in regulatory functions (18-21). Under native conditions, IDPs lack a 

defined 3D structure, and should be described as a dynamic ensemble (18-21). 

Extreme structural diversity is also a characteristic of some “moonlighting” proteins, 
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which under physiological conditions can adopt a variety of distinct folds, each of them 

adapted to a given function (22).  

In summary, there is an overwhelming amount of evidence demonstrating that 

dynamics is essential for protein function, and we should move to a new paradigm 

where proteins should not be defined anymore as single structures, but as ensembles 

of conformations. The challenge of structural biology for the next years is how to 

capture such dynamics, and how to derive reliable conformational ensembles. 

 

HIGH RESOLUTION STRUCTURAL APPROACHES TO THE 

STUDY OF PROTEIN DYNAMICS 

Structural studies have traditionally frozen protein dynamics, since it facilitates the 

resolution of the structure. However, even X-ray structures provide indirect 

information of protein flexibility. For example, parts of the protein that cannot be 

fitted in the density maps are often flexibly stretches. Likewise, residues that can adopt 

different conformations often appear with partial occupancy in the X-ray structures. 

Finally, all X-ray structures in the Protein Data Bank report a rough measure of 

flexibility: the X-ray B-factors (Figure 1). They are determined from the mean 

fluctuation of the residue i around its average position at a given temperature (Eq. 1), 

and are useful to distinguish between rigid and flexible regions: However, the 

information coded in all these X-ray derived descriptors should not be overestimated. 

For example, the widely used B-factors account only for harmonic movements, and 

systematically underestimate the magnitude of protein flexibility (23). 
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where index r stands for the position of a given particle and the index 0 refers to the 

equilibrium position. 

 

� Insert Figure 1 

 

Recent works have illustrated the exciting possibility to mix X-Ray structures 

deposited in structural databases with coevolutionary signals derived from sequence 

analysis to derive the magnitude of the dynamic conformational space accessible to 

proteins in large time scale (24,25). The idea has been successfully coupled to simple 

simulation engines to determine alternative conformations for proteins (24,25). 

NMR spectroscopy is much richer than X-ray crystallography as a source of 

information on protein dynamics (26-30). Current NMR experiments provide 

information on Nuclear Overhauser Effects (NOE), paramagnetic relaxation 

enhacement (PRE), three bonds scalar couplings (3J), transhydrogen bond scalar 

couplings (3HJ), chemical shifts (CS) and residual dipolar coupling (RDC), which in all 

cases are determined as “ensemble properties” (30-32). These parameters can be used 

then to evaluate the structural diversity of proteins, and even to refine atomistic force 

fields (33-35). Furthermore, accurate ensemble-based observables can be combined 

with simulation tools to explore the structural diversity of partially folded, or fully 

unfolded proteins (36-39). 

NMR experiments also provide information of protein dynamics at different time 

scales, ranging from the second-minutes regime in amide proton exchange saturation 
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experiments to the micro-millisecond scale in relaxation-dispersion measures and to 

the pico-nanosecond scale from spin relaxation type experiments. Nevertheless, 

transforming these observables into 3D images of protein dynamics is not trivial and 

demands a very careful integration of theoretical methods (for a comprehensive 

review, see ref. 26). 

A last source of indirect, but useful information on protein flexibility emerges from 

the analysis of structural diversity of proteins deposited in the Protein Data Bank (PDB; 

40). For example, NMR-derived entries contain several structures compatible with 

NMR-derived restraints (typically NOEs and 3Js). Even though the structural diversity in 

NMR-PDB entries may reflect, a priori, only technical noise, in practice, the dynamic 

patterns that emerge from NMR-based ensembles correlate quite well with flexibility 

descriptors derived from other sources (16). In addition, knowledge of structural 

diversity can also be gained from static X-ray structures in those cases where the 

protein has been solved several time under different conditions (i.e., apo and holo 

states, different pH or mutated forms). Again, caution is required in order to infer 

flexibility patterns from alternative X-ray structures, since structural diversity might 

emerge from crystallization artefacts or a number of spurious reasons. However, 

several studies (12-14) have shown that, by aligning the structures of a given family, 

one can build up a pseudo-trajectory that represents well the intrinsic dynamics of the 

protein and that the flexibility pattern agrees well with the physical deformation that 

can be obtained by other methods such as molecular dynamics (MD; Figure 2). 

 

� Insert Figure 2 

 

Page 6 of 56Chemical Society Reviews



Orozco, February 19th 2014 
 

7 

THEORETICAL APPROACHES TO PROTEIN DYNAMICS 

The intrinsic problems of experimental techniques to provide direct information on 

protein flexibility have fuelled the development of theoretical approaches to describe 

protein dynamics. All these techniques differ in the level of resolution used to describe 

the residues in the protein and their interactions, as well as in the algorithms used to 

sample the conformational landscape.  

 

THE LEVEL OF RESOLUTION: ATOMISTIC MODELS 

 

Within the atomistic level approach proteins and their environment (mostly solvent) 

are treated with atomic detail, which means that flexibility is explicitly captured by 

analysing the movement of every single atom of the structure. The different atomistic 

models arise from the level of complexity used to describe the energy associated to 

molecular interactions. We can in principle distinguish three levels of complexity: i) 

pure quantum mechanical (QM) description, ii) classical (MM) representation, and iii) 

hybrid quantum/classical (QM/MM) models. 

 

Quantum description. In principle the study of the dynamics of any molecule is the 

study of the movements along time of its nuclei and electrons. In principle, this can be 

recovered by solving time-dependent Schrödinger equation (eq.2), something that, in 

practice, is impossible to do exactly for any molecule of interest. Approximated 

methods have been then developed for decades to obtain fast estimates of the 

electronic energy of a given nuclei configuration. For example, a common 
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approximation is to work with the time-independent Schrödinger equation, and to 

follow the molecular orbital representation of the wavefunction, where such orbitals 

are expressed as linear combination of atomic orbitals. Methods based on this 

approach are the traditional ab initio or semiempirical (depending on the level of 

approximations used to solve numerically Schrödinger equation) QM methods. 

Hψ � Eψ    (2) 

where H  is the Hamilton operator, E is the energy and ψ  is the molecular 

wavefunction. 

An alternative to methods based in the resolution of the Schrödinger equation is to 

solve the simpler Kohn-Sham equation (for a review see 41), which expresses 

molecular energy in terms only of electron density. Approaches based on this equation 

are named “density functional theory” (DFT) methods (41).  

Due to the extreme cost of the calculations, QM methods have been mostly used in 

the context of isolated molecules in the gas phase, or molecules embedded in 

continuum solvents (42-43). Application in the study of large molecules, especially in 

the context of protein dynamics, is more limited and typically implies: i) use of very 

simple QM descriptions (semiempirical Hamiltonians or low level DFT calculations 

combined with plane waves (42) or atomic orbitals (43)), and/or ii) the use of “divided 

and conquer” type of approaches (44-47), were the large system is represented as a 

series of small interacting subsystems. Some of these models have been coupled to 

Monte Carlo, or more often to molecular dynamics algorithms (see below) allowing the 

user to introduce explicitly quantum effects in the calculations. 

Classical (MM) methods. Within this approach protein, and often solvent are 

treated at atomic resolution using classical force fields, which have been parametrized 
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against high quality QM calculations and/or experimental observables obtained for 

model systems. The force field energy is expressed by simple classical potentials, which 

at the expense of neglecting explicitly quantum effects, guarantees a large 

computational efficiency. The first generation of force-fields were created in the late 

sixties (for an excellent historical overview see 48). Since then, they have not evolved 

much in their basic formalisms, but have been improved dramatically in terms of 

parametrization. Current force-fields are extremely refined and if used properly, 

provide results of a surprisingly good quality.  Future developments are expected to 

arrive from two different directions: i) integration of dynamic information derived 

from NMR experiments in the parametrization (see above), and ii) extension of the 

formalism to include “quantum” terms like polarization in a more realistic manner (for 

a review on classical approaches to introduce polarization see 49). Recent attempts to 

use polarized force-fields from CHARMM-community are especially remarkable, as well 

as the efforts to facilitate parametrization of these force-field for new molecules (50-

52). 

 

� � � ������ � ������	�����
 � ��!���" � "�����	��#�!�

 � 0.5	'���(1 � *+,�-.  /�0���	�������	��#�!�
 � 1�123�2���	4ℎ��#!�

 � 567�23�28
9� � 26;�23�28

<=
���	�������!�	>����

 

 (3) 

where K stands for the stiffness of stretching (str) or bending (bend), l and " stand 

for bond lengths and angles (the 0 subindex stands for equilibrium values), '��� 
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represents torsional barrier, . is the torsion angle, -,and / are for the periodicity and 

phase angle of the Fourier term used to represent torsion, Q stands for charges, R 

represents a non-bonded interatomic distance, and finally A and C are van der Waals 

parameters characterizing Lennard-Jones interactions between particles. 

Hybrid QM/MM methods were created to deal with systems where QM effects are 

important (for example reactivity happens), but that are too large to be treated 

entirely at the QM level. QM/MM methods divide the system in two parts: i) a small 

one that is described at a QM level of theory, and a large one that is represented by 

means of classical potentials. The two most fruitful developments in the QM/MM field 

follow two different approaches: i) the empirical valence bond theory (EVB; 53-56), 

and ii) the molecular orbital self-consistent field (MO-SCF) approach (57-63). QM/MM 

coupled to molecular dynamics algorithms they have been widely used to study 

enzymatic reactivity, helping to decipher the molecular mechanisms that allow protein 

to accelerate so efficiently chemical reactivity, illustrating for example, the fine 

coupling between conformational dynamics and catalytic function (61,62). 

The elegant Warshel’s EVB theory (53-56) follows the valence bond framework (and 

alternative not fully explored to the prevalent molecular orbital theory) adapting it to 

deal with large macromolecular systems. In EVB the Hamiltonian of the reacting 

system is described by a limited series of resonance states (defining for example the 

reactants and products of a reaction). The diagonal elements of the Hamiltonian (Hii) 

correspond to the energies of the entire system in each resonance state (i), while the 

off diagonal terms (Hij) are represented by empirically-fitted exponential functions of 

the distances between reacting atoms. In practice, for the study of reactivity in 

complex environments (like enzymes) Hii is determined by fractioning the system in a 
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small part (“the reacting system”), whose energy is computed at the QM level or by 

means of empirical functions fitted to reproduce QM profiles (or experimental data if 

available), plus classical terms accounting for the internal energy of the environment 

(for example a protein) and its interaction with the reacting system.  

MO-SCF methods approaches the QM/MM problem (57-62) by simply solving time 

independent Schrödinger equation (eq. 2) for a global Hamiltonian defined as three 

blocks (eq. 4) : i) the QM part (HQM) for the “reacting system”, that is fully represented 

at the QM level (typically with a low-level Hamiltonian), a classical part (HMM) that 

represent the intramolecular interaction of the environment (that for a given nuclei 

configuration does not affect directly the wavefunction of the reacting system), and 

finally a coupling term (HQM/MM) that accounts for the interactions between the 

reacting system and the environment and that includes an electrostatic term acting as 

perturbational operator that modified the wavefunction of the reacting system. In the 

biochemical scenario MO-SCF QM/MM methods are typically coupled to MD 

algorithms to provide hybrid samplings (typically in the Born-Oppenheimer limit (i.e. 

electron distribution is SCF relaxed for each nuclei movement), see below). 

 

@!AA � @BC  @CC  @BC/CC    (4) 

 

THE LEVEL OF RESOLUTION: COARSE-GRAINED MODELS 

 

Dynamic representation of large protein systems, especially of protein aggregates, 

can be extremely expensive when coupled to atomistic models (even when classical 

Hamiltonians are used), which has led to the development of lower resolution models, 

Page 11 of 56 Chemical Society Reviews



Orozco, February 19th 2014 
 

12 

where often solvent is not explicitly considered (or it is represented by particles 

representing clusters of solvent molecules), and where several atoms of the proteins 

are grouped in a single bead to reduce even more the degrees of freedom of the 

system (63-68). 

Coarse Grained (CG) methods are extremely efficient from a computational point of 

view, but since atomic detail is lost, they require the use of non-physical statistical 

potentials (in some cases with a general formalism that resembles physical potentials), 

which need to be carefully calibrated in order to reproduce the structural and 

flexibility properties of proteins (for recent ideas on how to build optimized models 

with low and very low resolution levels see reference 70 and text below).  

Go-potential (69,70) is probably the oldest and the simplest of CG potentials. It 

assumes that the experimental structure of a protein corresponds to the force field 

energy minimum (i.e. it assumes that the experimental structure shows no frustration 

of protein-protein interactions), and that native residue-residue contacts are 

favourable, while non-native contacts are either irrelevant or unfavourable: 

� ��/�,2
�,2

E�2 
(5),  

where i and j stands for two residues, E�2 is a stability energy value (constant for all 

pairs in the uncoloured Go-model, or different in coloured Go-model depending on the 

nature of the interacting residues), and /�,2 takes values of -1 if contact i-j is native and 

0 or +1 otherwise.  

Go-potential typically relies on a representation of the protein limited to the alpha 

carbon atoms, and despite its simplicity it has been very useful in the description of 
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protein flexibility, specially related to folding and often coupled to Monte Carlo 

sampling algorithms. Recent analysis of very long Anton’s atomistic molecular 

dynamics simulation for a series of fast folding proteins (see below) demonstrated (71) 

that native contacts define protein folding simulations, providing an unexpected 

support to simple Go and Go-like force-fields. 

Go-potential has been a source of inspiration for other closely related CG potentials. 

One of them is Onuchic’s functional (72,73), where a Cα representation of the protein 

is used, and the energy is determined by adding bonded terms computed for all 

contacts, as in a normal physical force field, and non-bonded interactions, which are 

computed separately for native and non-native contacts. The native contacts are 

represented by combining a repulsive r-12 term and an attractive r-10 component, 

whereas the non-native ones are represented only by a repulsive term. Onuchic’s 

potential energy terms (see Eq. 6) were calibrated to reproduce protein structure and 

dynamics. 

� � � ���
 � 
���  � �F�G � G���
��#�!������

 � H�I9(1 � cos�. � .�0  ��M(1 � cos 3�. � .�0O��ℎ!�����

 � E 55 6P�2
�28
9� � 66P�2
�28

9=
�,2	∈	����S!

 � E 556P�2
�28
9� � 66P�2
�28

9=
�,2	∈	����S!

 � E 56P
�28
9�=

�,2	∈	���T����S!
 

  

(6),  
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where bond, angle and dihedral parameters have the same meaning that in physical 

force-fields (though limited to the description at the Cα level), ε is an energy value, σij 

is the i-j distance (rij) in the native conformation and σo is set to 4 Å to avoid close non-

native contacts. Onuchic’s potential assumes the same principle of minimum 

frustration in protein structure than pure Go-pure potential, but is much more 

accurate and flexible. Furthermore, it has proven to be very efficient in simulations of 

protein folding, and on the description of the conformational landscape of complex 

proteins from Langevin-Brownian molecular dynamics simulations (72-74).  

Other potentials not far from the concept of the Go model are the elastic network 

models (ENM; 75,76; see Figure 3). They are typically used in the context of Cα 

representations of the proteins, even though higher resolution models have been 

proposed. As Go-model ENM also assume that the experimental structure is a 

minimum in the conformational energy landscape, and that the protein reacts 

harmonically to the perturbation of inter-residue distances: 

� ��12κΓ�2W
�2 � 
�2X��,2
 

(7) 

where κ is a force constant, typically the same for all pairs of residues, Γ�2  is the 

Kirchoff topology matrix with elements equal to 1 if the experimental inter-residue 

distance 
�2  is smaller than a cut-off and zero otherwise. 

  

The selection of the cut-off value in Eq. 7 is crucial for a correct description of 

flexibility. Typically values around 10 Å have been used, but the optimum value can 

change for proteins of different size. Kovacs et al. (77) proposed an alternative 
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expression to Eq. 7, where the use of the Kirchoff matrix is avoided and instead of 

annihilating the springs among residues at the cut-off distance, the force constants are 

scaled down with the sixth power of the inter-residue distance, leading then to: 

� � ; 6 "
�28
< �
�2 � 
�2�� 

(8) 

where C is an effective force-constant and α is a constant taken as the shortest 

possible Cα-Cα distance (3.8 Å).  

Recently Orellana et al. (78) refined Kovac’s model by using three layers for the 

definition of the inter-residue force-constants, which were denoted i) very stiff 

sequence-mediated contacts, ii) space-dependent contacts with stiffness scaled down 

with a sixth power exponential term, and iii) a cut-off to completely remove irrelevant 

very distant contacts. The refined method proved to be superior to simpler ENM 

formalism in reproducing flexibility patterns retrieved from NMR ensembles, structural 

diversity in PDB, known conformational transitions, and atomistic MD simulations in 

explicit solvent (78,79; see Figure 3). 

 

� Insert Figure 3  

 

ENM harmonic potentials can be used in conjunction of Langevin-Brownian dynamics 

(79), but the standard framework is within normal mode analysis (NMA; see below). 

Alternatively, ENM potentials can be discretized into harmonic wells to allow us the 

use of discrete molecular dynamics (dMD; 79,80) sampling algorithms (see below). 
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A large variety of pseudo-physical CG potentials have been suggested. They maintain 

a formalism that resemble those of atomistic force-fields, and they require only partial 

information on the three dimensional structure of the protein. Marrink’s MARTINI 

force field (63,81,82) is one of the most used of this family of force-fields. MARTINI 

maps four heavy atoms with a bead, which is labelled according to its physical 

characteristics (charge, polarity, hydrogen bond donor/acceptor capabilities, etc). The 

interactions among beads adopt a quite standard “all atoms-like formalism”, adding 

torsional restraints to maintain native secondary structure. MARTINI force-field (as 

physical force-fields) can be used in the context of either normal molecular dynamics, 

or Langevin-Brownian dynamics. The use of Marrink’s force-field allows a significant 

computational efficiency, due not only to the decrease in the number of degrees of 

freedom, but also to the large masses of the beads, that allow the use of large 

integration steps. The force field has been largely used to study large conformational 

transitions, especially in membrane proteins (82-86); for a more detailed description of 

the force field and its application we address the reader to ref. 82.  

Lavery and coworkers (87) have recently tried to alleviate some of the problems of 

MARTINI force field (mainly the need to force secondary structure, which limits its 

applicability in the study of conformational changes implying disruption of secondary 

structure) by developing a more elaborate model, were each side chain is reproduced 

by one or two beads (apart from the Cα atoms), using a quite detailed definition of the 

backbone that allows to capture backbone hydrogen bonding. The interactions 

between beads are represented by a standard bonded “all atoms-like” force field 

supplemented by a coupling torsion term used to refine the description of torsions 

that are strongly correlated (like Ψ and Φ). The non-bonded contribution contains four 
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terms: a smooth r-8-r-6 term for van der Waals, a standard Coulomb term, with a 

distance-dependent dielectric constant, a specific hydrogen-bond r-12-r-6 term, and a 

very simple one-body solvation term that depends on the accessibility of every bead. 

The different parameters in the force field were fitted to reproduce neighbor 

distribution probabilities in a large set of proteins.  

The idea that MD-based CG potentials should be able to reproduce atomistic MD 

trajectories was present in the development of many other CG force fields. For 

example, Kmiecik and coworkers used MoDEL database (88,89) to calibrate and 

validate the CABS force-field (90), which uses a simplified version of the protein (one 

bead at Cα, another in the middle of the peptide bond and one or more beads for the 

side chains). On similar lines, Voth and coworkers (91) used MD simulations at high 

temperature of small proteins and peptides to calibrate a CG potential with different 

levels of resolution for residues (from 1 to 5 beads), a sophisticated bonded term, and 

a non-bonded expansion that resembles the terms used in the MARTINI force field. 

Schulten’s group has also worked in similar lines developing a very simple force field 

(two beads per residue), and later proposed an even lower resolution one, where 

beads were placed not in real residues, but in points selected to reproduce protein 

shape (92-94). The parameters required in these force fields were fitted case by case 

to reproduce atomistic CHARMM simulations for the same protein, which reduces 

universality and transferability in the force-field, but increases very significantly its 

accuracy for the system of interest. 

It is impossible to discuss, or even cite here all the different CG models and force 

field developed in the last years. Hence, we limit ourselves to conclude this section by 

citing Scheraga’s UNRES force field due to its impact in folding studies of proteins 
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(95,96). In this case each residue is represented with two beads, one located in the 

center of the peptide bond and the other representing the side chain. UNRES force 

field is formally complex and was calibrated using atomistic MD data and three-

dimensional structures of folded protein deposited in PDB (95,96). 

 

THE SAMPLING METHODS: MOLECULAR DYNAMICS 

 

Irrespectively of the Hamiltonian used to represent molecular interactions, 

representation of flexibility requires a sampling method to generate ensembles of 

structures for a given environmental conditions, or in some cases, to simulate a 

transition path.  

 

Quantum molecular dynamics. Molecular dynamics (MD) techniques derive 

ensembles by integrating equations of motion. If the Hamiltonian is classical, Netwon’s 

physics is valid and the integration of equations of motions is simple. However, if 

electron degrees of freedom are considered, and the Hamiltonian is fully or totally 

quantum, integration of equations of motions is much more complex, since quantum 

physics needs to be considered. Quantum molecular dynamics (QMD) can be done 

within two major frameworks: i) Born-Oppenheimer molecular dynamics (BOMD) and 

ii) Carr-Parrinello MD (CPMD).  

BOMD simplify the problem of integrating electron degrees of freedom by 

considering that electrons has reached equilibrium for each nuclei movement (i.e. the 

system follows the Born-Oppenheimer regime), that means that full SCF convergence 

of electronic wavefunction is performed for each nuclei movement. BOMD is 
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extremely expensive, since for each femtosecond (the usual integration step for nuclei 

movements) one full SCF optimization has to be done. So, BOMD has been used mostly 

within the QM/MM framework (57-62). Recently divide-and-conquer type of 

approaches such as Gao’s Xpol approach (44,45,47) have made possible to perform 

multi-picosecond full QM BOMD simulations of small proteins in realistic physiological 

conditions, using simple semiempirical Hamiltonians to represent protein and solvent. 

With new generation of computers, faster QM methods, and more efficient 

parallelization schemes it will be possible to extend trajectories to the multi-

nanosecond time scale, opening interesting possibilities in the study of proteins where 

quantum effects are present across the entire structure.  

Carr-Parrinello molecular dynamics (CPMD; 42) is probably the most popular 

approach to perform full QM MD calculations. This elegant technique uses DFT 

planewaves to describe electron distribution and consider explicitly electron degrees 

of freedom in integrating system’s equations of motion (i.e. no Born-Openheimer 

approach is followed). This is made by considering an extended Lagrangian, which 

includes energy terms depending on time-dependent electron distributions. 

Integration is then made at sub-femtosecond scale to allow the relaxation of electron 

degrees of freedom. CPMD has had a dramatic impact in material sciences, and 

applications in proteins are increasing, especially when embedded in a general 

QM/MM treatment of the system (97,98). 

 

Classical molecular dynamics is probably the better known and widespread method 

for the study of protein flexibility. Within this approach, both the protein and the 

solvent environment are treated at atomic resolution level using classical force fields, 
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which have been parametrized against high quality quantum mechanical calculations 

and/or experimental observables obtained for model systems (see above). The force 

field energy (expressed by simple potentials) can be differentiated to obtain forces on 

individual atoms, and the corresponding accelerations are then numerically integrated 

(typically in the femtosecond range) to obtain new velocities and positions for the 

atoms. This process leads to a trajectory of the protein along time, which explicitly 

contains all information on the protein flexibility under the simulation conditions. 

First MD simulations of proteins were performed in the late seventies (99,100) and 

the formalism was refined in the eighties (for a nice historical perspective see 101). 

Since then, the technique has continued evolved, gaining accuracy and predictive 

power, and becoming a widely accepted tool in hundreds of laboratories. Current 

protocols allow the representation of a variety of biological systems in realistic 

environments for simulation periods typically in the multi-nanosecond to microsecond 

time scale. Popularization of the technique has been possible thanks to the advances 

in MD algorithms implemented in codes such as GROMACS, AMBER, CHARMM and 

NAMD, among others, which thanks to the support of enthusiastic people offer the 

community in a free (or nearly-free) basis extraordinary pieces of computing 

engineering. As an example, GROMACS (http://www.gromacs.org/About_Gromacs) is 

the result of 482 person-year work with an estimate cost of more than € 26 million (by 

November 2013). Without this altruistic effort, the MD field would have been very 

different to what is at present.  

Current progresses in atomistic MD simulations involve the extension of i) the size 

of the system and ii) the simulation length, iii) parallel-ensemble simulations, and iv) 

biased MD simulations.  
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Extension of simulated systems. Last generation MD software (see for example 

102,103) achieves a good degree of parallelization, allowing a quite efficient use of last 

generation supercomputers. Thus, the possibility to distribute a single trajectory 

among hundreds or thousands of processors has enabled to perform huge simulations 

(104-106), such as the impressive study of the HIV virus capsid, a system with many 

millions of atoms recently simulated by Schulten’s group (104). Unfortunately, even 

the best parallelized codes have generally problems to use efficiently more than a few 

thousands cores, whereas the top supercomputers have millions of cores (for example, 

Tianhe-2, the first supercomputer in November 2013 Top500 list, has more than 3 

million cores; using current technology around 108 cores would be needed for an 

Exaflop computer). It is difficult to believe that MD codes could be further improved as 

to allow us an efficient use of millions of cores in a single biologically relevant MD 

trajectory, but massively parallel computers significantly enhance our capabilities to 

study bigger, more realistic systems. 

 

Extension of the trajectory length. Current state-of-the art simulations are still too 

short to allow a direct comparison with experimental data, and it is always unclear 

whether or not a trajectory is long enough as to achieve a proper sampling of the 

conformational space. Modest parallelization (scaling to 128-512 cores) helps to 

increase the accessible time-scale of most simulations, but unfortunately, for most 

systems of interest (solvated proteins containing 104-105 atoms), no dramatic 

improvements in simulation speed is obtained when more cores are used. This has 

Page 21 of 56 Chemical Society Reviews



Orozco, February 19th 2014 
 

22 

encouraged different groups toward: i) the design MD-specific hardware and ii) the 

development of GPU –adapted MD codes. 

Shaw and co-workers have built the Anton computer specifically for MD simulations 

(107), leading to an enormous gain in the simulation length. Thanks to this specific 

purpose-designed computer, they published the first millisecond atomistic MD 

simulation of a folded protein (108), and successfully folded a series of small proteins 

in the sub-millisecond time scale (109), thus providing a basis for significant advances 

in the understanding of the kinetics and thermodynamics of protein folding (109-112). 

More recently, Anton computers have also been used to study processes such as 

ligand binding, allosteric transitions in membrane receptors and the mechanism of ion 

channels (113-117). The possibility of running these extremely long simulations is 

opening new fields, which will be fully explored when computer architectures, such as 

Anton, will become available to the entire community. 

GPUs are highly specialized architectures, which offer a cheap alternative to 

accelerate MD simulations in cases where poor parallelism does not justify adding 

more processors to the calculation. In the last years GPU-specific codes such as AceMD 

(118) have been developed, and GPU-optimized versions of popular codes such as 

GROMACS (102), AMBER (119,120) or NAMD (103) have been created. The 

acceleration of calculations by GPUs is not as impressive as that achieved with Anton, 

but GPU-based cluster are accessible to the entire community, allowing many groups 

the access to the multi-microsecond regime for small and medium-sized proteins 

(120,121). Furthermore, GPU-based hardware allows an easy integration of ensemble-

based simulations, including those performed in a distributed manner (120-123). As 
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the increase in GPU performance and the parallelization in CPU/GPU clusters continue, 

we can expect an even larger impact of GPUs in the molecular dynamics field. 

 

Parallel ensemble MD simulations. As discussed above, extension of the simulation 

time of individual trajectories is limited by the difficulty for an efficient parallelization 

of systems comprising around 105 atoms (i.e., a the typical size of a solvated protein). 

Fortunately, in the ergodic limit, there is no need to have an infinitely long trajectory, 

since the same information could be derived from an infinite number of short 

simulations. This has raised the concept of “ensemble simulations”, where a very large 

number of small trajectories is collected and processed to reconstruct long time scale 

processes. The ensemble approach allows a very efficient use of computer resources, 

since individual simulations are computed with a reduced number of processors, which 

guarantees full parallelism, adapting well to current high performance computers.  

Pande and co-workers popularized the ensemble MD procedure showing that 

quantitative information on the folding of small proteins may be derived by integrating 

the information of thousands of trajectories, each of them shorter than the expected 

length of the folding process (124,125). The same group developed a worldwide 

initiative named “folding_at_home” (www.folding.standford.edu/home), which allows 

them to use a gigantic number of (otherwise dormant) CPUs provided by volunteers 

around the world to advance in the knowledge of mechanistic aspects of protein 

folding, intrinsic disordered proteins or drug-binding (124-129). As a recent impressive 

example, Pande’s group has made use of Google’s Exacyle cloud-computing platform 

to simulate an aggregated time of two milliseconds of β2AR, which were combined by 
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Markov’s models to obtain a clear picture of activation pathways of this important 

pharmaceutical target (127).  

How individual trajectories are combined to obtain a Boltzmann’s sampling of the 

protein conformational space is still a major issue, and research efforts have led to a 

variety of methods. The replica exchange simulation (RExMD; also named parallel 

tempering MD (130,131) uses multiple trajectories at different temperatures that are 

interchanged every number of integration steps based on a Metropolis Monte Carlo 

acceptance algorithm (Figure 4) with the acceptance probability being defined as: 

Y � Z�- [1, \∆^_`6 abc_T abc`8d    (9) 

where i and j stand for two protein configurations obtained at temperatures Ti and Tj. 

and ∆Eij denotes the potential energy difference between configurations i and j. 

It can be proved that for an infinite range of closely spaced temperatures, RExMD 

provides a Boltzmann’s ensemble at a given reference temperature. As the replicas run 

independently until Metropolis Monte-Carlo attempts to interchange them, RExMD 

simulations are well suited for massive parallel computers. Since two layers of 

parallelization can be performed: one for individual replicas and another one for the 

temperatures, RExMD parallizes well in big clusters and supercomputers. However, 

RExMD is, in principle, not so efficient in the context of distributed computing, where 

asynchrony in the replicas can diminish severely the overall performance. However, 

recent efforts by Pande and others (see for example ref. 132, 133) have yielded 

modified algorithms that reduce synchrony problems, allowing the use of distributed 

infrastructures for these simulations. Note that the RExMD formalism also enables the 

use of Hamiltonian perturbations to improve sampling in a similar manner than the 
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temperature perturbations (134), which extend the range of applicability of the 

general replica exchange idea.  

 

� Insert Figure 4  

 

Other alternatives to RExMD have been proposed to process and integrate MD 

ensembles. For example, different groups have developed algorithms to integrate 

massive number of trajectories collected for the same system at the same 

temperature, but starting from different conformations and velocities. The ensembles 

are then processed through rigorous statistical mechanics algorithms, such as Markov 

State Models (MSM; 135-138), to define the entire conformational space. The basic 

idea of MSM is to capture the equilibrium population of two states A and B by looking 

at the equilibrated transition probability between them. Implementation of this idea is 

difficult if both states are too distant, since individual MD simulations are unable to 

detect enough transitions as to guarantee convergence of the transition probability 

(PA|B). To solve this problem MSMs define a path of transitions through other 

intermediate states PA|A’, PA’|A’’,…, PAn’|B, linking A and B. If the total collected ensemble 

is good enough, not only the relative population of the two conformational states is 

retrieved, but also the major transition pathways and their associated kinetics are 

obtained. In practice (139,140) MSM/MD calculations require thousands of individual 

independent trajectories, with after equilibration are processed by clustering methods 

to define populated microstates, which are later re-clustered in larger states from 

which transition probabilities are determined. The method is sensitive to limited 

sampling and to the definition of microstates, and often the transition path between 
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states A and B is either interrupted, a given transition is not converged, or a state 

becomes isolated from the rest. In these cases iterative algorithms are used to 

reinforce sampling in poorly explored regions of the conformational space. MSM/MD 

is gaining relevance in the field and has been largely and successfully used to study 

slow processes (126-129,135-140) including protein folding and ligand binding and fits 

very well in supercomputer architecture, which suggest that its use will be extended in 

the future. 

Parallel MD simulations have been used in conjunction with experimental ensemble 

information in order to characterize the structural transitions in complex processes. 

Thus, global ensembles are obtained by combining a slow time scale, which is covered 

by the experiment, and a fast one, which is by MD simulations For example, 

Grübmuller and coworkers (141) have combined in an elegant way electron 

microscopy and X-Ray data with atomistic MD simulations to examine the ribosomal 

elongation mechanism.. Following similar ideas Candotti et al. (40) characterized the 

unfolded state of Ubiquitin by combining MD trajectories (short time-scale 

movements) with NMR-derived ensembles (large time-scale movements), de Groot 

and coworkers mixed electron crystallographic data with MD simulations in packed 

environments to refine structure and dynamics of lipid-protein complexes (142), and 

again Grubmüller has recently published how to integrate FRET experiments in 

atomistic MD simulations (143-144). 

 

Biased MD simulations. A series of techniques are available to bias a MD simulation 

to favour a given transition. Umbrella sampling (US) is probably the oldest, and still 

one of the most popular ones to bias a trajectory along a potential transition pathwar. 
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To this end, US defines a “transition coordinate” (γ) that drives the transition from 

state A to B (γA� γB), forcing the system to move in small steps (windows) along it 

(γA� γA+dλ,…, γB- dλ � γB, dλ being a small increment in the reaction coordinate from 

state A to B). A biasing potential (the umbrella potential, typically an harmonic 

function) is added to guarantee sampling around the desired window. The free energy 

associated to the transition is then determined from the probability function P(γ)* 

obtained from the MD simulation performed with a Hamiltonian defined by the 

standard force field supplemented with the umbrella potential (U(γ)): 

e�γ� � �k�TlnP�γ�∗ � m�γ� � k�Tln 〈\Tn�o�bpc 〉∗   (10) 

where the index * refers to the MD ensemble obtained with the biasing potential (for a 

more detailed analysis see refs. 144,145). 

Different variants of the US technique have been successfully used to study a 

number of conformational movements in proteins. However, a common problem to 

US-based methods is that finding a privileged “transition coordinate” to be modified 

smoothly and reversibly between states A to B might not trivial for collective motions 

in proteins. This has fuelled the development of many alternative strategies. We will 

limit ourselves to mention a few of these methods. 

Targeted MD enforces the transition A�B by introducing restraints that force the 

system to reduce slowly the RMSd to a target structure (146). Alternatively, in steered 

MD (sMD) a steering force is added to the Hamiltonian to pull the system towards a 

defined reaction coordinate (Eq. 11). sMD has been largely used to simulate protein 

unfolding, ligand unbinding or to mimic in silico atomic force-microscopy experiments 

(147-150). In a very recent work, Hummer’s group (151) has shown how by combining 
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steered MD and metadynamics (see below) is possible to analyse in detail the 

mechanism of interconvertion of chemical energy and work by F1-ATPase (one of the 

most important motors in the cell) 

q � ��r  st � r�   (11) 

where K is the stiffness of the biasing potential m � ��r � r��, v is the velocity at 

which the system is pulled along the reaction coordinate r, and t is the time.  

Integration of the pulling force provides the associated “irreversible” work (W), 

from which the free energy profile can be derived by using Jarzynski’s equality (Eq. 12). 

\T∆u/vpw � 〈\Tx/vpw〉   (12) 

where the brackets in the right-hand part of the equation mean that the “pulling” 

experiment needs to be repeated many times to achieve a converged free energy (for 

details see ref. 150). 

A variety of alternative methods denoted as Maxwell-Demon MD, dynamic 

importance sampling (DIM), or soft-racketing (152,153) use a different approach to 

bias the trajectory. Instead of adding a biasing potential (or force), they bias the 

trajectory by selecting, and eventually cloning those snapshots that spontaneously 

approach the target structure. In practice the method implies parallel MD runs 

followed by Metropolis Monte Carlo selection steps, which select (and clone) 

snapshots based on how well they approach the target conformation.   

Metadynamics is another popular alternative to facilitate the sampling of 

conformational transitions. The technique, developed by Parrinello and coworkers 

(154) from previous models by van Gunsteren’s group (155), was originally intended to 

help the trajectory to escape from a local minimum. This is achieved by adding every 
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certain numbers of steps a biasing term to the Hamiltonian that penalizes the system 

to re-visit regions previously sampled (Eq. 13). 

'y�r, t� � � z\To{o|}~}
��,��

 

   (13) 

where γ is here a collective variable defining a given state, w and σ are the height and 

width of the Gaussians which are added at time τ.  

As shown by Parrinello and coworkers (154-157), the free energy associated to the 

scape from the minimum can be determined as the added potential required to free 

the system from the original basin ('y�r� � �q�r��. This definition, even in principle 

exact, suffers from convergence problems, since it is not trivial to decide when to stop 

the simulation, and if this is not done more and more useless Gaussian are added, 

increasing in an artifactual manner the free energy. To alleviate this problem, in the 

well-tempered variant of metadynamics the Gaussian height (w) is also history-

dependent, forcing a decrease in Gaussian deposition as simulation time advances, 

improving then the convergence in the free energy estimates (156). The generalization 

of metadynamics to study any given transition is simple, provided collective variables 

(γ in eq. 8) describing a reasonable path are defined. A large number of different 

collective variables are accessible (157), allowing the method to be used for allosteric 

motions in proteins, ligand binding and many other slow processes (151,157-161). 

Activated MD (162,163) is a biasing technique that is applied after there is a first 

approximation to the reaction pathway, from which a first guess of the placement of 

the free energy barrier (this can be obtained by standard umbrella, steered MD or any 

other similar method). Once the maximum energy point in the conformational 
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pathway is known, many trajectories starting for this conformation with random 

velocities are lunched and followed to rebuild a refined conformational pathway and 

the associated kinetics, now without the bias imposed by the distinguished coordinate. 

Conceptually close to activate MD are a myriad of other techniques that refine a first 

guess of a transition pathway by moving in the potential energy (or free energy) 

hyperspace. Two examples of these techniques are the Karplus’s conjugate peak 

refinement method (164,165) and the dynamic string method derived by Hummer and 

others (166). Transition pathway sampling technique (TPST; 167,168) can be seen also 

as member of this family of methods. In TPST a first guess of a potential pathway is 

used as seed for a Monte Carlo procedure where new pathways are generated and 

selected by Metropolis test based on how efficiently they link reactants and products 

(defined by some order variable). The final output of TPST is an ensemble of 

trajectories linking as efficiently as possible the two states of interest. 

 

THE SAMPLING METHODS: BROWNIAN/LANGEVIN MOLECULAR DYNAMICS 

 

When part of the entire system is not simulated at the discrete level, but by means 

of a continuum that, for example, represents friction effects or general environmental 

effects, the basic MD algorithm needs to be modified by introducing Langevin and 

Brownian corrections, which allow the introduction of environment effects by coupling 

the particular system to an external bath that affects the trajectory in two different 

ways: i) by dissipating energy as heat (mimicking collision of the system with, for 

example, solvent molecules), and ii) by generating random forces that add energy into 

the system in a Brownian manner, as noted in Eq 14, 
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Z���� � q�� � rs��  3����t�      (14) 

where the first term in the right side of the equation stands for the forces (obtained 

from derivation of the force-field potential at the position of particle i, the second term 

is a Langevin term for a fluid with friction coefficient r, and the last term accounts for a 

random force which is typically considered Gaussian with zero mean for large 

simulation times (for a detailed explanation of the technique we address the reader to 

refs. 169-171). 

Brownian/Langevin dynamic algorithm is implemented in many MD codes, which 

allows a direct use of this technique with many continuum CG models. The method is 

especially powerful when combined with CG representations of the protein 

Hamiltonian and implicit representation of solvent, since the reduction in degrees of 

freedom, the simplicity of the CG Hamiltonian, and the heavy masses of the particles 

considered in CG simulations allow efficient samplings. Very recently, an alternative 

use for the technique has been proposed to deal flexibility effects linked to ligand 

binding (172,173). The new method uses a hybrid Hamiltonian like that described in 

Eq. 14, with the essential deformation modes (eigenvectors ν and eigenvalues λ) being 

determined from essential dynamics analysis of a previous MD simulation (174).  

 

 

THE SAMPLING METHODS: NORMAL MODE ANALYSIS (NMA) 

 

NMA is probably the simplest of all sampling methods currently used to describe 

protein dynamics. It can be used with both atomistic (with implicit solvent 

representations) or CG representations of the molecule, and with any kind of force-
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fields. However, in practice the vast majority of NMA studies with proteins are carried 

out considering a CG representation of the protein, typically coupled with ENM 

Hamiltonians (see above). NMA methods assume than the experimental (or in general 

the reference) structure of the protein corresponds to the free energy minimum and 

that changes in energy related to geometrical perturbations of such structure can be 

expressed as a Taylor series: 

'�
� � '�
�  ��/'/
�� �
� � 
��  
12�
�6 /�'/
�/
28 �
� � 
�

�W
2 � 
2X  ⋯�,2
 

(15),  

where both the (relative) energy and the first derivative are equal to zero at the 

reference point (r0). If one ignores higher order contribution, the preceding expression 

can be rewritten as in Eq. 13, which indicates that the deformation energy can be 

easily computed from the Hessian. 

'�
� � 12�6 /�'/
�/
28 �
� � 
�
�W
2 � 
2X��2

 

(16) 

 

ENM-NMA methods (77-79,175-186) are simple and provide reliable estimates of X-

Ray B-factors, the pattern of flexibility reported by NMR ensembles and even that 

derived from atomistic MD simulations (16,77-79,175-177). Furthermore, despite the 

simplicity of the model, ENM-NMA deformation modes capture well biologically 

relevant conformational transitions (9-10,15,16,179,180). 

Recent advances in ENM-NMA have been focused on the refinement of the 

Hamiltonian (79), the use of internal coordinates instead of Cartesian ones to define 
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protein movements (181-183), and the introduction of anharmonicity effects (184). 

Large effort has also been made in the development of friendly tools that facilitate the 

use of the technique to non-experts (76,79,185-187). Finally, attention has also been 

paid to the use of ENM-NMA information to determine potential transition pathways 

between alternative conformations of proteins (states A and B). Here the common 

idea of the different methods is to activate movements of the protein along the 

normal modes of state A in order to approach state B and viceversa. The procedure 

adopted for exchanging the two minima potentials (for A and B) has been subject to 

different strategies (188-191), and multi-reference approaches where normal modes 

are re-computed along a seed pathway (192), or where additional information is 

implemented (17,193) in the searching algorithm (see below) have been suggested. 

 

THE SAMPLING METHODS: MONTE CARLO 

 

Monte Carlo (MC) is an old lgorithm for generation of structural ensembles that still 

widely used. Within the traditional Metropolis implementation, the method generates 

potential random movements on a given structure accepting or rejecting them based 

on the relative energy of the previous (seed) structure. For an infinite number of 

attempts the method guarantees that a Boltzmann’s ensemble is collected, but in 

practice the method is efficient only when a suitable set of sampling variables are 

used. For example, MC is quite inefficient when sampling protein movements in 

Cartesian space due to the high rejection rate, but it is very efficient to sample, for 

example to sample side chain movements (194,195) or ultra-simplified descriptions of 
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proteins (196). The use of MC algorithms to refine binding modes in the context of 

flexible proteins has been crucial in the design of ultra-affinity drugs (197,198). 

Recently (177), MC algorithms have been coupled with ENM-NMA methods to 

sample conformational changes along (in part) normal modes, using as potential 

energy function an effective Hamiltonian: 

'�3� � 12������ �Δ����  '���
C

��9
 

(17),  

where i stands for one of the M important normal modes (typically those explained 

most of protein variance), �� is the eigenvalue associated to the mode i (in distance-2 

units), Δ��is the projection of the sampled movement on the eigenvalue associated to 

normal mode i. and finally V(X) represents changes in energy terms computed in the 

Cartesian space. A similar implementation in the context of Brownian/Langevin 

dynamics will be discussed below. Note also that the method can be used when 

instead of normal modes, deformation modes derived from essential dynamics are 

used (see above). 

 

THE SAMPLING METHODS: DISCRETE MOLECULAR DYNAMICS 

 

Discrete molecular dynamics (dMD) defines the Hamiltonian as a series of square 

potentials (see above) and accordingly, particles are expected to move in the ballistic 

regime, without changes in velocities until collision in the boundary of the square well 

happens, where new velocities are computed by imposing the maintenance of energy 

and momentum (see Figure 5): 
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Z�������  Z������� � Z���′�����  Z���′�����   (18) 

Z����  Z��2� � Z���′�  Z��2′�  Δ'  (19) 

where i and j stands for the two particles colliding, the index ‘ stands for the 

situation after the collision, u for the component of the velocity (v) on the direction of 

the collision (particles are assumed spherical), and ∆V is the height of the step in the 

inter-particle potential. 

 

If the particle does not collide, its position is simply computed as: 


�����t  Δt� � 
�����t�  s������t� � Δt  (20) 

with integration step Δt � t4, which denotes the shortest collision time computed 

from the non-imaginary solution of: 

t4 � T�_b���_b} TS_b} ��_b} T�}�
S_b}    (21) 

where k is the first particle colliding with particle i, ��v � 
�v����� � s�v������ and d is the 

distance corresponding to the wall of the square well.  

 

� Insert Figure 5 

 

Within the dMD framework the particles move from collision to collision, without 

need to compute forces every few femtoseconds as in MD or Brownian/Langevin 

dynamics. This implies a large computational efficiency in sampling, especially in 

processes with slow dynamics, such as diffusion or folding (80,199-205). The method 

has been also very powerful to trace complex conformational transitions in proteins 

(17,193), especially when coupled to information-based biasing techniques (see 
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above). Dokholyan and coworkers (199,200) have made large efforts to develop 

accurate force fields to study a variety of macromolecular systems and are pushing the 

technique for docking experiments, where binding and protein dynamics are explicitly 

coupled. 
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CONCLUSIONS  

 

Proteins are flexible entities, and we should avoid looking to proteins as static 

macromolecules, carefully designed by evolution to show well defined structures, that 

under native conditions are kept rigid by a myriad of interactions. Protein dynamics is 

crucial for function and it should be explicitly captured. During the writing of this 

review we celebrate the Nobel Prize of Chemistry to the pioneering work of Karplus, 

Levitt and Warshel, which opened the possibility to study explicitly protein dynamics. 

Several decades after this pioneering work, we have a plethora of efficient theoretical 

methods that implemented in last generation computers allows a representation of 

unprecedented quality of protein dynamics. 

Predicting the evolution of a mature field is always difficult. Surely, we are going to 

see simulation of larger systems, of multiple complexes, and of proteins in crowded 

environment approaching to real cellular conditions. Simulations are going to cover 

longer time scales, approaching to the real biological dominant time scales 

(milliseconds to seconds) making it possible to capture slow transition and diffusive 

processes linked to, for example, protein binding. The speed at which this evolution 

happens will be surely linked to improvement in hardware and in software, forcing a 

close relationship between computer scientists and computational chemists. 

Force-fields will be improved, and surely multi-body effects, such as polarization or 

charge transfer (see discussion above) will be sooner or later incorporated in high-level 

calculations. New sampling algorithms will appear to facilitate the analysis of slow 
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transitions. However, where I envision more disruptive changes is from a more 

agressive integration of simulation techniques with experimental data. Frontiers 

between simulations and experiments will become fuzzy, if not simply disappear. 
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FIGURE CAPTIONS 

Figure 1. Representation of the B-factor profile of a large protein 

(Rhamnogalacturonan Lyase from Aspergillus Aculeatus; PDB entry 1NKG) computed 

from EN-NMA calculations and determined from X-Ray diffraction measures. 

Figure 2. Structural variability sampled by evolution of the SH3 family (PDB entry 1ARK 

as the central structure for the family) and by MD simulation in our MoDEL database 

(101,102). Left panel show structure superposition and right panel B-factors obtained 

by considering either evolution or MD variance. 

Figure 3. Example of coarse graining of a small a-helix for elastic network model 

calculations. Arrows indicate the interactions (springs) felt by the first residue, the 

widths of the arrows are representative of the stiffness of he springs, that are 

weighted according to either Cartesian distance, or a combination of sequence and 

Cartesian distance depending on the method (see text). 

Figure 4. Basic algorithm of Replica Exchange. Many independent replicas are launched 

at closely spaced temperatures. Every certain number of replicas Metropolis test is 

applied to decide whether or not two replicas have to be interchanged according to its 

energy (see eq. 9; Metropolis test can be applied to all pairs of temperatures, not only 

to neighbor temperatures as shown for the shake of clarity in the Figure). At the end, 

Boltzmann’s ensembles corresponding to each temperature are obtained. In the plot 

colour indentify the original replica. 

Figure 5. General scheme of the discrete molecular dynamics algorithm for two 

particles subjected to a single one-dimensional square well potential. For all distances 

between (1-σ)Req nd (1+σ)Req the particles move at constant velocities. At the 

boundaries (1-σ)Req and (1+σ)Req they interchange momentum (assuming typically 

elastic collision model). The equilibrium value of the well (Req) and the width of the 

well is taken from oscillation values in MD simulations.  
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