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Ni2+(aq) has been used for many decades as a model system for paramagnetic nuclear magnetic resonance (pNMR) relaxation
studies. More recently, its magnetic properties and also nuclear magnetic relaxation rates have been studied computationally. We
have calculated electron paramagnetic resonance and NMR parameters using quantum-mechanical (QM) computation of molec-
ular dynamics snapshots, obtained using a polarizable empirical force field. Statistical averages of hyperfine coupling, g- and
zero-field splitting tensors, as well as the pNMR shielding terms, are compared to the available experimental and computational
data. In accordance with our previous work, the isotropic hyperfine coupling as well as nuclear shielding values agree well with
experimental measurements for the 17O nuclei of water molecules in the first solvation shell of the nickel ion, whereas larger de-
viations are found for 1H centers. We report, for the first time, the Curie-type contribution to the pNMR relaxation rate using QM
calculations together with Redfield relaxation theory. The Curie relaxation mechanism is analogous to chemical shift anisotropy
relaxation, well-known in diamagnetic NMR. Due to the predominance of other types of paramagnetic relaxation mechanisms
for this system, the Curie term is only possible to extract computationally. The Curie mechanism alone would result in around
16 and 20 s-1 of relaxation rate (R1 and R2 respectively) for the 1H nuclei of water molecules bonded to the Ni2+ center, in a
magnetic field of 11.7 T. The corresponding 17O relaxation rates are around 33 and 38 s-1. We also report the Curie contribution
to the relaxation rate for molecules beyond the first solvation shell in a 1 M solution of Ni2+ in water.

1 Introduction

The NMR relaxation process involves phenomena belong-
ing to a number of different physical disciplines. A purely
computational approach to NMR relaxation has to span ac-
curate modeling of molecular structures, dynamics as well as
electronic-structure calculation of molecular property param-
eters involved in the Hamiltonian of relevance for the studied
relaxation mechanism. To that one has to add an appropri-
ate treatment of the nuclear spin system.1 The calculation of
relaxation rates due to fluctuation of a first-order molecular
property, such as the electric-field gradient in quadrupolar re-
laxation, has reached a mature level with good agreement with
the experimental results in various chemical environments and
phases of materials.2 In contrast, only recently a close agree-
ment between first-principles computational and experimen-
tal results was obtained in a case where second-order prop-
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erty — chemical shift anisotropy (CSA) — provides the dom-
inant relaxation mechanism.3 This was the case in a study
pursued on a diamagnetic monoatomic xenon gas, where a
fluctuating CSA is produced predominantly by atomic colli-
sions. In the case of paramagnetic substances, the dominant
NMR relaxation mechanisms are connected with the strong
magnetic moment of the unpaired electron(s) and its coupling
to the adjacent nuclear magnetic moments. In some cases,
the strength of the interaction and the relation of the relevant
correlation and relaxation times do not allow to use a pertur-
bation theory-based relaxation treatment.4–13 For appropriate
theoretical analysis of the experimental data in such cases, the
well-known Swedish slow-motion theory was developed8 in
parallel with the Florence theory (see, e.g., Ref.14). The work
of Odelius, Ribbing and Kowalewski15 pioneered by pursu-
ing a fully computational approach to electron spin relaxation,
combining molecular dynamics (MD) simulation and quan-
tum mechanical (QM) calculation of the EPR Hamiltonian pa-
rameters from the MD snaphots, together with a spin dynamic
simulations. The obtained electronic relaxation rate was then
used to estimate 1H relaxation rates.

1–10 | 1

Page 1 of 11 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



The paramagnetic relaxation enhancement is in general
caused by the fluctuating interaction of electronic and nuclear
magnetic moments. The expression for this interaction Hamil-
tonian is

H = S ·A · I, (1)

where S and I are the electron and nuclear spin vectors and A
is the hyperfine coupling tensor. Via H the nuclear spin ex-
periences a time-dependent interaction, which can somewhat
arbitrarily be divided to, on the one hand, the fast fluctuations
of S between its quantum-mechanical states and, on the other
hand, the slow, molecular dynamics-induced fluctuations of
the so-called Curie spin SC, which results from the average
over the electronic fluctuations. In particular, component of
the Curie spin along the external magnetic field is16

〈Sz〉=
B0

3kT
geµBS(S+1). (2)

The paramagnetic nuclear shielding terms σ in the NMR spin
Hamiltonian arise from the hyperfine interaction of the nuclei
with the average Curie spin.17 In a similar vein, fluctuation of
the nuclear shielding due to molecular motions causes, in turn,
nuclear spin relaxation analogous to the CSA relaxation of the
diamagnetic systems.

In this work we concentrate on the Curie relaxation caused
by this average spin.18,19 In modern theory the average spin is
considered via a second rank dyadic,20 in the necessary gen-
eralisation of the doublet-like (effective spin quantum number
S = 1

2 ) treatment21,22 for S ≥ 1 systems such as the proto-
typic Ni2+ (S = 1). To calculate the relaxation time associ-
ated with the Curie mechanism, it is natural to employ the
novel theory for pNMR shielding and also make use of the
analogy with the diamagnetic CSA relaxation. We employ the
perturbation Redfield theory4,5 for this purpose. The Curie-
type relaxation mechanism is typically found important for big
molecules with large effective spin, at high magnetic fields.18

Its importance is also recognised for lanthanide ions.16 In this
work we choose the Ni2+(aq) system to computationally in-
vestigate the modeling methodology necessary in the context
of Curie-type relaxation. This simple system of prototypic na-
ture already features a rich phenomenology.

2 Methods

2.1 Molecular dynamics simulation

One Ni2+ ion and 464 water molecules were simulated in a
periodic cubic box with 24.044 Å side-length [average dimen-
sion from the equilibrated constant pressure and temperature
(NPT ) simulation] using the AMOEBA polarizable forcefield
in the Tinker MD package.23 After equilibration at 300 K and
1 atm, the production dynamics continued in the constant vol-
ume and energy (NV E) ensemble resulting in a total of 0.95 ns

of trajectory during which the running average temperature
drifted by less than 0.5 K.24

2.2 Snapshot extraction

For the snapshot calculations, roughly spherical water clusters
centered around the Ni2+ ion were extracted from the sim-
ulation box. Whereas for the zero-field splitting (ZFS) and
g-tensor calculations only the first solvation shell consisting
of six water molecules was included, the hyperfine coupling
(HFC) tensors were calculated for larger clusters consisting of
the first and second solvation shells, and the third shell was in-
cluded as an explicit solvation layer. The set of snapshot clus-
ters was extracted from the first 0.75 ns section of the 0.95 ns
of the equilibrated trajectory, sampled every 240 fs resulting
in 3125 snapshots.

2.3 Quantum mechanical calculations

The HFC, g, and ZFS-tensor calculations from the snap-
shots of the MD trajectory were carried out in the ORCA
program.25–28 The g-tensor calculations were carried out on
the unrestricted Kohn-Sham density-functional theory (DFT)
level using the PBE functional29 together with the resolution-
of-identity approximation30 and def2-TZVP basis set.31

The ZFS tensors were calculated at the N-electron va-
lence state perturbation theory (NEVPT2) level32–34 as im-
plemented in the ORCA programme, using the def2-TZVP
basis set. The active space of the underlying state-averaged
complete active space self-consistent field (CASSCF) calcu-
lation consisted of eight electrons in five orbitals as appropri-
ate for ligand field theory for a d8 metal in an (on average)
octahedral coordination. All 10 triplets and 15 singlet states
allowed by the CASSCF(8,5) calculation were included. The
same method for the same system was employed by Kubica et
al.35

For calculation of the HFC tensors, the
(15s 11p 6d)/[9s 7p 4d] basis by Munzarová and Kaupp36 was
used for the nickel ion, whereas the aug-pcJ-1 basis37 was
used for the light atoms belonging to the first and second
solvation shells. The HFCs were evaluated with an explicit
solvation shell consisting of water molecules of the third
solvation shell employing the SVP basis.38 The pNMR
shielding term analysis was obtained according to the theory
of Pennanen and Vaara.20

We showed previously39 that the described level of theory is
required for the HFC tensor calculations and that both the first
and the second solvation shells should be calculated by QM
methods. Only at larger distances the point-dipole approxima-
tion is safely valid for this system. The level of calculation of
ZFS was chosen according to the recent investigation of Ku-
bica et al.35 Further details follow in the Results and Discus-
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sion section. The g-tensor calculation showed little influence
of the solvating molecules beyond the first shell. The chosen
method was economical for obtaining a large number of MD
snapshots.

2.4 pNMR shielding

For the theory of pNMR shielding, see Ref.20. For the sake of
completeness, we briefly review the shielding expression

σ = σorb−
µB

γkT
g · 〈SS〉0 ·A (3)

〈SS〉0 = ∑n〈n|SS|n〉exp[−En(0)/kT ]
∑n exp[−En(0)/kT ]

, (4)

in which σorb is the (approximately) temperature-independent
orbital shielding.17,40 The second term contains the product of
the g-tensor, the dyadic 〈SS〉0 of the effective spin operator
S thermally averaged in the ZFS-split groundstate manifold
of the magnetic sublevels |n〉, and the HFC tensor A. The
factors k and T stand for the Boltzmann constant and the ab-
solute temperature, respectively. An assumption underlying
the Boltzmann averages21 is that the electron spin relaxation
is much faster than nuclear spin relaxation, rendering the elec-
tronic transitions instrumental in determining the equilibrium
population of the states |n〉. Hence, the nuclear spin interacts
with the average Curie spin.

We analyze the hyperfine part of the shielding expression
by performing a break-down of g and A to the leading-order
terms involving also the leading-order corrections arising from
the spin-orbit (SO) interactions.20–22,41 The HFC tensor can
be decomposed as

A= Acon1+Adip +APC1+Adip,2 +Aas (5)

where the first two terms on the right-hand side are the nonrel-
ativistic, isotropic contact and anisotropic dipolar couplings,
respectively. APC1 is the isotropic pseudocontact term that,
along with the anisotropic symmetric (dip,2) and antisymmet-
ric (as) contributions, arise due to the relativistic SO correction
to HFC.42 The g-tensor can be decomposed as

g = (ge +∆giso)1+∆g̃ (6)

where ge is the free electron factor, ∆g is the isotropic and ∆g̃
the anisotropic part of the g shift tensor. The contributions to
the total shielding resulting from the combinations of g and
A broken down into the various contributions, are listed in
Table 1.

2.5 Curie relaxation within the Redfield relaxation the-
ory

Since Curie relaxation is caused by the interaction of nuclear
spin with the fluctuating Curie spin of the molecule, the rel-
evant Hamiltonian of the interaction is the term involving the

nuclear shielding from the NMR spin Hamiltonian. This leads
to a formulation of the Curie relaxation fully analogous to the
CSA relaxation of diamagnetic systems. Consequently, from
the Redfield relaxation theory, the “spin-lattice” and “spin-
spin” relaxation rates are obtained as

R1 =
1
2

ω
2
0 J(ω0) (7)

R2 =
1

12
ω

2
0 [4J(0)+3J(ω0)], (8)

where J(ω) is the spectral density function and ω0 is the
Larmor frequency of the corresponding nucleus obtained as
ω0 = γB0. It is worth noting that the relaxation rate increases
quadratically with the magnetic field in the regime where
J(ω0) ' J(0).1 The expression for the spectral density func-
tion reads

J(ω) = 2Re
{∫

∞

0
〈σ2,0(t)σ2,0(t + τ)〉e−iωτ dτ

}
, (9)

with σ2,0 = (2σzz−σxx−σyy)/
√

6 the irreducible l = 2, q = 0
spherical component of the shielding tensor, where the z axis
is along the external magnetic field B0. 〈σ2,0(t)σ2,0(t + τ)〉
is approximated in the present work by the combination of
MD simulations and quantum-mechanical snaphot calcula-
tions, leading to a series of instantaneous σ values for 1H and
17O nuclei.

3 Results and discussion

3.1 Static EPR/NMR properties

The calculations largely follow our previous work,39 where
we extensively tested the available methods for the EPR pa-
rameters and NMR shielding against the experimental data.
Where the experimental reference point is not available, the
range of results obtained by the different methods can serve
as an error estimate. The difference between the approach of
Ref.39 and the current paper is, on the one hand, in the MD
method that was used to obtain the trajectory sampled in the
QM snapshot calculations. On the other hand, a more accurate
method was used presently for the ZFS calculations. Briefly,
in the previous work (Ref.39), the MD trajectory was obtained
by a first-principles MD method using mixed Gaussian or-
bital/plane wave basis set and the PBE exchange-correlation
functional of DFT, which provided sufficiently accurate struc-
tures of the molecular complex. However, the dynamical prop-
erties, e.g., the rotational correlation times or the translational
diffusion coefficient were found to be unacceptable at that
level. In this work, we use the AMOEBA forcefield, with
an accurately parameterised Ni-H2O potential, with the result
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Table 1 Contributions to the irreducible l = 2, q = 0 spherical component of the shielding tensor a of 1H and 17O from different physical
mechanisms, simulated for atoms in the first and second solvation shell of the aqueous solution of the Ni2+ ion.

Contributions to S = 1b Numerical results (ppm) for solution of Ni2+ c

Term name Term in σετ Number Order rank-0 rank-1 rank-2 FSS/1H SSS/1H FSS/17O SSS/17O
σorb

d σorb 0 O
(
α2
)

x x x - - - -
σcon

e geAcon〈Sε Sτ 〉0 1 O
(
α2
)

x - x 1.50 0.0364 131 1.78
σdip ge ∑b Adip

bτ
〈Sε Sb〉0 2 O

(
α2
)

x x x 304 63.3 2673 93.2
σcon,2 geAPC〈Sε Sτ 〉0 3 O

(
α4
)

x - x 0.0182 0.000959 1.08 0.00694
σdip,2 ge ∑b Adip,2

bτ
〈Sε Sb〉0 4 O

(
α4
)

x x x 14.1 3.00 109 3.14
σac ge ∑b Aas

bτ
〈Sε Sb〉0 5 O

(
α4
)

- x x 0.0153 0.00176 0.139 0.00628
σcon,3 ∆gisoAcon〈Sε Sτ 〉0 6 O

(
α4
)

x - x 0.0765 0.001835 6.68 0.0904
σdip,3 ∆giso ∑b Adip

bτ
〈Sε Sb〉0 7 O

(
α4
)

x x x 15.1 3.15 133 4.65
σc,aniso Acon ∑a ∆g̃εa〈SaSτ 〉0 8 O

(
α4
)

x x x 0.369 0.00908 33.2 0.441
σpc ∑ab ∆g̃εaAdip

bτ
〈SaSb〉0 9 O

(
α4
)

x x x 0.518 0.100 4.89 0.146
a The component is defined the same way as in eq. (9), the presented values are root-mean squares of the 3125 snapshots sampled every 240 fs from the MD
trajectory. b Rank-0, 2, and 1 contributions correspond to the isotropic shielding constant and anisotropic symmetric, as well as antisymmetric terms,
respectively. c Only contribution to first solvation shell (FSS) and second solvation shell (SSS) are presented. FSS is formed by six water molecules bonded to
Ni2+, whereas SSS is formed by water molecules that have at least one atom within 5 Å from the Ni2+ ion.d Orbital shielding is not relevant for this work and
therefore not calculated. e ge

.
= 2.002319 is the free-electron g-value.

that both structural and dynamical properties of Ni2+(aq) are
accurately modeled.

Concerning the choice of method for the calculation of the
ZFS tensors, we chose here the ab initio NEVPT2 method
probed for this system also in Ref.35, which also showed the
drawbacks of the previously employed, DFT-based calculation
of ZFS.

The results of the QM calculations of the static EPR/NMR
parameters are gathered in Table 2. We compare results ob-
tained in this work with our previous paper and estimate at the
same time the implied inaccuracy for the subsequent Curie-
type relaxation calculations.

3.1.1 g-tensor
The present results for the g-tensor are very similar to results
in our previous work (Ref.39). Also differences among re-
sults for this parameter obtained by different DFT function-
als are generally small. From four of the nuclear shielding
terms (Table 1), in which the deviation of the g-tensor from
the free electron values appears,20 only one (σdip,3) gives a
non-negligible contribution to the relaxation rate. The inaccu-
racy of the calculations of the g-tensor introduces an error of
the relaxation rate of at most a few percent.

3.1.2 Zero-field splitting tensor
The results for the ZFS-tensors changed very significantly as
compared to the earlier paper. In the previous DFT calcula-
tions, the values suffered from the dependence on the system
size, as explained in Ref.43. Regardless of this specific prob-
lem, it was shown by Kubica et al.35 that DFT-based calcu-
lation of the ZFS tensor is highly unreliable for nickel com-
plexes. Therefore, in the current work we used an ab initio
method which was demonstrated to be superior in the cited
work. The comparison of the calculated root-mean square
scalar quantity that can be calculated from the components of
the traceless ZFS tensor, ∆5 =

√
〈D :D〉/5 = 3.5 cm-1 with

the experimental values (∆5 = 2.6 and 3.0 cm-1 in Refs.44

and9, respectively) now shows a reasonable agreement (see
also Table 2). Although the D and E values of the ZFS tensor
can be calculated for individual snaphots, in the — on aver-
age — hexagonally symmetric complex, they average to zero,
and can not be experimentally observed. Figure 1 shows the
time autocorrelation function 〈D(0) : D(τ)〉 featuring a fast
and a much slower component of decay. Since the ZFS-tensor
enters the calculation of the nuclear shielding tensor only in-
directly, the resulting shielding values in this work and the
previous paper39 are rather similar, despite large changes in
the ZFS itself. In particular, the isotropic shielding constant
remains practically unaffected. On the other hand, with the
two to three orders of magnitude higher values of the ∆5 (as
presented in Ref.39), the resulting shielding anisotropy results
would be 4% and 1% higher for 1H and 17O, respectively, than
what is obtained presently. On account of its quadratic depen-
dence on the anisotropy of the paramagnetic shielding tensor,
the corresponding Curie-type relaxation would be 8% and 2%
faster for such overestimated ZFS.

3.1.3 Hyperfine coupling tensor
Since the rank-0 part of the HFC-tensor - the hyperfine cou-
pling constant - is strongly dependent on the geometry of the
paramagnetic complex, the results based on the differently ob-
tained MD trajectories in this work and in Ref.39 differ sig-
nificantly. This probably reflects more the uncertainties of
DFT calculations of HFC than represents a sign of inaccu-
racy of the MD trajectory. Specifically, DFT-based HFC con-
stant (Ref.39) as well as the diamagnetic shielding and indi-
rect spin-spin coupling constants (Ref.45) appear to be more
reliable when calculated from structures obtained by the same
DFT functional as used for calculating the hyperfine property.
This is not the case in the present empirical MD/QM proce-
dure, however. Consequently, the magnitude of the average
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hyperfine coupling constant is around three times larger for
1H and 30% larger for 17O in the current work as compared
to results calculated by the corresponding method in our pre-
vious work. For the 1H centers, both the present results and
those of Ref.39 are far from the available experimental data,
whereas for 17O, the agreement with the experimental results
is rather good, considering the differences between the exper-
imental conditions and our simulations (see also the footnotes
of Table 2). The HFC constant will influence the rank-2 parts
of the shielding tensors only negligibly via terms 1, 6 and 8
in the shielding expression (Table 1), therefore this inaccuracy
(especially for the 1H nuclei) is irrelevant for the nuclear re-
laxation rates.

The second-rank part of the HFC tensorAdip has by far the
largest and most direct impact on Curie-type relaxation. The
span of the largest eigenvalue of the dipolar HFC, Adip

33 , ob-
tained in Ref.39 (values in the 7.5–8.75 MHz range obtained
with the different DFT functionals) provides the most conser-
vative error estimate of ∼15% for this parameter in the case
of 1H. The components of the HFC tensor appear linearly in
the equation (3) for nuclear shielding, but are squared in the
calculation of the time correlation functions and the spectral
density function [eq. (9)]. The maximum error in the Curie
relaxation rate due to the variation of the second rank-part of
HFC is thus∼30% in the case of 1H. Furthermore, for 1H, the
point-dipole approximation was shown to be valid for atoms
beyond the second solvation shell (Ref.39). The calculation of
this contribution for nuclei that are distant from the paramag-
netic center is, therefore, also reliable.

The situation for the 17O nuclei is less favourable, as the
differences between the results obtained by the different com-
putational methods are rather large, which can in the most con-
servative estimate result in an error of the Curie relaxation rate
of the order of tens of percent.

3.2 Curie relaxation

Within the Redfield theory,4,5 only the second-rank spherical
components of the shielding tensor are considered. In prin-
ciple all the nine different terms of the hyperfine part of the
pNMR shielding expression (including the contact shielding)
contain second-rank contributions for systems of higher spin
than 1

2 .20 All of them can, therefore, contribute to the relax-
ation rate. In practice, however, only the three terms that
contain the dipolar part of the hyperfine coupling tensor, con-
tribute by a numerically significant amount in the present ex-
ample system, the aqueous solution of Ni2+. The resulting
Curie relaxation rates are listed in Table 3 for the field strength
of 11.7 T. The required time correlation functions of the zeroth
component of the second-rank spherical tensor of the total hy-
perfine shielding are plotted in Figures 2 and 3 for the first
solvation shell of Ni2+ and bulk water, respectively. Based

on test calculations with reduced lengths of the MD trajectory
(as compared to the full trajectory), the oscillations in the time
correlation functions that start after τ ' 50 ps can be consid-
ered as noise due to insufficient statistics, which is more se-
vere for the atoms of the first solvation shell (six molecules)
than for the atoms of the other molecules (458 molecules).
Therefore, our results for the relaxation rates are obtained by
replacing the original simulated data points beyond ca. 50 ps
by a fitted bi-/tri-exponential curve, as shown in Figures 2 and
3. The resulting data was Fourier-transformed [eq. (9)] before
using in the calculation of the relaxation rates.

The resulting spectral density functions (Figures 4 and 5)
show the interaction strength that is available for a given fre-
quency. The relevant frequencies in the Redfield theory ex-
pression are either the Larmor frequency or zero (eqs. 7, 8).
We can see that, for our system, the spectral density at the Lar-
mor frequency of 1H differs from spectral density at zero fre-
quency. A similar value would have indicated residing within
the regime of the so-called extreme narrowing limit.46 In con-
trast, this regime is still well valid for the 17O nuclei. The ex-
treme narrowing limit extends over a much wider range of Lar-
mor frequencies for gaseous samples, such as Xe gas.3 Within
this regime, the CSA and Curie relaxation rates have within
the Redfield theory a quadratic dependence on the magnetic
field as the spectral density function remains constant. On
the other hand, in the example high-field calculation in sec-
tion 3.2.2 below, the spectral density J(ω0) is far from J(0).
In that case the R2 relaxation rate still preserves a component
of quadratic dependence on the magnetic field due to J(0),
whereas the R1 relaxation rate grows slower.

Along with the spectral density functions, Figures 4 and 5
show also their Lorentzian fits. These would correspond to a
single-exponential decay of the correlation function, and are
shown only for comparison.

3.2.1 First-shell and bulk relaxation rates
Table 3 lists the average Curie relaxation rates for the 1H and
17O atoms in the first solvation shell of Ni2+ and in bulk water.
The first shell is a stable entity in the timescale of the present
simulation, whereas the “bulk” includes all molecules within
the second shell and further from the central ion. To reduce
the dependence of the results on the size of the simulation box,
which determines the concentration of the Ni2+ ions, the bulk
relaxation rates were recalculated for a 1 M Ni2+ solution. On
the other hand, the term relaxivity is commonly defined as an
increase of the relaxation rate due to 1 mM concentration of
the relaxation substance, hence our scale is 1000× larger.

For simplicity we assume that there is a fast exchange from
and to the first solvation shell in the timescale of NMR relax-
ation. Consequently, in the aqueous solution of Ni2+, the aver-
age calculated R1 relaxation rate due to Curie relaxation can be
calculated by noting that 1 litre of 1 M Ni2+ solution contains
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6 mol of the first-shell water molecules and roughly 55 mol
of water molecules altogether. Taking the simulated value of
16 s−1 for 1H R1 in the first solvation shell from Table 3, the
corresponding contributions to the average relaxation rate in
1 M solution is 16× 6

55
.
= 1.7 s−1. The average contribution of

the second shell and more distant atoms is directly presented
in Table 3. Assuming a simple additivity, in 1 M solution the
1H R1 relaxation rate would be (1.7+ 0.45) s−1 .

= 2.2 s−1.
Relaxation rates obtained in this way are listed in Table 3.

The molecules in the first solvation shell contribute gener-
ally more to the relaxation rate of the whole solution than the
molecules outside the first solvation shell. In the 1 M solu-
tion the contribution of the first solvation shell is roughly four
times that of the bulk molecules for 1H nuclei, whereas for the
17O nuclei, the corresponding ratio is more than 250.

3.2.2 Significance of Curie-type relaxation
There are obvious reasons why the Curie relaxation accounts
only for a small part of the total relaxation rate. Investigation
of the magnitude of the pNMR Hamiltonian terms acting on
the nuclear spin, the hyperfine coupling of the fluctuating elec-
tron spin with the nuclear spin is much larger than the inter-
action with the average Curie spin, represented by the shield-
ing Hamiltonian. Therefore, the former interaction accounts
for the major contribution to the NMR relaxation rate. How-
ever, similarly to diamagnetic CSA relaxation,47 experimen-
tally the presence of Curie relaxation can be readily identified
due to its strong (quadratic in the fast-motion regime) depen-
dence on the magnetic field, as seen from the nuclear mag-
netic relaxation dispersion (NMRD) profiles. In this way, the
Curie relaxation has been seen for several lanthanide ions,48

whereas the NMRD curves of Ni2+ solution do not show the
characteristic magnetic field dependence.9 Computations are
therefore essential in providing an estimate of the magnitude
of this contribution.

The Curie relaxation rate of 2.2 s−1 for 1H in Ni2+(aq) as
above, can be compared with the experimental total relaxation
rate of 7100 s−1 (324 K, 1 M).9 Neglecting the difference
in temperature, the Curie relaxation contributes by as little as
0.031% to the total 1H relaxation rate at the magnetic field of
11.7 T. For comparison, in the entirely hypothetical magnetic
field of 1000 T, the Curie contribution to the 1H R1 relaxation
rate would reach ca. 140 s−1 and 1× 104 s−1 for R2 (1 M
solution).

We note that the R1 and R2 relaxation rates of 17O due to
quadrupolar interaction are both as fast as 150 s−1 at room
temperature and at the magnetic field of 1.4 T.49

3.2.3 Validity of the Redfield theory
Paramagnetic Ni2+ causes a hyperfine contribution to the nu-
clear shielding, responsible for Curie relaxation. This con-
tribution is in the first solvation shell around two orders of
magnitude larger than the orbital shielding in diamagnetic

molecules. Despite this fact the requirements for the pertur-
bational Redfield relaxation theory remain very well fulfilled
for the Curie mechanism. In particular, the correlation time
of the pNMR shielding Hamiltonian, ca. 17 ps for the first-
shell 1H nuclei (Figure 2), is much shorter than the Curie re-
laxation time (tens of milliseconds or longer, Table 3). The
same comparison for 17O (correlation time of ca. 20 ps) gives a
similar order of magnitude for the separation between the rel-
evant correlation and relaxation times. The other, related, re-
quirement is that in the interaction picture, the time-dependent
perturbation Hamiltonian is sufficiently small. The combined
condition is often written as

ωHτc� 1 (10)

where ωH denotes the root-mean square interacting Hamil-
tonian in frequency units and τc the correlation time of the
pNMR shielding Hamiltonian, as discussed above. For 1H
in the magnetic field of 11.7 T the condition evaluates as
ωHτc ' 17×10−6� 1. ∗

4 Conclusions

We have investigated the contributions to the paramagnetic nu-
clear spin relaxation enhancement in the prototypic system of
Ni2+(aq) due to the Curie-type relaxation mechanism, using
computational methods.

The necessary steps involved were (1) molecular dynamics
simulation, (2) snapshot extraction and quantum-mechanical
calculation of the EPR parameters, (3) calculation of the
instantaneous pNMR shielding tensors using modern non-
doublet theory, (4) calculation of the time-correlation func-
tions of irreducible spherical components of the shielding ten-
sors, (5) calculation of the spectral density functions, and fi-
nally (6) applying the equations of the Redfield relaxation
theory identical to those of the CSA relaxation in diamag-
netic systems, to obtain the Curie contribution to the relaxation
rates.

The spherical σ2.0 component of the dipolar pNMR shield-
ing tensor makes the by far dominant contribution to the
Curie-type relaxation in the studied system. σ2.0 can be calcu-
lated with sufficient accuracy and efficiency using DFT meth-
ods, apart from the demanding ZFS tensor. For ZFS, we chose
to use a state-of-the-art ab initio method. The Curie relaxation
is estimated to contribute by 16 s-1 for R1 and 20 s-1 for R2
to 1H relaxation rates of water molecules in the first solva-
tion shell of the Ni2+ ion at 11.7 T magnetic field. For 17O,

∗ Inserting a value of
√

(110000ppm2) ' 330 ppm for 〈σ2,0〉 (Fig. 2 ) into
ωH = 〈σ2,0〉γ1HB0 yields ωH ' 1× 106 rad/s. Then ωHτc ' 1× 106 · 17×
10−12 = 17×10−6� 1.
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Table 3 Simulated Curie-type nuclear spin relaxation contributions (in s-1) for 1H and 17O nuclei of water molecules in the first solvation shell
(FSS) of the aqueous solution of Ni2+ as well as the bulk solution. The notation is R1; R2. The numbers are calculated from 3125 snapshots
sampled over 0.75 ns of molecular dynamics trajectory. Paramagnetic shielding was obtained using the formal temperature of 300 K and the
magnetic field was set to 11.7 T. All values for the bulk molecules are recalculated to the concentration of the Ni2+ ion of 1 M.a

R1; R2 for nucleus (shell)
Shielding term b 1H (FSS) 1H (bulk) 1H (1 M total) c 17O (FSS) 17O (bulk) 17O (1 M total)c

σdip 13; 17 0.30; 0.41 1.7; 2.3 26; 30 0.012; 0.014 2.8; 3.3
σdip,2 0.032; 0.042 3.2×10−4; 3.9×10−4 3.8×10−3; 5.0×10−3 0.037; 0.043 7.4×10−6; 8.7×10−6 4.0×10−3; 4.7×10−3

σdip,3 0.032; 0.041 7.6×10−4; 1.0×10−3 4.3×10−3; 5.5×10−3 0.061; 0.071 2.9×10−5; 3.4×10−5 6.7×10−3; 7.8×10−3

σtot
d 16; 20 0.45; 0.52 2.2; 2.7 33; 38 0.014; 0.016 3.6; 4.2

a The concentration of the simulated solution is 0.119 M, to scale to 1 M concentration, the average relaxation rate of the nuclei in bulk (the
second solvation shell and more distant water molecules) is, therefore, divided by this number. b See Table 1. c The way to obtain these values
is described in section 3.2.1. d The equation (9) is evaluated with σtot, the relaxation rate thus contains the effect of all combinations of the
various cross-terms of σ . The relaxation rate is therefore larger than the sum of listed contributions.
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Fig. 1 Simulated time correlation function 〈D(0) : D(τ)〉 of the
zero-field splitting tensor of the aqueous solution of Ni2+. The
correlation function is calculated over 15625 snapshots (sampled
over 0.75 ns) of the molecular dynamics trajectory. The correlation
time obtained by integration of the fitted triexponential correlation
function is τD = 1.15 ps. The three components of the correlation
function are likely to be associated with 1) a fast librational motion
of the involved atoms 2) rotational motion of the water molecules,
and 3) rotational motion of the Ni2+(H2O)6 complex. The initial
phases of the correlation function indicate an undersampling of the
high frequency mode(s).
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Fig. 2 Simulated time correlation function of the spherical σ2,0
component of the shielding tensor for the 1H (upper panel) and 17O
(lower panel) nuclei in the first solvation shell of Ni2+(aq).
Calculated from 3125 snapshots sampled over 0.75 ns of molecular
dynamics trajectory. The plots show the original data together with
fitted biexponential (1H) and triexponential (17O) functions.
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Fig. 3 As Figure 2 but for the bulk molecules beyond the first
solvation shell. Biexponential functions were used for fitting the
correlation functions of both nuclei.
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Fig. 4 The spectral density functions corresponding to the time
correlation function of Figure 2, in which the noisy tail was replaced
by a fitted function. The upper and lower panels are for 1H and 17O
respectively. The red curve represents a fitted Lorentzian. The
Larmor frequency of interest for the magnetic field of 11.7 T is
marked by the green vertical line.
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Fig. 5 As Figure 4 but for the bulk molecules.

Table 2 Calculated EPR and NMR parameters of the aqueous solution of
Ni2+. Average data from quantum-chemical calculations from MD
simulation snapshots are shown, for both first and second solvation shell of
the Ni2+ ion. Experimental results are listed where available.

First shell Second shell
giso 2.1021 ± 0.0002 –
giso (exp) a 2.25 –
∆5 (cm−1) b 3.5 –
∆5 (cm−1) (exp) 2.6,c 3.0d –
Acon(1H) 1.16 ± 0.03 0.0148 ± 0.0006
Acon(17O) -31.1 ± 0.1 -0.262 ± 0.004
Adip,33(1H)e 8.22 ± 0.01 1.530 ± 0.004
Adip,33(17O)e -10.09 ± 0.02 -0.288 ± 0.001
Rh [Adip(1H)]f 3.63 ± 0.03 0.06 ± 0.0003
Rh [Adip(17O)]f 0.098 ± 0.0005 0.062 ± 0.001
Aiso(1H) g 1.13 ± 0.03 0.0146 ± 0.0004
Aiso(17O) g -30.9 ± 0.1 -0.263 ± 0.004
Aiso(1H) (exp) 0.13 ± 0.01h

Aiso(17O) (exp) 24,i -28.2j

σ iso
300K(1H) -83±2k -1.09±0.04

σ iso
300K(17O) -17288±40 -147±2

σ iso
300K(1H) (exp) 10.3k,l

σ iso
300K(17O)(exp) -13582,m-12681n

a Ref. 50 Measurement on hydrated Ni2+ salt crystals. This value has, however, been
used also for Ni2+ solutions in the literature. b ∆5 =

√
〈D : D〉/5 the factor 5 is the

number of the independent components needed to specify the ZFS-tensor. c Ref. 44 Elec-
tron spin relaxation study based on proton NMR relaxation measurement in aqueous
Ni2+ solution. d Ref. 9 From proton NMR relaxation measurement in aqueous Ni2+

solution. e The largest (in absolute value) eigenvalue of the traceless tensor. f Rhom-
bicity of the dipolar tensor, Rh(Adip) = Adip

22 −Adip
11 . The values are very small for the

oxygen nuclei in the six-fold-coordinated complex, in agreement with the nearly octa-
hedral symmetry. g The isotropic value contains both the Fermi contact and spin-orbit
contributions, the latter being much smaller. h Ref. 51. i Ref. 52 The hyperfine coupling
constant was reported without sign. j Ref. 53. k The large discrepancy between com-
puted and experimental values for the1H shielding constant is caused by the inaccuracy
of the calculated hyperfine coupling constant Acon using the present DFT methods. The
isotropic shielding constant does not contribute to the calculated relaxation rate, how-
ever. l This value of shielding constant was obtained by extrapolation of the experi-
mental data measured in the range of 243.15–263.15 K 51 assuming an 1

T dependence of
the paramagnetic chemical shifts. Furthermore, the reference was taken a pure water in
gas phase (PBE), σref,gas(1H) = 31.59 ppm with a gas-to-liquid shift correction (B3LYP)
δgas→liquid(1H)= −5.27 ppm; 54 Orbital shielding of 25.7 ppm taken from Ref. 39 was
further subtracted since in the present work the orbital shielding is not included in the
results. m The value of the shielding constant was obtained by extrapolation of the exper-
imental data measured in the range of 274.65–306.15 K 52 assuming an 1

T dependence of
the paramagnetic chemical shifts. Referenced and corrected for gas-to-liquid shift as in
footnote l using the values for 17O: σref,gas(17O) = 324.8 ppm, δgas→liquid(17O)= −41.2
ppm. Orbital shielding of 313 ppm from Ref. 39 was subtracted. n From the experimen-
tal data measured in the range of 243.65–308.15 K. 53 Referenced and corrected as in
footnote m.

the corresponding contributions are 33 s-1 and 38 s-1. In 1 M
solution, the contributions of Curie relaxation by both first-
solvation-shell nuclei and nuclei in bulk would be 2.2 s-1 and
2.7 s-1 (R1 and R2) for 1H and 3.6 s-1 and 4.1 s-1 for 17O nu-
clei. The accuracy of the results is expected to reside within
30% error limits for 1H, which constitutes the primary object
of interest for pNMR investigations. Conservative error lim-
its for 17O nuclei can amount up to 90%. For both nuclei in
the present system, the experimental significance of these re-
laxation contributions is at the currently used magnetic fields
negligible.
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Magnetic �eld of the Curie spin manifests itself as both the pNMR shielding

tensor and Curie relaxation, in analogy with CSA relaxation theory.
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