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A study of 3d electrostatic self-assembly (SA) in systems of charged nanoparticles (NP) is one of the most difficult theoretical
problems. In particular, the limiting case of negligible or very low polar media (e.g. salt) concentration, where the long-range
NPs interactions cannot be reduced to commonly used effective short-range (Yukawa) potentials, remains unstudied. Moreover,
the present study has demonstrated that unlike the Debye-Hückel theory, a complete screening of the charges in SA kinetics
(dynamic SA) is not always possible. Generally speaking, one has to take into account implicitly how each NP interacts with all
other NPs (the true long-range interactions). Traditional theoretical methods allow us to monitor such the electrostatic 3d system
kinetics only at very short times, which is far from sufficient for the understanding the dynamic SA. In this paper, combining an
integrated analytical approach (nonlinear integro-differential kinetic equation for correlation functions) and reverse Monte Carlo
in 3d case, we have obtained the self-consistent solution of this challenging problem. We demonstrate, in particular, the existence
of critical points and critical phenomena in the non-equilibrium kinetics in a 3d system of oppositely charged mobile NPs.

1 Introduction

In the last decades nanoparticles (NPs) of different materi-
als (metals, semiconductors, oxides) have been successfully
synthesized and functionalized with charged ligands1. These
NPs could be used in nanoscale self-assembly (SA) as building
blocks in fabrication of ordered functional structures with rep-
resentative applications2,3. The SA studies in solutions con-
taining mobile and oppositely charged NPs (electrostatic SA)
are very important due to numerous manifestations of this phe-
nomenon in crystals, polymers, nano-, bio-molecules or ag-
gregates4,5. In the electrostatic SA the competition between
long-range (electrostatic) and short-range (van der Waals) in-
teractions plays a very important role6–10.

Note that without the electrostatic interaction the NPs only
attract each other, which greatly limits the variety of options
for SA manifestation. At the same time, the electrostatic in-
teractions can be both attractive and repulsive, the interac-
tion potential and its effective radius could vary due to sev-
eral reasons, including the change in the dielectric constant
of polar medium or concentration of ions present in solution.
The study of NPs SA could give a solid basis for understand-
ing more complex biological systems11–13. Here, an impor-
tant step is to study the interactions between charged NPs and
biological macromolecules1,14. From a theoretical point of
view, the description of biomolecular systems and description
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of NPs could be performed within a general approach based
on the coarse-grained models15. So, for both systems, atten-
tion is paid only to the essential features of the problem, while
less important details are described via average quantities. We
believe that the fundamental laws discussed in this paper gov-
erning the behavior of systems with electrostatic interaction
have a scope, far beyond the specific subject of NPs.

The dynamic (kinetic) aspects of SA formation are of a fun-
damental importance. The typical equilibration time for many
real systems could take hours or days, within this period the
system remains far from equilibrium. Moreover, as is well
known, non-equilibrium structures (dynamic SA, DySA16,17)
often differ strongly from those at equilibrium. The realistic
study of the 3d DySA with charged mobile NPs imposes very
strict requirements on theory.

Note some problems arising in the study of condensed sys-
tems with long-range (electrostatic) interactions1. For oppo-
sitely charged NPs in polar solutions the salt effect is very
important: inorganic salts determine the assembly of charged
NPs into different composite structures because the magni-
tudes of electrostatic interactions are defined, in particular, by
salt concentrations. For example, for negligible or low salt
concentrations, the charged NPs nucleate and grow into all-
NP crystals, but at higher salt concentrations the NPs start
to form supraspheres4 because varying the salt concentration
could change dramatically the many-particle screening effects.
Note also that these effects cannot be described by introduc-
ing only one time-independent parameter - the Debye screen-
ing length rD. The chemical nature of salts is also important:
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for the same Debye screening length rD different salts could
induce formation of quite different ordered structures4.

The 3d case of negligible or low salt concentrations lies be-
yond ability of the traditional theoretical methods (Molecular
Dynamics and Kinetic Monte Carlo (KMC)) because here one
has to consider explicitly the contribution of the long-range
interactions of a given NP with all other NPs, which is com-
putationally hardly possible. For this reason, almost all sim-
ulations of 3d systems were carried out so far in the limit at
high salt concentrations (strong Coulomb screening), when
exact long-range Coulomb potentials have been replaced by
the effective short-range Yukawa ones18,19. However, there
are limitations even within this approximation. Typical simu-
lations18 show that after the initial stage of a very rapid forma-
tion of small aggregates, further SA processes becomes very
slow. Thus, the formation of larger clusters or ordering at in-
termediate and long length scales requires very long times.
There exist practically no computational methods able to mon-
itor the evolution of 3d ionic systems for such long simulation
times. For these practical reasons, nowadays the study of elec-
trostatic DySA is limited primarily to 2d systems6,7.

In the present paper, we demonstrate a significant progress
in this important modeling area. Our new approach is based
on a fundamental change in the method for SA kinetics study.
Instead of stochastic modeling of systems with a small number
of particles (which is small for statistics, but still large for the
calculation of the all interaction energies between particles),
we use the combined method8–10. This method is primarily
based on the numerical solution of the (integro-differential)
kinetic equations for the pair correlation functions, which in
fact coincide with the radial distribution functions known in
statistical physics of equilibrium systems. From these dis-
tribution functions after special transformations the system’s
structural information (partial structure factors, screening fac-
tors, typical snapshots of the structure) are derived. The main
idea of this approach was formulated not long ago8, but so far
was practically implemented only for 2d systems9,10, includ-
ing systems with chemical reactions20.

In this paper, using a new method we revisit DySA systems
with mobile and charged NPs8–10 in the limiting case of negli-
gible salt concentrations (absence of salt, weak charge screen-
ing), for which no results were obtained so far. For the first
time we are able to study SA kinetics in 3d systems. Another
limiting case (intermediate and high salt concentrations) will
be considered in our next paper. In this paper we have studied
the behavior of long-wavelength fluctuations of the particle
densities in systems with electrostatic SA and demonstrated a
deep analogy between the equilibrium critical phenomena and
the electrostatic SA for systems far from equilibrium. The
results of this study may be important, in particular, for under-
standing the formation mechanism of internally connected SA
nanostructures in ionic liquids21,22.

2 Model and parameters

We generalize the model previously studied in 2d case,
Refs.6–10, for 3d. To simulate the short-range van der Waals
(dispersion) interactions between oppositely charged A and B
particles (molecules), the classical 6-12 Lennard-Jones poten-
tial is used

U(r) = 4U0[(
r0

r
)12 − (

r0

r
)6]. (1)

We minimize a number of free parameters by assuming U0
and r0 are the same for similar (AA, BB) and dissimilar (AB)
pairs. The Lennard-Jones potential corresponds to the particle
repulsion as short distances, r < rc = 21/6r0 (due to finite parti-
cle sizes) and attraction at larger distances, r > rc. We assume
similar repulsion of both similar and dissimilar pairs of NPs at
r < rc but cut the dissimilar pair attraction at r > rc

6,8,23. In
other words,

UAA(r) =UBB(r) = 4U0[(
r0

r
)12 − (

r0

r
)6], (2)

and
UAB(r) = 4U0[(

r0

r
)12 − (

r0

r
)6 +

1
4
] (3)

for r ≤ rc = 21/6r0, and UAB(r) ≡ 0 for r > rc (truncated
and shifted Lennard-Jones potential23). It means that with-
out Coulomb interactions dissimilar NPs, A and B, repel each
other whereas similar NPs (A-A, B-B) attract each other and
thus could aggregate. It is convenient to use dimensionless
temperature parameter θ = kBT/U0.

The long-range Coulomb interactions have the standard
form (α,β = A,B):

UC
αβ (r) =

eα eβ

εr
, (4)

where ε is the dielectric constant and eA and eB particle
charges. We consider here the limiting case without polar me-
dia (salt). In this case there are no (small) ions except NPs
in the system. Therefore, screening of long-range potential, if
any, is the result of the spatial redistribution of charged NPs.

The NPs are assumed to have opposite charges Z: eA = ZAe,
eB =−ZBe (the value of ZB = 1 is fixed) and an effective diam-
eter r0, NPs densities are nA and nB. The principle of electro-
neutrality leads to ZAnA = ZBnB. The Coulomb potential is de-
scribed by a single dimensionless parameter ζ = lB/r0, where
lB is the Bjerrum length,

ζ =
e2

εkBTr0
. (5)

The length unit r0 and the diffusion time unit t0 = r2
0/(DA+

DB) are used hereafter. Additionally, the total particle den-
sity (concentration), n = nA + nB, determines the dimension-
less parameter η = nr3

0, whereas asymmetry in the parti-
cles’ diffusion coefficients is described by the parameter µ =
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DA/(DA +DB). In the following a definition of the structure
factors will be introduced dependent on the wave number q.
Accordingly, it is taken in the unit of r−1

0 .

3 Methods

3.1 Smoluchowski-type equations

The complete set of kinetic equations8 is of Smoluchowski-
type:

∂Fαβ (r, t)
∂ t

= Dαβ ∇[∇Fαβ (r, t)+
Fαβ (r, t)

kBT
∇Wαβ (r, t)], (6)

where Dαβ = Dα +Dβ is the coefficient of mutual diffusion.
We do not discuss in detail derivation of the equation set since
it was done in detail in Ref.8. We note only that they coin-
cide with the first exact equations based on many-body the-
ory (very similar to the Bogolyubov - Born - Green - Kirk-
wood - Yvon (BBGKY) hierarchy, see also Ref.24,25). The
eq. (6) for the complete set of joint correlation functions,
Fαβ (r, t), describes the effective particle diffusion in potentials
of mean forces, Wαβ (r, t), that are, in its turn, functionals of
the correlation functions Fαβ (r, t) (self-consistent theory). In
the two-component (A,B) systems under consideration three
time-dependent functions are used: two for similar particles,
FAA(r, t) and FBB(r, t), and one for dissimilar, FAB(r, t). The
set of coupled kinetic non-linear and integro-differential equa-
tions (6) is solved numerically by using standard methods of
discretization and a recurrent procedure for non-linear terms8.

Note that the form of first equations (6) is exact whereas
the effective potentials of mean forces, Wαβ (r, t), are obtained
approximately. Two main approximations are used here: (i)
The electrostatic contribution to the potentials of mean forces
is found by a solution of Poisson equation (a self-consistent
solution): we are looking for the electrostatic potential ϕ(r, t)
produced by a spatial distribution of charged particles (which,
in turn, depends on the potential):

∇2ϕ(r, t) =−4π
ε

ρ [F(r, t)]. (7)

The charge density ρ can be easily related to the densities of
NPs and the joint correlation functions8, ρ = ρ[F(r, t)]. (ii)
The second, so-called Kirkwood approximation26 is used for
contribution of short-range interactions in the potentials of
mean forces8. Its use in the kinetic problems described by
Smoluchowski-type equations, and evaluation of its accuracy
is discussed in detail in Ref.24,25.

3.2 Joint correlation functions

The statistical meaning of the joint correlation functions is
fully analogous to the radial distribution function in statisti-

cal physics of dense gases and liquids: the quantities

C(α)
β (r, t) = nβ Fαβ (r, t) (8)

are average densities of NPs β -type at the relative distance r
provided that a probe particle α is placed into the coordinate
origin24 and nβ are macroscopic densities of β -type NPs. If
one knows the average particle densities, eq.(8), the average
charge densities entering eq.(7) could be simply found8. The
joint correlation functions are normalized to unity (no spatial
correlations, random distribution of particles at long distances)

Fαβ (∞, t)≡ 1. (9)

The deviation of the correlation function above the unity
means local concentration surplus of NPs, below unity - de-
pletion with respect to the random distribution.

We consider here the ordering formation process from
chaos: random initial distribution of NPs is used, Fαβ (r,0) =
1, which corresponds to a well stirred system and commonly
used in self-organization studies.

3.3 Transformation of information

It is well known that the correlation functions Fαβ (r, t) are
of fundamental importance because they determine all macro-
scopic thermodynamic quantities (compressibility, average in-
ternal energy per particle, etc.). However, the information con-
tained in the correlation functions is fairly abstract. First of all,
the correlation function does not describe the distribution of
the particles in a real space, this is only a distance-dependent
distribution of particle pairs.

Fig.1 shows four examples of different distributions of par-
ticles described by the correlation functions. Using defini-
tions, eq.(8) one can determine the location of the particles
in the nearest coordination spheres around the particle placed
in the coordinate center. However, to estimate the location of
the particle at larger distances from the center is almost im-
possible. The reason is trivial, this information is contained
in the small deviations of the correlation functions from their
asymptotic behavior, eq.(9).

In the analysis of pattern formation in systems with electro-
static SA, it is important to analyze the large-scale fluctuations
of the particle densities. This information can be obtained by
using the so-called partial structure factors Sαβ (q, t), at small
values of wave number q. In this paper the Faber-Ziman27

definition is used

Sαβ (q, t) = 1+n
∫ ∞

0
[Fαβ (r, t)−1]

sin(qr)
qr

4πr2dr. (10)

Note that both methods - use of the correlation functions
Fαβ (r, t) or the structural factors Sαβ (q, t) - have one com-
mon drawback: they are abstract. Indeed, it is essential to get
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Fig. 1 (Color online) Quality of the 3d RMC method: (a) the joint
correlation functions (curves (1) AA, (2) BB, and (3) AB pairs)
obtained from kinetic equations (line) and RMC (symbols) for
snapshots in Fig.3a,c; (b) shows the same functions for snapshots in
Fig.5b,d; (c) for snapshots Fig.8b,d; (d) for snapshots in Fig.10b,d.

spatial 3d images of arising structures and their components
(typically clusters in liquids, their size distribution, etc.).

We discussed in recent Refs.8,28 new ideas of the so-called
Reverse MC (RMC) method that is based on the goodness-of-
fit statistical model, e.g. the Pearson χ2 test correlation func-
tions. This method is used here to visualize pattern formation
in 3d. Previous ideas8 were developed for 2d systems and had
certain limitations of the accuracy. Note also that the very idea
of the RMC method is not new (see, for example, Refs.29,30),
but it has been previously used mainly for the treatment of ex-
perimental data on the structural factors of the system. The lat-
ter was determined, however, not in the whole range of wave
numbers q, and functions were not smooth due to experimen-
tal errors.

An advantage of the RMC is that it is independent on spe-
cific interparticle interactions. The problem is reduced to
achieving the best possible coincidence between set of the cor-
relation functions obtained by numerical solution of eqs.(6)
(called the test functions) and another set of correlation func-
tions, obtained by means of the Monte Carlo method. The lat-
ter distribution of particles is modeled by randomly selecting
a particle and generating its new spatial coordinates. One cal-
culates a function (goodness-of-fit for statistical model) con-
trolling the convergence of the method. As can be seen from
Fig.1 with both sets of correlation functions - solutions of ki-
netic equations (lines) and the RMC (symbols) - in principle,
it is possible to match both sets of correlation functions with
any desirable degree of accuracy (for liquid-like disordered
structures28). As a result, we map the information from the

correlation functions into the distribution of particles in the
real 3d space in the form of characteristic snapshots. More-
over, as shown in Ref.28, it is possible to find not only a se-
ries of complete snapshots of the structure, but also to explore
its details, such as the distribution of aggregates (clusters) in
size, or to find the maximum size or a typical cluster. In the
case of liquid systems, this information has a well-istablished
statistical characteristics. In contrast to discrete case, the con-
tinuous case requires a definition of nearest neighboring (NN).
Here we define NN as particles which are separated closer than
rc = 21/6r0.

Note that by solving the Poisson eq.(7) in spherical coordi-
nates, the result can be written in the general form

ϕ(r, t) ∝ Q(r, t)/r, (11)

where Q(r, t) is the charge screening factor 9. This factor has a
trivial boundary condition Q(0, t)≡ 1. According the Debye-
Hückel theory1, in equilibrium Q(r) = exp(−κr), where κ is
an inverse of the Debye length, rD = κ−1. Since we consider
the non-equilibrium case, the charge screening can differ sig-
nificantly from that in the equilibrium, in particular it could
be time-dependent. Moreover, as shown in Ref.9, for systems
with charges or diffusion asymmetry each type of charges is
screened differently. In general, it is necessary to use two fac-
tors, QA(r, t) and QB(r, t), for each type of particles.

4 Results

4.1 System without Coulomb interaction

We begin presentation of the results with an important limit-
ing case of the system without electrostatic interaction when
parameter ζ ≡ 0. In this system particles of one kind, say
A, attract each other, thus creating aggregates. At the same
time, they repel from the particles of another kind B. This is
a system with the similar-particle aggregation and segregation
of dissimilar particles (phase separation)10. In this case, the
basic physical mechanism that determines the kinetics of the
process is the Ostwald ripening31: small NPs aggregates are
absorbed by larger aggregates. The kinetics of this process
is very slow, asymptotically it could end up with the survival
of a single super-aggregate. For temperatures selected in this
section rather loose super-aggregates occur, with the typical
structure of a dense fluid.

As can be seen from Fig.2a, the oscillatory behavior of
the joint correlation functions for similar particles, Fαα(r, t),
points to the formation of short-range (or intermediate) order
typical for liquid. The degree of the ordering changes with
time, which is natural for the formation of dense aggregates.
With increasing temperature (parameter θ ), short-range order
is weakening, the oscillation amplitude of the correlation func-
tions decreases. At the same time, when the temperature de-
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Fig. 2 (Color online) Binary system without Coulomb interactions,
ζ = 0.0, at intermediate temperatures. (a) The joint correlation
functions Fαβ (r, t) (solid line - similar, dot line - dissimilar,
numbering with prime). Parameters: [η ,θ ,µ = 0.4,0.5,0.5].
Curves are shown for times t: (1) 214, (2) 216, (3) 218, (4) 220. (b)
The structure factors Sαβ (q, t) (solid line - for similar and dot line -
for dissimilar pairs) for the same time t. (c) The structure factors at
time t = 220 for the fixed density, η = 0.4, and different
temperatures θ : (1) 0.6, (2) 0.8, (3) 0.9, (4) 1.0. (d) The structure
factors at time t = 220 for the fixed temperature, θ = 0.5, but
different densities η : (1) 0.1, (2) 0.2, (3) 0.3, (4) 0.5.

creases, this type of order becomes more noticeable (crystal-
lization). The behavior of the joint correlation functions for
dissimilar particles, FAB(r, t), is more trivial and does not in-
dicate the existence of any order (only noticeable effect of the
excluded volume on a small length scale).

Note that we show here the results for the long simulation
times t = 2m (in units of t0), where the maximum value of
the index m = 24 (this corresponds to the time t ∼ 107). The
small value of the base (two) was chosen using the following
considerations: except generally slow changes of the struc-
ture, in certain parameter areas relatively fast restructuring
was detected. To understand the range of times calculated in
this paper, we note that the best result for 3d systems without
electrostatic interaction achieved in the Ref.32 (KMC) is only
t ∼ 103. In the case of the polar media absence studied here,
where formally each particle interacts with all the others, the
KMC time limit becomes t ∼ 101. In this case, even a single
particle can move only a short distance, of the order of the
NP diameter, r0, so that particles do not have enought time
to build the structure. At the same time, in our simulations
the diffusion of free particles occurs on time scale t ∼ 107 or
the distance ∼ 103r0 which allows us reliable simulations of
DySA.

More appropriate, however, to analyze the SA structures not
in terms of short-range ordering, but from the point of view of
the possible large-scale fluctuations in the system. Here, the
fundamental characteristic of the system are structure factors
Sαβ (q, t), eq.(10). As can be seen from Fig.2b, at at fixed
temperature, but different times, the similar patterns occur.
The structure factors Sαα(q, t) for the similar particles have a
maximum, the amplitude and half-width of the peaks system-
atically increase with time (aggregation). At the same time,
the structure factor SAB(q, t) for dissimilar particles has a min-
imum in the same range of q (particle segregation). Moreover,
as can be seen from Fig.2c and Fig.2d, the same behavior is
observed also by varying temperature (at fixed density) and by
varying density (at fixed temperature). In other words, chang-
ing the parameters of the system (θ and η) changes only the
kinetic parameters (rate of of structure formation), but the type
of structure remains universal.

The structure in Fig.2 has a known counterpart - the equi-
librium statistical system near the critical point, which is tra-
ditionally described by the Ornstein-Zernike theory33,34. It
is known that near the critical point long-wavelength (q → 0)
fluctuations of particle density are developed. These density
fluctuations show the emergence of correlation - particle ag-
gregates. In the above-described system we studied the Ost-
wald ripening – the mechanism which also leads to the appear-
ance of aggregates, which, unlike the physics of equilibrium
phenomena, are not stationary. There the long-wavelength
part of the fluctuation spectrum is not stable. As time in-
creases, the system evolves to a critical point, which corre-
sponds to an infinitely large time, t → ∞. Note that the non-
equilibrium critical phenomenon is not completely identical
to its equilibrium counterpart. The non-linear fit for factors
Sαα(q, t) shows that their behavior corresponds to the Lorentz
curve, S(qc)/[1+ξ 2(q−qc)

2] with time-dependent small pa-
rameter qc. In contrast, in the equilibrium case ξ is the corre-
lation length and the parameter qc ≡ 033,34.

Another analog of this behavior could be found in the
structural characteristics of the bimolecular chemical pro-
cesses24,35. The effects of segregation and aggregation there,
however, are not caused by the interaction of particles, which
we study here, but by chemical reactions. Moreover, it was
shown that chemical reactions for systems with short-range
interactions lead to non-equilibrium critical phenomena that,
in turn, form long-range correlations. In the case of chemical
reactions, the non-trivial critical exponents (depending on the
space dimension) can be determined, i.e. use the terminology
of critical phenomena is justified here. It was demonstrated
by a comparison of a large number of examples with results
of Monte Carlo simulations, that our theoretical method leads
to the exact values of nontrivial critical exponents describing
bimolecular diffusion-controlled kinetics24,35.

The structure formation rate increases with decreasing tem-
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perature and increasing particle density. Therefore, in the
study of structures of a certain type, we prefer to show re-
sults for dense systems, for which the direction of the process
is more clear. It should be noted that the studied systems are
characterized by large characteristic relaxation times, so the
results for short times can differ considerably from those for
the long time.

This analysis can be extended by using RMC method28.
Fig.3 shows the characteristic snapshots for a set of parameters

(a) (b)

(c) (d)

Fig. 3 (Color online) Characteristic 3d structure snapshots obtained
using the RMC: (a,b) corresponds to the structure factors for
[η ,θ ,µ = 0.2,0.7,0.5] and the times (a) 220 and (b) 224, whereas
(c,d) show the maximal domain for snapshots (a,b).

[η ,θ = 0.2,0.7]. Transient structures are detected in Fig.3a,b.
For all times aggregates are homogeneous in their composition
(domains with one type of particles), Fig.3c,d. Here, for each
case a maximum size of one domain is shown. At long times,
the domains do not have a spherical shape, Fig.3d, due to a
inpenetration of the different types of domains, the structure
becomes a labyrinth type.

Incorporation of the electrostatics into the system is charac-
terized by the parameter ζ . Depending on its value, different
types of structures could arise. Let us conditionally classify
the range of values ζ < ζ0 ∼ 1 as a weak Coulomb interac-
tion, and ζ ≫ ζ0 a strong Coulomb interaction.

4.2 Weak Coulomb interaction

Incorporation of the electrostatic interaction leads to new ef-
fects as compared with the Section 4.1. Since the mutual at-
traction of similar particles at short distances is stronger than
their Coulomb repulsion, similar particles retain a trend to
form dense aggregates (domains). However, unlike the pre-
vious case, the domains cannot indefinitely increase in size
due to the effect of Ostwald ripening. Coulomb repulsion of

the similar particles within the domain makes it unstable. A
linear domain size λ is a function of the parameters θ and ζ .
At distances exceeding λ the short-range interactions could
be neglected. Here, the only effect is the Coulomb interaction
between domains, and it is strong. The fact that each domain
contains a large number of similar particles N means that at
distances r ≫ λ it acts as a super-particle with a big charge,
Ne. Ionic crystallization occurs between domains of oppo-
site charges, the result is the structure with the characteristic
charge oscillations.
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Fig. 4 (Color online) Windows (a-c): Ionic binary systems with
Lennard-Jones and Coulomb interactions for fixed parameters
[η ,θ ,µ,ζ = 0.4,0.5,0.5,0.5]. Solid line - similar and dot line -
dissimilar pairs (numbering with prime). (a) shows the joint
correlation functions for times t: (1) 218, (2) 224. (b) - the structure
factors for the times t: (1) 217, (2) 218, (3) 220, (4) 224. (c) shows the
screening factors Q(r, t) = QA(r, t) = QB(r, t) for the same times as
in (b). The window (d) shows the screening factors Q(r, t) at time
t = 224 for the fixed temperature, θ = 0.4, but different values of
parameter ζ : (1) 0.25, (2) 0.50, (3) 0.75, (4) 1.00.

Fig.4 shows that in the modeled time range the simulated
correlation functions are not stationary, the process of struc-
ture formation continues. The behavior of the structure fac-
tors, Fig.4b, indicates the occurrence of a fundamentally new
type of structure without particle segregation. At long times,
all the structure factors reveal maxima with close magnitudes.
The non-linear fit of the Lorentz type, S(qc)/[1+ξ 2(q−qc)

2],
occurs for all factors Sαβ (q, t). We can see systematic increase
with time of the peak maxima at q = 0 and their half-widths.
In other words, this is a non-equilibrium critical phenomenon,
studied previously in a simple form in the Section 4.1, where
the large-scale density fluctuations occur. However, aggre-
gates are not composed of particles of one type, they are made
now of domains with different charges.
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(a) (b)

(c) (d)

Fig. 5 (Color online) Same as Fig.3 for parameters
[η ,θ ,ζ = 0.2,0.6,0.4] and the times (a) 220 and (b) 222.

The above-said becomes more clear when looking at the
characteristic 3d snapshots, Fig.5. It is seen that with in-
creasing time the size of the aggregates also increases. The
aggregates are not homogeneous, they have a complex het-
erogeneous structure (composed of homogeneous domains).
These results are qualitatively agree with those in Refs.6,7,9,10

for two-dimensional systems. As one can see, the competition
of weak electrostatic and short-range interactions leads to for-
mation of the structures with oscillating charges. Parameters
of the resulting structure can be estimated in different ways.
One can see in Fig.4b the emergence of additional extremes at
q = q0 ≈ 1: the local maximum for similar structure factors
and the local minimum in the same area for dissimilar struc-
ture factors. This extremum is formed only at very long times,
curves (3,4), and then does not change with time. This value
may be associated with the previously mentioned characteris-
tic length λ = 2π/q0 (the size of the domain or the oscillation
period of the charge). Since the value q0 ∼ 1, one can estimate
λ ≈ 6 (in units r0), which is consistent with results in Fig.5c,d.

The above-said is confirmed by the analysis of Fig.4c,
where the behavior of the screening factors, eq.(11), is shown
for the same time range. At short times a quasi-equilibrium
charge distribution is not established yet, so the Coulomb in-
teraction of NPs is not fully screened, limr→∞ Q(r, t) ̸= 0, see
curves (1,2). As time increases, the Coulomb interaction be-
comes screened, limr→∞ Q(r, t) ≈ 0. This result is in a quali-
tative agreement with the Debye-Hückel theory. However, the
overall behavior of the screening factors is very different from
the predictions of the standard Debye-Hückel theory1,9: they
show oscillations. This result is not surprising. In the Debye-
Hückel theory, in a well stirred system each charge is supposed
to be surrounded by a cloud of particles with opposite charges.

In our case, a very different structure is formed: a given par-
ticle is surrounded by a cloud of similar particles forming a
homogeneous domain. At the distances ∼ λ it sticks to a do-
main with an opposite charge. This results in the characteristic
structure with oscillating charges, Fig.5c,d. As follows from
the behavior of the curve (4) in Fig.4c, the oscillation period
of the charge is of the order λ ≈ 6, which is consistent with
the previous estimate.

The consistency of the results are not surprising, since as
shown in the Section 3.3, all the fundamental system char-
acteristics are obtained from the same correlation functions
by the transformation of the information (Fourier transform,
eq.(10), the mapping of information from correlation func-
tions into the characteristic snapshots, or solving directly the
Poisson eq.(7)).

Snapshots Fig.5c,d allow us to anticipate the structure of
the studied system at long times, i.e. in fact in equilibrium.
It is a quasi-periodic (as far as it is possible for a dense fluid)
structure with the charge oscillations. Qualitatively, it does
not differ from that previously discussed in Ref.6 for a special
case of two-dimensional system.

Additionally, Fig.4d shows the behavior of the screening
factors at fixed time, but for different values of the parameter
ζ . The systematic increase of this parameter results in de-
crease of both the amplitude of the oscillations in the screen-
ing factors and the oscillation period λ . With further increase
of the parameter ζ the aggregate growth stops, the system
is quickly relaxed to the stationary (equilibrium) structure.
Thus, suggested definition of the weak Coulomb interaction,
ζ < ζ0 ∼ 1, is justified by the results of kinetics. In other
words, for ζ = ζ0 the kinetic phase transition is observed be-
tween the two kinetic regimes: stationary and non-stationary
ones (non-equilibrium critical phenomenon).

4.3 Diffusion asymmetry

As could be seen from the kinetic eqs.(6), the partial dif-
fusion coefficients Dα directly control the process kinetics.
Therefore, in general, the asymmetry in the NP mobilities
has to produce asymmetry in other characteristics, in partic-
ular the structure, or the screening factors. This statement is
not, however, universal. The equilibrium state is described by
the stationary solution of the eqs.(6) which does not depend
on the kinetic characteristics - diffusion coefficients. That is,
the equilibrium restores symmetry between particles. There-
fore, the asymmetry is particularly noticeable only at relatively
short times, when the structure of the system is far from equi-
librium. In the regime of a slow change in the structure the
quasi-equilibrium situation occurs.

These general statements are confirmed by Fig.6. As one
can see in Fig.6a, the asymmetry of the correlation functions
is obvious at short times, where FAA(r, t) ̸= FBB(r, t). However,
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Fig. 6 (Color online) Windows (a-c): Ionic binary systems with
both Lennard-Jones (short-range) and Coulomb (long-range)
interactions and asymmetric diffusion. Parameters:
[η ,θ ,µ,ζ = 0.4,0.5,0.2,0.5]. Solid line corresponds to similar-
whereas dot line - dissimilar NP pairs. (a) the joint correlation
functions for the times t = 214 (curve (1) AA, curve (1′) BB, and (1′′)
AB correlations). (b) the structure factors for the times t: (1) 212, (2)
214. (c) the screening factors QA(r, t) (curves without primes) and
QB(r, t) (curves with primes) for the times (1) 214, (2) 216 and (3)
218. The window (d) shows the screening factors at time t = 222 for
the same parameters [η ,θ ,ζ = 0.4,0.5,0.5], but two different
values of mobility µ: (1) 0.05 and (2) 0.10.

the transition to a quasi-stationary regime occurs very fast, see
Fig.6b for the structure factors. Even at times t = 214 the dif-
ference between factors becomes negligible. The same applies
to the screening actors, Fig.6b. Retention time to the quasi-
stationary regime strongly depends, however, on the degree
of asymmetry in the particle mobilities. It is relatively small,
µ = 0.2, in the case shown in Figs.6a,b,c. For a comparison,
Fig.6d shows examples of a very strong diffusion asymmetry,
µ = 0.05 and µ = 0.10, that leads to asymmetry of basic char-
acteristics at much longer times. Since in this paper we are
primarily interested in the long-time behavior of the kinetic
characteristics, we restrict ourselves to cases of symmetric dif-
fusion.

4.4 Asymmetry of particle charges

Another, more significant asymmetry parameter is the differ-
ence of particle charges. Here, the symmetry between parti-
cles could never be restored. Fig.7 shows the results for the
system, where the charge of one type of particles twice ex-
ceeds that of other particles: ZA = 2 and ZB = 1. Accord-
ingly, for the electrical neutrality we assume nB/nA = 2. The
correlation functions FAA(r, t) ̸= FBB(r, t), Fig.7a, the structure
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Fig. 7 (Color online) (a-c) Ionic binary systems with Lennard-Jones
and Coulomb interactions for asymmetric particle charges,
ZA = 2,ZB = 1. Parameters: [η ,θ ,µ,ζ = 0.4,0.5,0.5,0.5]. Solid
line - for similar and dot line - for dissimilar pars. (a) shows the joint
correlation functions for the time t = 224 (curve (1) AA, curve (1′)
BB, and (1′′) AB correlations). (b) the structure factors for the times
t: (1) 218, (2) 224. (c) the screening factors QA(r, t) (curves without
primes) and QB(r, t) (curves with primes) for the same times. (d)
shows the screening factors at times t = 224 for the same parameters
[η ,θ ,µ = 0.4,0.5,0.5], but with two different values of ζ : (1) 0.25
and (2) 0.75.

factors SAA(q, t) ̸= SBB(q, t), Fig.7b, or the screening factors
QA(r, t) ̸= QB(r, t), Fig.7c, are always different. It is easy to
understand the reason for this: particles with a larger charge,
A, are isolated from each other. They are mainly surrounded
by a cloud consisting of a large number of another-type par-
ticles, B (with a smaller and opposite charge). Therefore, the
effective charge of the particle A decreases rapidly with the in-
creasing distance, and moreover, even changes its sign. At the
same time, the particles B, which are in excess, aggregate into
domains. Their effective charge, determined by a number of
similar particles in the domain, can turn out to be quite large.
Thus, in Fig.7c the effective charge of the particle within the
domain is ∼ 6. Outside the boundary of the similar-particle
domain a cloud of particles of opposite charge occurs, so that
the effective charge with the distance from domain begins to
behave asymptotically in the spirit of Debye-Hückel theory:
the screening factor tends to zero. Fig.7d shows the behavior
of the structure factors for different values of parameter ζ . As
one can see, varying the parameters, the nature of the screen-
ing charges can change strongly, and has nothing to do with
the results of the standard Debye-Hückel theory.

The above statement could be illustrated quite clearly by the
characteristic snapshots in Fig.8. Despite the fact that the full-
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(a) (b)

(c) (d)

Fig. 8 (Color online) Characteristic 3d structure snapshots obtained
using the RMC. They correspond to the correlation functions for
[η ,θ ,µ,ζ = 0.2,0.6,0.5,0.5], times: (a) 220 and (b) 224.

size snapshots, Fig.8a,b, visually differ only slightly, the anal-
ysis of the behavior of maximal-size clusters, Fig.8c,d, shows
that the non-equilibrium critical phenomenon also takes place
here: the size of aggregates slowly but continuously increases
with time.

4.5 Strong Coulomb interaction

As already noted, an increase of parameter ζ > ζ0 ∼ 1 char-
acterizes the contribution of the electrostatic interaction leads
to disappearance of the non-equilibrium critical phenomenon:
the solutions of kinetic equations quickly converge to the
asymptotic equilibrium behavior. In this case, the correlation
functions differ from their asymptotic values, eq.(9), only at
the very short distances ∼ r0. In other words, in this kinetic
mode only small clusters are formed, whose further aggrega-
tion into large clusters is not possible. Structure of the system
in equilibrium corresponds to the real gas, however, where the
structural elements are not individual nanoparticles, but small
neutral clusters built from nanoparticles. In the case of a weak
Coulomb interaction (Section 4.2), small changes of the pa-
rameter ζ have led to strong changes of all the results, whereas
in this kinetic mode, the results are much less sensitive to the
values of the parameter ζ .

However, for very large values of the parameter ζ > ζc, the
second kinetic phase transition takes place. Here, small clus-
ters begin to connect to large ones resulting in ionic crystal-
lization. For such large values of ζ , the contribution of short-
range attraction becomes unimportant. Therefore, only the ef-
fect of excluded volume occurs and the results practically do
not depend on the parameter θ . In Fig.9 we have chosen its
relatively large value, θ = 1.
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Fig. 9 (Color online) (a-c) Ionic binary systems with Lennard-Jones
and Coulomb interactions for fixed parameters
[η ,θ ,µ = 0.1,1.0,0.5] (small density and strong Coulomb
interaction). Solid line - for similar and dot line - for dissimilar
pairs. (a) the joint correlation functions for two values of parameter
ζ : (1) 40.0 and (2) 50.0. (b) the structure factors for the times t: (1)
28, (2) 212, (3) 224. Parameter ζ = 50.0. (c) the screening factors
QA(r, t) = QB(r, t) for the time t = 26 (1,2) and t = 224 (1′,2′) and
two values of parameter ζ : (1,1′) 20.0 and (2,2′) 60.0. The window
(d) shows the structure factors at time t = 224 for two values of
parameter ζ : (1) 45.0 and (2) 55.0.

Fig.9a shows the behavior of the correlation functions for
long times, t = 224, and the two large values of ζ . The value
of ζ = 40 corresponds to the steady-state (equilibrium). The
characteristic snapshots differ only slightly from those shown
in Fig.10, because the results change very little with increasing
the parameter ζ , until the second critical point, ζ = ζc, arises.
However, with an increase of ζ up to ζ = 50, the behavior
of the correlation functions changes quite dramatically: non-
equilibrium ordered structures are created where the aggregate
size is continuously growing. In other words, ionic crystals
start to grow in this parameter area. Note that these results can
be compared to Refs.18,19, where, however, the electrostatic
interaction was taken in the limit of high salt concentrations
(the long-range Coulomb potential was replaced by the short-
range Yukawa potential).

Fig.9b shows the behavior of the structural factors for the
same values ζ = 50 . First, we note that the amplitudes of all
the factors are extremely small, unlike the cases discussed in
the previous sections. This corresponds to the fact that there
are no longer large aggregates in the system. However, it can
be seen that for a very long time t = 224 an anomaly in the
behavior of the factors near q = 0 occurs. Exploring other pa-
rameter values ζ , Fig.9d, assures that the critical value ζc is
close to ζc ≈ 50. For ζ < ζ0 the structure factors are station-
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(a) (b)

(c) (d)

Fig. 10 (Color online) Characteristic 3d structure snapshots
obtained using the RMC: (a,b) corresponds to the correlation
functions for [η ,θ ,µ = 0.1,1.0,0.5] and ζ : (a) 20 and (b) 45,
whereas (c,d) shows the maximal clusters for snapshots (a,b). The
times t = 224

ary and small. In contrast, as ζ > ζc, they are not stationary
and show a peak near q = 0. Thus, Fig.9b corresponds to the
critical point.

Although for the parameter ζ ∼ ζc the structure factors
can greatly vary, the screening factors remain practically un-
changed, Fig.9c. Moreover, they rapidly approach to the
asymptotic values. The nature of the screening is almost in-
dependent on the kinetic mode (non-equilibrium critical phe-
nomena, or equilibrium). In other words, the type of charge
screening, observed earlier in the equilibrium for a system of
small stable clusters, continues to occur in the mode of large
aggregate growth. This becomes clear from the characteristic
snapshots for maximum-size clusters, Fig.10c,d. The aggre-
gates here are not dense systems, they form rather dendritic
structures (of loose clusters). Such the structure formation
could be explained by the strong Coulomb interactions be-
tween the particles. Since the particle binding becomes hard
to break, any structural rearrangements (formation of a dense
aggregates) become very complicated.

5 Conclusions

In this paper, the electrostatic dynamic self-assembling was
investigated for ionic three-dimensional systems. For the first
time, the very important limiting case is studied in detail, in
which the screening of the nanoparticles occurs only as the
result of particle spatial rearrangement (without polar solvent
screening long-range Coulomb interactions). The integrated
approach (analytical and numerical solution of nonlinear self-

consistent kinetic equations) was developed and applied. This
approach allows us to investigate the kinetics of the process
for very long time, which is impossible by means of tradi-
tional methods (Kinetic Monte Carlo or Molecular Dynam-
ics). We obtained a complete set of statistical characteris-
tics of the system, including the sets of the joint correlation
functions (radial distribution functions), partial structure fac-
tors, as well as the charge screening factors. This fundamental
information is accompanied with the characteristic snapshots
obtained by 3d Reverse Monte Carlo method. It was shown
that within a certain range of control parameters, a continuous
growth of aggregates occurs, from small ones to big. The par-
ticle aggregates reveal a complex structure with the character-
istic charge oscillations. The kinetics of the aggregation pro-
cess was analyzed from the point of view of non-equilibrium
physics of critical phenomena: we have established the ex-
istence of the large-scale critical fluctuations of the particle
densities. It is also shown that in many systems with dy-
namical self-assembling, the screening of the particle charges
could strongly differ from the standard Debye-Hückel theory
for equilibrium systems. The results obtained could be impor-
tant for understanding of the fundamental aspects of DySA in
charged nanoparticle systems in chemistry, physics and biol-
ogy.
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