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A fragmentation scheme based upon the Molecular Fractionation with Conjugated Caps (MFCC) method and derived previously

[Journal of Chemical Physics, v. 130, No. 144104 (2009)] within the remit of density functional theory (DFT) based on local

and semi-local functionals, enables one to perform order-N high-quality DFT calculations on extended systems (e.g. collections

of organic molecules) via considering its smaller fragments. Here we discuss in detail a considerably improved method which

broadens its applicability to a wider class of extended systems: (i) when each individual fragment is considered, the surrounding

part of the entire system is not ignored anymore; instead, it is represented by point charges; (ii) the method is generalised to a

system of any complexity enabling studying periodic and porous systems in real space; (iii) an appropriate Coulomb correction

term is derived where clear distinction is made between charge densities of the same cap regions appearing in different fragments.

Consequently, our correction term turns out to differ substantially from that derived e.g. by Li et al. [Journal of Chemical Physics

A, v. 111, No. 11, pp. 2193 (2007)]. We also discuss a possiblity for the point charges surrounding each fragment to update

self-consistently following the calculations of every individual fragment. We examine here a new implementation of our method

and its application to a Metal Organic Framework system. Specifically, we consider the structure of MOF-16 and adsorption of

Hydrogen molecules in its pores. Possible ways of improving precision and to further widen up applicability of the method are

also discussed.

1 Introduction

Understanding of various biological processes requires de-

tailed knowledge of the properties of relevant macromolecules

such as e.g RNA, DNA, proteins. Similarly, detailed knowl-

edge is necessary for various porous crystals like zeolite and

metal organic frameworks (MOF) which are being increas-

ingly considered for applications in nanotechnology1. In both

these cases accurate numerical description of the electronic

structure of these complex materials from first principles is

highly desirable. Unfortunately most of these systems are too

large to be calculated by conventional quantum mechanical

(QM) methods. Computational schemes for electronic struc-

ture calculations scaling linearly with the system size, the so-

called order-N methods2–8, have a great promise of extending

our computational capabilities to these systems. In particu-

lar, there have been a number of partitioning schemes pro-

posed in which the calculation of the whole extended sys-

tem is replaced by a set of smaller first principle calculations

∗ E-mail: lbrinkm@uni-goettingen.de
a Department of Physics, King’s College London, London, WC2R 2LS, United

Kingdom.
b Max Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569

Stuttgart, Germany.

performed on its various parts, which have been recently re-

viewed9. These methods naturally scale linearly with the sys-

tem size even though each individual calculation on a frag-

ment may scale nonlinearly with the number of atoms in the

fragment. A classification of such methods has been done9

based on whether the total energy is obtained in a separate

step after gathering the electron densities of the various parts

or directly from the energies of the different fragments. No-

table examples of the first class of methods are the divide-

and-conquer3,10 and the adjustable density matrix assembler

(ADMA)11 methods. Here we concentrate on the second class

of methods, i.e. the so-called one-step9 or energy based12

methods.

There is a wide variety of the one-step methods9, which

could e.g. be additionally subdivided by whether QM calcu-

lations are performed on (i) monomers, (ii) unions of two or

more fragments or (iii) intersecting monomers13. In the frag-

ment molecular orbital (FMO) method14,15, which is an ex-

ample of the second group (ii), unions of two fragments are

calculated and in this way the corresponding two-body inter-

action is fully recovered. Later this method was extended to

account for three-16 and four-body17 interactions of the many-

body expansion (MBE). Usually, to retain the linear scaling,
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many-body interactions of each fragments with only adjacent

fragments are calculated at the QM level.

Efforts have been made within the context of different frag-

mentation approaches to improve the electron density ob-

tained in different parts of the original system by enlarging

the corresponding fragments so that surrounding parts of the

fragments are also attached18–23. Various one-step methods

based on intersecting monomers, and thus belonging to the

third group (iii), go back to the main ideas of molecular frac-

tionation with conjugate caps (MFCC) method18,24, in which

the macromolecule under consideration is divided into over-

lapping fragments capped by terminating groups of atoms;

then the interaction energy of the system (of e.g. a molecule

interacting with a surface) is calculated as a simple sum of

the corresponding contributions due to each fragment, minus

the contributions due to the overlapping parts of the fragments

(i.e. caps). Concepts of the second (ii) and the third (iii)

types of fragmentation were mixed when two-body interac-

tions were also added to methods based on overlapping frag-

ments either as a correction20,25,26 or to additionally account

for non-bonded interactions27–33. The relation between the

two approaches however has been illuminated in more detail

recently when an MFCC-like fragmentation scheme has been

obtained using the MBE approach applied to auxiliary frag-

ments26; a correction term has also been suggested. Other

MBE schemes have also been proposed based on overlapping

fragments13,34, which reduce to conventional MBE methods

in the case of non-overlapping fragments. Note that MFCC

within this framework can be considered as the one-body limit

of the MBE with overlapping fragments.

A considerable effort has been spent in the automatisa-

tion of the fragmentation schemes for macromolecules17,35,36.

Collins and Deev27 developed a method in which fragments

are built of small atomic groups consisting of monomers,

dimers, trimers, etc. With the so-called higher level of frag-

mentation, larger fragments are generated and thus conver-

gence with respect to fragment size can be tested. Although

the fragmentation scheme appears different, the expression for

the total energy does follow the original MFCC formulation.

To include the effect of long-range Coulomb interaction, the

electrostatic environment was added when solving for each

fragments electronic structure12,32,33,37. This approach was

shown to improve the accuracy of the fragmentation methods,

when Li et al.12,36 presented their generalised energy-based

fragmentation (GEBF) method. Here MFCC was also refor-

mulated in a more general way in order, amongst other gener-

alisations, to allow for caps themselves to intersect.

Inspired by the original formulation of MFCC38, we re-

cently proposed a fragmentation method39 based on a slightly

different fragmentation scheme. In our method39, using rather

general assumptions on the system partitioning and the fact

that the total energy of a system of interest can be well rep-

resented within the density functional theory (DFT) using one

of the existing local or semi-local density functionals, such

as LDA or of various GGA flavours, not only the appropriate

expression for the total energy was rigorously derived, suffi-

cient conditions which are to be satisfied for the fragmentation

method to work were also clearly formulated.

In line with the original ideas of MFCC, in our earlier

work39 the role of the caps was to mimic the effect of adja-

cent fragments18; correspondingly, the caps were treated as

artificial. In that work for the first time it was explicitly differ-

entiated between an artificial density within the caps and the

true or exact electron density within the core regions of frag-

ments which allowed to eliminate exactly the contribution of

the caps into the total energy and forces. This led to a new

type of correction compensating for the artificial electrostatic

energy due to the caps. While this type of correction was im-

plicitly accounted for in early implementations of MFCC24,

the correction due to this artificial interaction got lost in later

incarnations of the method (e.g. when embedding fragments

into the Coulomb field of their surrounding12) or was argued

to be negligible20 (which of course may well depend on the

system in question).

Moreover, in our earlier work39 no account was made of

the charge distribution outside the fragments. In this work

we generalise this method whereby each fragment is consid-

ered in the Coulomb field of surrounding fragments. Corre-

spondingly, we present here an MFCC inspired fragmentation

method explicitly correcting for the artificial contributions of

the Coulomb interactions between the caps, the central core

and surrounding fragments. The resulting expression for the

Coulomb correction, derived from the exact DFT expression

of the total energy, turned out to differ substantially from

the ones published elsewhere12,33, which is precisely due to

the distinction, mentioned above, between an artificial elec-

tron density of the caps and the true density in the core re-

gion of the fragments which is accounted for explicitly in this

work. Consequently, our method is named Coulomb corrected

MFCC (CC-MFCC) method. In our present implementation

and in line with Refs.12,33,37,38,40 the Coulomb field due to

the charge distribution around each fragment is represented by

point charges. Similarly to the earlier work12,19, these could

be obtained in an iterative way using the Mulliken charges on

the atoms of the corresponding surrounding parts of the sys-

tem. In this work we present a correction due to the artificial

Coulomb interaction of the caps including an embedding of

the fragments into a Coulomb field. To our knowledge, this

type of correction within the MFCC fragmentation calculation

is proposed for the first time.

In our first publication on this method39 calculations per-

formed on a number of pairs of simple molecules bound to

each other by hydrogen bonds showed a great promise for the

method, as it was found that high precision can actually be
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achieved in the total energy, geometry (bond lengths and an-

gles) and atomic charges as compared to the reference calcu-

lation within the same DFT flavour performed on the whole

system (no fragmentation). In this earlier work the derivation

of the method was limited to the specific case of an organic

dimer39. In this paper a more general formulation of our frag-

mentation scheme applicable to a system of arbitrary complex-

ity including periodic (crystalline) systems is proposed, and

an application of our CC-MFCC method to a rather complex

metal-organic framework (MOF) system is presented. These

highly porous crystals generally consist of metal organic cores

linked by organic chains and are of interest in a wide range of

fields1 including hydrogen storage41,42, electrode design43,

catalyst44 and as vehicles for drug delivery45. In many of

these applications a detailed understanding of the electronic

structure of the framework is desired e.g for optimising bind-

ing of small molecules including hydrogen41. We note that

dense crystals31 and liquids40 were simulated by fragmenta-

tion methods in the spirit of GEBF, while adsorption46 in ze-

olites and diffusion47 in mesoporous silica were studied using

the FMO method. By considering a metal organic framework

here we present - to our knowledge - a new application of the

MFCC method. Fragmentation methods may be specifically

suitable for porous crystals as their functional groups are usu-

ally well separated and a partition scheme may be easily de-

veloped. The system we calculated is known as MOF-16 and

was first synthesised by O. M. Yaghi48. It is a relatively large

system making a fragmentation feasible. On the other hand the

unit cell of MOF-16 is still small enough to be easily accessed

by common approaches not based on any fragmentation, and

hence would provide an excellent reference. As such this sys-

tem serves well as a convenient illustration of the advantages

of our fragmentation method. Also the fragmentation for this

system could be challenging as it contains benzol rings which

are known for their delocalised electrons.

The plan of the paper is as follows. In the next section

we shall consider in detail a simple one-dimensional system

to illustrate the main aspects of our method; specifically, we

shall comment on the necessary implications related to system

periodicity. Then a general description of the proposed CC-

MFCC method will follow which is valid for a periodic system

of any dimension. Subsequently, self-consistency and imple-

mentation of the method are discussed and preconditions on

the systems electronic structure for an effective partition are

indicated. Then the application to the test system MOF-16 is

presented along with a detailed discussion of the point charge

environment and of other computational details. A short dis-

cussion of our results with possible further development of

our method is given in the last Section. Atomic units are used

throughout this paper if not stated otherwise.

2 Theory

2.1 One-dimensional system

Consider an infinite periodic 1D system, e.g. a polymer or a

chain of molecules placed “head-to-tail” to each other. The

system can be broken into individual regions as is schemati-

cally represented by a single black bar and the vertical lines

in Fig. 1(a). Note that the boundaries between regions in the

current implementation of the method, in which the concept

of atomic charges on atoms is used, should pass somewhere

between atoms; their explicit definition is not required.

A common assumption, which is more or less explicitly

stated within most fragmentation methods, is that if one can

represent the surrounding of a region sufficiently well, then the

correct electron density (i.e. close to the density obtained by

considering the whole system without partitioning it) within

that region can be obtained. In line with the MFCC method

each region is terminated by caps consisting of parts of the

actual system surrounding the region. In a way, the region of

interest is simply extended in size and hence will incorporate

parts of its neighbourhood; in our terminology it will then be

called a fragment. Fragments are objects which are individu-

ally calculated within the fragmentation scheme.

One can assume that increasing the fragment size and hence

that of the caps yields the density within the original region to

converge to the correct density; necessary preconditions will

be discussed in further detail in the context of DFT later on.

The assumption stated trivially holds in the limit of consider-

ing caps that incorporate the whole remaining system. How-

ever, care is needed here as large caps would increase the over-

head and prevent one from gaining a proper speedup compared

to a calculation of the whole system.

We address this issue by the following design. Caps con-

tain a part of the system surrounding the given region, but are

terminated by link atoms. These link atoms are assumed to

occupy positions of the actual atoms of the system, but do not

correspond to them chemically. The only purpose of the link

atoms is to terminate the caps in such a way as to minimise the

distortion of the electron orbitals of the fragment and hence

drastically improve the convergence of the electron density in

the regions with respect to their caps size. To further improve

on both the electron density of the caps as well as of the re-

gion, the fragment may be placed into the Coulomb field of

the surrounding regions.

Generally each region is to be capped at its both ends (left

and right) by parts of its neighbouring regions. To clarify our

notations, let us consider region J having two neighbouring

regions I and K, see Fig. 1 (a). The region J will then have

two caps. The cap JI terminates region J from the left by a

cap taken from the neighbouring region I; similarly the cap JK

terminates region J from the right by a cap extracted from re-
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containing the kinetic energy, interaction of electrons with

chargeless atomic pseudo-cores (i.e. V̂ ′
ps differs from the usu-

ally used atomic pseudopotentials V̂ps in that the Coulomb

(long-range) part of the pseudopotential is removed), and fi-

nally the exchange and correlation energies (the last term).

The second term in the right hand side of Eq. (3), ECoul , rep-

resents the total Coulomb interaction within the system. Note

that the full interaction of the electrons and the atomic cores

as well as the mutual interaction of atomic cores are both

included since ρtot(r) = −ρ(r) + ρc(r) represents the total

charge density which incorporates the charge density ρc(r) of

the atomic cores and the electron density ρ(r). The Coulomb

term, ECoul , is obviously not volume-additive as it is given by

a double volume integral.

If we now split the entire volume V available to the system

completely arbitrarily into non-overlapping regions, V =V1 ∪
V2 ∪ . . ., then it becomes apparent that the total energy

Etot = ∑
J

E int
J [ρ]+

1

2
∑

I,J (I 6=J)

CI,J [ρ] (5)

can be considered as a sum of internal energies,

E int
I [ρ] =

∫

VI

εloc [ρ(r)]dr+
1

2

∫

VI

dr1

∫

VI

dr2
ρtot(r1)ρtot(r2)

|r1 − r2|
(6)

depending only on the electron density in the given local re-

gion VI (the integration is performed only within VI), and a

term due to Coulomb interaction between different regions

CI,J [ρ] =
∫

VI

dr1

∫

VJ

dr2
ρtot(r1)ρtot(r2)

|r1 − r2|
, I 6= J (7)

Note that for convenience the internal energy above in Eq. (6)

includes the intra-Coulomb interaction energy within the vol-

ume VI . As the integration is performed in separate regions

I and J and according to condition (1), the charge densities

of the individual regions used in Eqs. (6) and (7) can be taken

from the calculations on the corresponding positive fragments,

e.g.:

CI,J =
∫

VI

dr1

∫

VJ

dr2

ρ I+

tot,I(r1)ρ
J+

tot,J(r2)

|r1 − r2|
, I 6= J (8)

where the total charge ρJ+

tot,J(r1) = −ρJ+

J (r)+ρc,J(r) is com-

posed of the electron, ρJ+

J (r), and core, ρc,J(r), densities of

the region J.

We can now write down the energy expression for the orig-

inal system shown in Fig. 1(a) using the fragments densities:

Etot ≈ ∑
J

E int
J +

1

2
∑

I,J (I 6=J)

CJ,I (9)

Here E int
J is the internal energy of region J obtained from a

calculation of the fragment J+. Similarly, one can write down

the total energies of every individual fragment.

We are now ready to derive the general expression for the

total energy of the partitioned system via energies and densi-

ties of its fragments. However, it is convenient at this stage

to introduce some additional notations which would allow us

later on to generalise the formalism to systems of arbitrary

structure and dimensionality. Consider a region J of an arbi-

trary partitioned system S having NJ neighbouring regions.

A positive fragment will now have not just two caps (on the

left and right) as in the 1D system considered so far, but NJ

of them, one at the border of each of its next neighbours.

They will still be denoted as JK with the index K indicating

the neighbouring region the cap is pointing to. The set of all

such nearest neighbours of region J will be denoted by calli-

graphic J . Consequently the region J together with its set

of caps {JK ; ∀K ∈ J } will make up the positive fragment

J+. Similarly the NJ negative fragments associated with J are

{JK− = [JK ,KJ ]; ∀K ∈ J }. Note that these notations do not

imply any kind of structure or dimensionality.

Aiming to express the total energy as a sum of energies of

the different fragments and some correction term, we need to

write down the total energies of every fragment and then com-

pare with the total energy of the whole system (9). When con-

sidering each fragment, we will be assuming that the charge

density surrounding each fragment, ρ0(r), provides an exter-

nal potential acting on electrons and cores of the fragment.

Here we take the actual charge density from each region sur-

rounding the fragment in question, and hence the superscript

0 in the density. Similarly to the total energy of the whole sys-

tem (9), we write down the total energy of a “positive” frag-

ment J+ in detail as

EJ+ = E int
J + ∑

K∈J

E int
JK

+CJ+ (10)

where the first two terms represent the internal energies of the

regions and its caps (which are additive), whereas the third one

is the Coulomb interaction energy:

CJ+ = ∑
K∈J

(
CJK ,J +

1

2
∑

L∈J \K

CJK ,JL

)

+ ∑
K∈J

(
CJ,K\J0

K
+ ∑

L∈J

CJL,K\J0
K

)

+ ∑
I∈S \J

(
CJ,I + ∑

L∈J

CJL,I

)
(11)

The first term here is the mutual Coulomb interaction of the

internal region J and all its caps within the fragment J+ (note

that intra-Coulomb interactions within each region are already
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can be conveniently rearranged:

CJ+ = ∑
I∈S \J

CI,J + ∑
K∈J

(

∑
I∈S \J

CJK ,I −CJ,J0
K

− ∑
L∈J

CJK ,J
0
L
+

1

2
∑

L∈J \K

CJK ,JL

)
(14)

Applying the same type of reasoning to a negative fragment,

one obtains:

EJK− =
(
E int

KJ
+E int

JK

)
+CJK− (15)

where the corresponding Coulomb energy is:

CJK− = ∑
L∈S

(CJK ,L +CKJ ,L)+CJK ,KJ
−CJK ,J

0
K

−CKJ ,K
0
J
−CJK ,K

0
J
−CKJ ,J

0
K

(16)

Note that for the internal energy and the individual

Coulomb terms it is not important whether a cap is situated

in a positive or in a negative fragment, as the corresponding

charge density is identical in both cases by the assumption (2).

It is easy to see now that in order to match the sum of lo-

cal energies in Eq. (9), one has to sum up the local energies

of the regions, “black” coloured in our 1D example (Fig. 1),

which are only available from the energies of the “positive”

fragments; at the same time, if we simply sum up these en-

ergies, we shall also acquire a sum of all local energies of

the caps. However, the sum of the caps local energies is con-

tained exactly in the sum of total energies of the “negative”

fragments. Therefore, by subtracting the sum of total energies

of all “negative” fragments from the sum of the energies of

all “positive” ones (and hence their names), one shall recover

exactly the required sum of the local energies of the “black”

regions. This is due to the fact that (i) the local energies are

volume-additive; (ii) “black” regions assemble exactly into the

original system and (iii) every cap in the “positive” fragment

has its single counterpart in one of the “negative” ones, as was

noticed above.

At the same time, since the Coulomb energy is not volume-

additive, there will be a correction term to the energy which is

needed to avoid double counting of some interaction energies

and to compensate for the interaction with the auxiliary charge

densities of the caps:

Etot = ∑
J

[
EJ+ −

1

2
∑

K∈J

EJK−

]
+∆ECoul (17)

Here the factor of one half takes care of the fact that while

summing over all positive fragments J+ the same negative

fragment due to neighbouring region K will appear twice as

JK− (when K ∈ J ) and KJ− (when J ∈ K ).

To obtain the energy correction, we take the total Coulomb

interaction energy of the whole system as in Eq. (9), then sub-

tract from it the Coulomb energies associated with all positive

fragments, Eq. (14), and add those of the negative ones, Eq.

(16):

∆ECoul =
1

2
∑

J,J′ (J 6=J′)

C00
J,J′ −∑

J

[
CJ+ −

1

2
∑

K∈J

CJK−

]
(18)

This gives after some straightforward algebra:

∆ECoul = ∑
J

[
−

1

2
∑

I,I 6=J

CJ,I + ∑
K∈J

[
CJ,J0

K
+

1

2
CJK ,KJ

−CJK ,K
0
J
− ∑

L∈J\K

(
1

2
CJK ,JL

−CJK ,J
0
L

)]]
(19)

Interestingly, the correction does not have anymore any terms

containing Coulomb interaction within the same spacial re-

gions, they all have cancelled out in the final expression.

The forces {FA} on atoms A are obtained by differentiating

the total energy with respect to atomic positions rA:

FA =−
∂

∂rA

Etot = ∑
J

[
FJ+

A −
1

2
∑

K∈J

FJK−

A

]
−

∂

∂rA

∆ECoul

(20)

Here FM
A corresponds to the force on atom A as obtained by

considering the fragment M. These forces are available from

the corresponding single-point DFT calculations on the frag-

ment M. Since when considering a particular fragment M it is

placed in a Coulomb field of all surrounding atomic charges,

the total energy of this fragment would depend on positions

{RA} of all atoms of the entire system including even those

which are outside the fragment. Therefore, there is a contri-

bution to the force FM
A from any fragment M for all atoms,

both inside and outside the fragment; the latter corresponds to

the forces on the point charges surrounding the fragment as

they are normally available in most of the quantum-chemistry

codes. For a periodic system forces on the same atom within

different unit cells are to be summed up.

Concerning the last term in the expression for the force (20)

which is due to the Coulomb correction, the corresponding

contribution to the force − ∂
∂rA

∆ECoul can be calculated ana-

lytically by differentiating the expression in Eq. (19). This

is facilitated by the fact that the Coulomb interaction in the

correction is modelled by point charges on atoms.

The formulae written above are general in a sense that their

validity is independent of the topology of the system. It is

a simple exercise to consider now a system formed by a pe-

riodic repetition of a set of several (irreducible) fragments.

In this case only energies of irreducible fragments should be

calculated as the energies of periodically repeated fragments
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are identical. Consequently, the total energy becomes propor-

tional to the number of unit cells, and hence one can calculate

the total energy per cell. As an example, let us now apply Eqs.

(17) and (19) to the periodic system of a copolymer introduced

above in Section 2.1. A unit cell U of this system consist of

two regions namely J and K. The energy per unit cell for this

system is given by

Etot = [EJ+ +EK+ −EKJ− −EJ̃K− ]+∆ECoul (21)

where a rather lengthy Coulomb correction has the following

form:

∆ECoul = −
1

2
CU ,S \U +CJ,J0

K
+CJ,J0

K̄
+CK,K0

J
+CK,K0

J̃

+CJK ,KJ
+CJK̄ ,K̄J

−CJK ,K
0
J
−CKJ ,J

0
K
−C

JK̄ ,K̄
0

J

−CK̄J ,J
0
K̄
−CJK ,JK̄

−CKJ ,KJ̃
+CJK ,J

0
K̄
+CJK̄ ,J

0
K

+CKJ ,K
0
J̃

+CKJ̃ ,K
0
J

(22)

The first term is the Coulomb interaction between the unit

cell and the remaining infinite system calculated using the “ex-

act” density, while the others denote interaction between indi-

vidual parts similarly to Eq. (19). Note that the Coulomb cor-

rection inevitably contains caps which are situated in neigh-

bouring unit cells. The corresponding electron density needed

for the Coulomb correction and for calculating the Madelung

field acting on fragments in the unit cell has to be taken from

the central unit cell due to periodicity of the density. The pe-

riodic system formulated is a rather simplified example. In

section 4.1 our model will be extended to accommodate more

complex systems like MOFs.

Formulae (17), (19) and (20) represent the main result of

this Section. They generalise the result obtained previously39

in several directions: (i) a general formula is derived for divi-

sion of an arbitrary system, however complex; (ii) the system

can be either periodic or not; (iii) each fragment experiences

the Coulomb potential from the rest of the system which al-

lows treating a wider class of systems. In fact it can easily

be shown that in the case of a partition into three regions and

without external potential acting on each fragment, expression

(19) reduces exactly to the formula derived earlier39.

To finish the theory section, we shall briefly discuss a possi-

ble relationship between orbitals localisation and our method.

Although this point is not trivial and requires a proper consid-

eration which goes beyond the scope of this paper, we thought

that a brief discussion of it may be beneficial to the reader.

For our method to be valid, it is required by Eq. (1) in par-

ticular, that the electronic density in the core of each positive

fragment be close to the exact density within the same region

of space as calculated without fragmentation. This condition

can be satisfied, at least approximately, if the core part of the

fragment electron density can be adequately represented by

some localised orbitals obtained from the Kohn-Sham orbitals

of the entire system, i.e. when no fragmentation is made. The

two sets of orbitals are related by some unitary transforma-

tion (see, e.g.49–51 and references therein). Other one-electron

orbitals of the entire system which come out of the localisa-

tion procedure would only have quickly decaying tails in that

region. In that case, if the positive fragment is chosen to be

large enough to include the main part of the localised orbitals,

one may assume that very similar orbitals can also be obtained

from consideration of the fragment itself. Then the density in

its core where these orbitals are mostly localised would be cor-

rectly given by the fragment. Note that different localisation

criteria exist, however, in many cases very similar localisation

of orbitals is obtained49–51.

Likewise, we also require, as stated by Eq. (2), that the den-

sity within the caps in the negative fragments be close to the

density of the same caps when calculated by considering the

corresponding positive fragments. Again, a sufficient condi-

tion for this to happen is to choose the caps in such a way as to

ensure that localised orbitals representing the caps in both the

negative and positive fragments are very close to each other.

Based on the above considerations, the following guidelines

for the construction of different fragments from a partition of

a system into regions can be suggested. A minimum size pos-

itive fragment has to contain all localised orbitals of the entire

system having a considerable overlap with the corresponding

core region of that fragment. This implies that all localised

orbitals which have a considerable overlap with two adjacent

regions have to be covered by the corresponding negative frag-

ment. Although we do not follow this line of thought in this

paper, relying mostly on our intuition and experience in choos-

ing the regions and fragments, we believe that the procedure

outlined above and based on localised orbitals may be a useful

avenue to be pursued in the future.

3 Self-consistency and implementation

In MFCC the energies EJ+ , EK+ , EJK− , etc. entering the final

energy expression in Eq. (17) are obtained in individual DFT

calculations on the fragments J+, K+, JK−, etc. Each of these

fragments is considered in an “external” Coulomb field. This

external field is represented by point charges on the atomic

positions of surrounding regions. There will be detailed dis-

cussion on the geometry of these point charges in Section 4.3.

Since the charges on atoms are not known a priory, these

have to be calculated via a self-consistency procedure. The

self-consistency with respect to atomic charges should be per-

formed for each geometry before calculating the total energy

and atomic forces. Alternativey, one may determine atomic

charges by calculating isolated positive fragments at the be-

ginning of the calculation and then keeping them unchanged

during geometry optimisation. Although the latter procedure
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is indeed approximate, the former one looks more appropriate

as it takes account of the fact that the charges would change if

atoms move. However, as will be discussed below, in the cur-

rent implementation this method leads to some noise in atomic

forces.

We implemented our method in a manager code similarly

to our previous approach39, but with the additional ability to

handle surrounding point charges. The code constructs the

positive and negative fragments for a given partition of the en-

tire system, calls a quantum chemistry code to perform calcu-

lations on each individual subsystem and finally calculates the

forces on atoms and the total energy. The DFT calculations

of each fragment are performed using the quantum chemistry

code GAMESS-UK52. Note that the GAMESS-UK performs

only a single-point calculation on each individual fragment,

yielding the total energy, atomic charges and the forces on

atoms when necessary (see below), geometry optimisation is

performed by our manager code.

Fig. 4 A flow chart of the calculation.

The flow chart of the full procedure is shown in Fig. 4.

The calculation starts with a set of particular atomic positions

{Ri} of all atoms of the entire system. Initially all atomic

charges are set to zero and hence no Coulomb field is consid-

ered within the first calculation of the “positive” fragments.

Once all “positive” fragments have been computed individu-

ally, atomic charges {q0
i } are obtained from atoms of the orig-

inal region within each fragment. While the total charge of

each fragment is zero by a constraint within GAMESS-UK,

this does not hold for parts of the fragments, i.e. of the in-

ternal regions which make up the full system. To avoid artifi-

cial effects caused by a charged system the charges on atoms

are slightly modified prior to further calculation so that the

total charge of the unit cell be zero. The required shift of

the atomic charges is typically of the order of 0.001e. Sub-

sequently all “positive” fragments are calculated again, this

time in the Coulomb field of the surrounding system, and this

is continued until convergence with respect to the charges on

all atoms of the system is reached (the smaller loop in Fig. 4),

i.e. when charges on atoms change by no more than 0.01e.

At the next step all “negative” fragments are considered in

the Coulomb field of all atoms surrounding them using the

charges obtained at the previous calculation. Note that “nega-

tive” fragments are considered only once at each geometry.

After this set of calculations is finished, the charges on

atoms of the caps {q1
i } are available, the total energy is com-

puted in accordance with Eqs. (17) and (19), while the forces

on atoms {Fi} are obtained from Eq. (20). All atoms are

moved into a new geometry {Ri} using the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) method, and the calculation is re-

turned back to the inner loop to obtain the new charges on

atoms, see Fig. 4. This time the charges obtained in the pre-

vious geometry offer an initial guess and form the external

field for the first set of calculations. Normally we find that the

change in the atomic charges is so small that the inner loop

(the convergence with respect to atomic charges) needs to be

performed just once.

It is important to note that the forces as implemented here

lack one contribution. The forces on atoms of each fragment

are calculated according to the Hellman-Feynman theorem

and by an analytic differentiation of the correction term. How-

ever there is a peculiar contribution to atomic forces (some-

what similar in spirit to the Pulay forces53), which is due to

the fact that the point charges surrounding the fragments are

updated for each geometry and thus these charges implicitly

depend on the atomic positions13. In our implementation of

the fragmentation CC-MFCC scheme this contribution to the

atomic forces is not included. As was pointed out recently in

Ref.13 it is not only being neglected in a wide range of meth-

ods, it is even rarely discussed. Calculations on the particular

system to be discussed in the forthcoming Section seem to

imply that there are good reasons to believe that this missing

contribution to atomic forces is not significant (but noticable),

at least for the MOF system we consider. Note however that

this contribution may be larger for other types of systems and

hence in the future no effort should be spared in working out

the corresponding missing contribution to the forces due to
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Fig. 7 Fragmentation of MOF-16: (a) centre region C (black) and

its caps CK (red) forming the centre fragment C+ (where

K = X ,Y,Z, X̄ ,Ȳ , Z̄); (b) linker region Y (black) and its caps YC and

YC̃ (blue) forming the linker fragment Y+; (c) there are two distinct

negative fragments YC− (blue/red) and C̃Y− (red/blue). Instances of

the same fragments in neighbouring unit cells in the y direction are

coloured in with lower opacity.

these are red coloured in Fig. 7(a). Electrons are known to be

delocalised over the carbon atoms of a benzol ring. The mini-

mum positive fragment (according to Section 3) thus has to in-

clude the three carbon atoms of the benzol ring complement-

ing the ones within the central region. For each benzol ring

two additional hydrogens are added at their natural positions

(e.g H2 and its upper counterpart in Fig. 5) and one hydrogen

is added replacing a carbon as a link atom (e.g. C4 in Fig. 5).

The link atoms are indicated by a yellow transparent sphere

in Fig. 7(a,b). Correspondingly, a positive linker fragment

Y+ is constructed as shown in Fig. 7(b), where the caps (rep-

resenting half of benzol rings) are shown blue coloured. All

caps are terminated by a link atom indicated by a yellow trans-

parent sphere in Fig. 7(a,b). So, this way we build a central

fragment C+ and a link fragment Y+ which is positioned with

respect to the central fragment along the positive direction of

the y axis. There will be of course other linker fragments con-

nected to the same central fragment: X+ and Z+ which run

along positive directions of the other two Cartesian axes, and

X̄+,Ȳ+,Z̄+ which run along their negative directions. As was

noted above, the fragments X̄+,Ȳ+,Z̄+ correspond however to

different unit cells.

It follows from this partition that neighbouring regions

share exactly one benzol ring. These, including the corre-

sponding link atoms, make up exactly two negative fragments

along each linker. For instance, if we consider the Y linker,

then we arrive at the negative fragments YC− and C̃Y− which

are shown in Fig. 7(c). Note that like in the schematic pre-

sented earlier in Fig. 1, combining the black regions of all

positive fragments one obtains the full system, cf. Fig. 7(a,b).

Also each cap in the positive fragments has exactly one coun-

terpart within the negative fragments. In Fig. 7 only regions

in the y direction are shown for clarity and also to allow for

a direct comparison with the 1D scheme presented in Section

2.1.

Similar to the case of a periodic 1D copolymer of Section

2.1, we also have fragments which are translational copies of

the irreducible ones belonging to a single unit cell U . In a

fragmentation scheme the topology is important rather then

the system dimension. The difference with the 1D system of a

copolymer is that in 3D there are three different directions in

which periodicity is implied instead of one (hence three dif-

ferent linkers) and the centre region having six neighbours in-

stead of two. To identify various regions and fragments, we

extend the notations introduced earlier to our 3D system. Con-

sider fragment C+ in the zero unit cell. Neighbouring frag-

ments along the positive direction of the Cartesian axes will

be denoted with the tilde as C̃+, while equivalent neighbour-

ing to C+ fragments along the negative directions of the axes

with the bar, as C
+

. Correspondingly, caps of regions will

be denoted by the region symbol with the subscript indicating

the neighbouring region which has the cap as its part. For in-

stance, the two caps applied to region Y and shown as blue in

Fig. 7(b) are denoted YC (the left one) and Y
C̃

(the right one).

Unlike the case of the one dimensional system of Section 2.1,

in the 3D case there are three different directions (x,y,z) in

which a region can be translated corresponding to the three

linkers orientations; however, there should be no confusion as

it should be clear from the context in each case which linker

and the corresponding direction are involved.

Note that our system has a rather high symmetry; in partic-

ular, the fragments X+, Y+ and Z+ are related by rotations.

However, the symmetry was not exploited here to leave the

scheme as general as possible.

The energy per unit cell and the corresponding Coulomb

correction can be derived in the same spirit as for the 1D pe-

riodic system. Similarly to Eqs. (21) and (22), the energy per

unit cell is now given by

Etot = EC+ + ∑
K∈{X ,Y,Z}

[EK+ −EKC− −EC̃K− ]+∆ECoul (23)
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where C+ is a central fragment (e.g. the one in the zero unit

cell U) and the sum is run over its three linkers belonging

to the same unit cell. Correspondingly, the energy correction

(19) is:

∆ECoul = −
1

2

[
CU,S/U + ∑

J∈U
∑

K∈U /J

CJ,K

]

+ ∑
K∈U

[
CC,C0

K
+CCK ,KC

−CCK ,K
0
C
−CKC ,C

0
K

− ∑
L∈U /K

(
1

2
CCK ,CL

−CCK ,C
0
L

)]
+ ∑

J∈{X ,Y,Z}

[
CJ,J0

C

+CJ,J0
C̄

−CJC ,JC̄
+CJC ,J

0
C̄

+CJC̄ ,C
0
J

]
(24)

where CU,S/U describes the Coulomb interaction between the

zero unit cell U and the rest of the system S/U (here S is used

for the whole system), the sum over J runs over all regions

within U , K ∈U/J means all regions in U excluding J, and so

on. Therefore, here the first term corresponds to the Coulomb

interaction of each fragment with its surrounding; the second

term contain summations over all regions K and L (L 6= K)

within one (zero) unit cell and the third term contain summa-

tion exclusively over the three linkers.

It is important to note at this point that the particular parti-

tion used is very similar to O.M. Yaghi’s scheme of a straight

forward design of MOFs54. O.M. Yaghi showed that there is a

wide range of different MOF which can be built out of a lim-

ited number of building blocks, e.g. the centre clusters and the

linker. Our fragmentation method follows the underlying idea

of such building blocks and can easily be adopted to match

different topologies.

4.2 Computational details

In our implementation of the CC-MFCC method link atoms

replace three-coordinated C atoms and are situated at their re-

spective positions. Therefore, the force on such atoms comes

from both contributions, when they are real atoms in some

fragments and link atoms in another. In our calculations we ei-

ther used hydrogen atoms or one-electron H-like pseudoatoms

as link atoms. The latter was found39 to be appropriate for our

method, but were replaced in some calculations by hydrogen

for comparison and performance reasons. In all our calcula-

tions described below we used the PBE density functionals

and the basis set 6-31G55 for all atoms apart from the H-like

pseudo atoms, which were set up according to Ref.56. No

periodic boundary conditions were applied when calculating

individual fragments. The core electrons for all species were

treated explicitly. The geometry optimisation was run until the

forces on atoms were smaller than 0.1 eV/Å.

To verify results of our calculations within the proposed

MFCC and CC-MFCC techniques against standard periodic

DFT calculations we employed the CRYSTAL code57. This

code is capable of performing calculations using the same

Gaussian-type basis set and the same density functional and

therefore allows for the direct verification of our method. In

our CRYSTAL calculations we employed the same 6-31G ba-

sis set and the PBE density functional. We used a unit cell

centred at the oxygen atom located in the centre of the metal

cluster (the “symmetrical” unit cell in the left half of Fig. 5).

The sums of Coulomb and exchange integrals were truncated

following overlap thresholds of 10−8, 10−8, 10−8, 10−8 and

10−16, respectively (see57). Integration over k-points in the

reciprocal space was performed using a 4×4×4 Monkhorst-

Pack grid58. The self-consistent procedure for electron den-

sity was performed until changes in the total energy per unit

cell became less than 10−7 Hartree. We used internal redun-

dant coordinates for geometry optimisation. Both the unit

cell and the positions of atoms were optimised. The geom-

etry optimisation was considered completed when simultane-

ously four thresholds were reached: the largest absolute (la)

and root mean square (rms) values of atomic forces became

smaller than 4.5 ·10−4 and 3.0 ·10−4 a. u. and la and rms val-

ues of atomic displacements became smaller than 1.8 · 10−3

and 1.2 ·10−3 a. u., respectively.

4.3 Geometry of the Point Charge Cloud

For the calculation of the different fragments the Coulomb

field of the remaining regions is represented by point charges

at respective positions of atoms. For an infinite system,

this Coulomb field can be e.g. calculated using the Ewald

method59, however, due to the size of the system we believe

that this method is not very efficient. Instead, a finite sum-

mation of the atoms surrounding the given region in question

was implemented using a number of methods. In the follow-

ing two different methods for defining the cutoff for selecting

charges around regions are presented. To evaluate the conver-

gence with respect to the cutoff, different selections of point

charges around the fragment Y were made, and in each case

the Coulomb potential was calculated along the straight line

close to the y axis as shown by the orange line in Fig. 5.

The results for the potential are presented in Fig. 8, while

the force on a particular atom of the same linker calculated by

the GAMESS-UK using the corresponding point charge cloud

is depicted in Fig. 9.

Two models for choosing the point charge cloud were tried.

In the simple sphere method all point charges within a cer-

tain cutoff radius from the centre of the fragment in question

are included in the point charge cloud. In this case it is im-

possible to guarantee that the charge cloud is neutral as not

all charges from each unit cell are included around the bor-
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Fig. 8 The Coulomb potential along the linker Y shown by the

straight orange line in Fig. 5 using (a) the simple sphere and (b) the

symmetric unit cell scheme for the point charge cloud. Each curve

corresponds to a particular selection of charges; the total number of

charges included in each case is shown on the right of the graphs.

Note that in (b) different curves are indistinguishable from each

other.

der of the sphere; in fact the charge of the cloud depends on

the sphere radius. As a consequence, this choice of the point

charge cloud results in a poor convergence of both the poten-

tial in Fig. 8(a) and of the force on the atom shown in Fig.

9(red line). In the second method the point charge cloud was

build of complete unit cells using the distance of their centre

to that of the fragment as the cutoff distance. It turned out

that it is crucial to use the symmetric unit cells for that; these

are indicated by red bonds in Fig. 5. The potential curves for

different number of point charges shown in Fig. 8(b) all lie

on top of each other and the atomic force in Fig. 9 shown by

the green line converge very quickly with the number of point

charges included in the cloud in this case. For the choice of

the asymmetric unit cells (shown by green bonds in Fig. 5)

the force in Fig. 8 converges to a different value compared to

the other schemes due to a dipole moment associated with this

choice of the unit cell.

The asymmetric zero unit cell overlaps with four different

symmetric unit cells: the green coloured centre cluster and

three neighbouring unit cells having a yellow coloured centre

cluster as shown in Fig. 6. In the calculations presented in

the following each fragment was first embedded into the point

charges of these four symmetric unit cells. Subsequently a

necessary number of symmetric unit cells were added to this

point charge cloud if their centre was within a certain distance

from the centre of the zero unit cell. This scheme ensures that

the point charge clouds for all fragments to be equal, which

is important for the corresponding terms in Eq. (18) to cancel

out exactly. In practice a point charge cloud of about 6000

charges was used.

Fig. 9 Force on atom H1 (see Fig. 5) in Y+ in the y direction for

different point charge geometries and sizes as a function of the

number of point charges included in the cloud: the red line

corresponds to the sphere method, while the green and blue lines

correspond to unit cell method using symmetric (green) and

asymmetric choices (blue).

5 Results

We performed full geometry relaxation calculation of the

MOF-16 system using the fragmentation scheme described in

Sec. 4 including the optimisation of the unit cell. The frag-

mentation calculation is compared with that performed using

CRYSTAL code where the whole system was considered with-

out any fragmentation and using an identical basis set. Calcu-

lations using hydrogens with its standard basis as link atoms

turned out to perform better compared to H-like pseudo atoms

with respect to charge and geometry agreement with the re-

sults of CRYSTAL (data not shown). Correspondingly sim-

ple hydrogens were used as link atoms in all the calculations

presented in the following. We shall start our discussion by

looking at the charges on atoms.

5.1 Charges

The scheme described in Section 3 contains an internal SCF

loop where the charges on the atoms are obtained iteratively;

correspondingly, it is relevant to discuss the convergence of

these charges first. To illustrate their convergence we describe

a single point calculation at the geometry obtained by CRYS-

TAL after full geometry optimisation was performed. We find

that normally charges on atoms are established after the first

iteration, only a very small change is observed at the follow-

ing iterations: after the second iteration the charges were typ-

ically changed by no more than 0.05e, while after three itera-

tions they change by 0.01e at most and the convergence of the

atomic charges is assumed.

In Table 1 we show the results for two types of calcula-

tions: for the Mulliken charges obtained within the scheme in

which point charges outside each fragments were taken into

account, and (in brackets) from the calculation in which this

has not been done. Note that in the latter case no SCF loop

is run to converge the charges. At the same time, the charges
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Atom qCRY q0
Frag −qCRY q

1(pos)
Frag −qCRY q

1(pos)
Frag −q

1(neg)
Frag

Zn 0.84 0.05 (0.04) - -

O1 −0.88 −0.05 (−0.06) - -

O2 −0.54 −0.01 (−0.02) - -

C1 0.51 0.01 (−0.00) −0.09 (−0.43) −0.00 (−0.00)

C2 0.06 −0.04 (−0.05) −0.17 (−0.11) 0.02 (0.02)

C3 −0.15 0.03 (0.03) −0.05 (−0.04) −0.02 (−0.03)

C4 0.03 0.01 (0.00) 0.20 (0.06) 0.07 (0.01)

C5 −0.15 −0.02 (−0.02) - -

H1 0.18 0.00 (0.00) −0.06 (−0.04) 0.00 (−0.00)

H2 0.15 −0.04 (−0.01) −0.01 (0.00) 0.06 (0.00)

Table 1 Mulliken charges on selected atoms (see Fig. 5) after

convergence was reached. The results of the calculation without

point charges are shown in brackets. Second column: charges, qCRY ,

as calculated by CRYSTAL and used as a reference. In the third

column charges within positive fragments as obtained within the

fragmentation scheme, q0
Frag, are compared with CRYSTAL values.

Fourth column: charges on caps atoms as calculated in positive

fragments are compared with the CRYSTAL charges. Fifth column:

charges on atoms in the caps within the positive and the negative

fragments are compared.

are compared with those obtained by CRYSTAL which are

listed in the second column and used as a reference. One can

see that the deviation of the charges computed with the frag-

mentation scheme from the ones calculated by CRYSTAL is

typically less then 0.04e with the the atoms in the metal com-

plex Zn and O1 differing most. There is no big difference in

the atomic charges calculated with and without point charges

surrounding the fragments in this case. We see that either frag-

mentation scheme (with and without point charges outside the

fragments) results in reasonable agreement with the atomic

charges obtained by CRYSTAL when no fragmentation was

done.

An assumption expressed in Eq. (2) and used in the deriva-

tion of the Coulomb correction (19) is that the charge density

of the caps in the positive fragments is close to the one of

the negative fragments. The difference shown in the fifth col-

umn of Table 1 illustrates this point. Deviations of the Mul-

liken charges on the selected atoms of the caps are typically

smaller then 0.03e with the exception of H2 and C4 which have

a difference of 0.06e and 0.07e, respectively. For other atoms

in the caps not shown here the deviations are much smaller.

Therefore, we can conclude that the current fragmentation

scheme is adequate to satisfy the condition of Eq. (2). Fur-

thermore our correction term (19) discriminate between the

electron density of the actual system (superscript 0) and the

one of the caps (superscript 1). The non negligible differ-

ences shown in the fourth column of Table 1 support this to

be well-founded. The latter also shows that for the CC-MFCC

calculation with point charges surrounding the caps the maxi-

mum deviation in atomic charges (and hence, in their electron

density) as compared to the actual ones is reduced from 0.43e

without point charges to 0.20e including them.

5.2 Geometry relaxation

Geometry relaxation of the fragmented system was performed

by our manager code following the CC-MFCC approach as de-

scribed in Sec. 3 including point charges mapping the environ-

ment of fragments and the corresponding Coulomb correction

term. A relaxation calculation following the MFCC method in

which no point charges were used surrounding the fragments

and without any energy correction was also performed. We

used the experimental structure by O.M. Yaghi48 as initial ge-

ometry in our calculations. Hydrogen atoms were added to

this structure at guessed positions, following usual C-H dis-

tances in organic molecules. Within 30 iterations changes in

energy went down below 0.03 eV and the largest atomic force

down to 0.1 eV/Å in both cases. Further convergence was dif-

ficult for the CC-MFCC calculation due to noise in the atomic

forces.

Relaxation of the lattice vectors is not straightforward

within the fragmentation method, as it requires construction

of a stress tensor from the calculations performed on different

fragments (which are considered as “molecules”). However,

in the case of the MOF-16 system with the simple cubic lat-

tice the optimal lattice constant can be obtained trivially by

relaxing the atomic geometry for cubic unit cells of different

sizes (with no other restrictions applied) and then interpolat-

ing the energy. In Fig. 10 the corresponding calculations are

presented. Several values of the lattice constant were consid-

ered, parabolas were fitted to the corresponding energies and

the corresponding minima for the two fragmentation schemes

(MFCC and CC-MFCC) and the one of the CRYSTAL calcu-

lation were obtained as indicated by vertical lines. Note that

because of the efficiency considerations the CRYSTAL calcu-

lations were performed using the space group P23, which is a

subgroup of the group Pm3m still corresponding to the simple

cubic lattice and preserving the required tetrahedral symmetry

of the central clusters.

A relaxation of the lattice vectors by CRYSTAL resulted

in a lattice constant of 21.79 Å; this is 1.7% larger then the

experimental value of 21.49 Å48. The energy corresponding

to the fully relaxed CRYSTAL calculation is depicted by the

filled black square in Fig. 10. The results of the MFCC and

CC-MFCC calculations are shown by red and green circles, re-

spectively. One can see that both values of the lattice constant

obtained by either of the fragmentation schemes (MFCC and

CC-MFCC) in the minima of the parabolas are within 0.2%

of the CRYSTAL value. While MFCC method (without point

charges and correction) slightly underestimates the system en-
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CC-MFCC, show very small deviations from the one obtained

by CRYSTAL. For the three properties presented the MFCC

method performs slightly better then the CC-MFCC method.

The maximum deviations of a bond length / angle / dihedral is

0.005Å / 0.21◦ / 1.5◦ for MFCC compared to 0.008Å / 0.82◦

/ 1.7◦ for CC-MFCC. The largest deviations obtained with the

latter method can be found for atoms which are in close prox-

imity to the point charges cloud in certain fragments, e.g. the

first and the third benzol rings which also make up the caps

and the negative fragments. We want to stress that differences

between both geometries are still extremely small.

Concluding, the lattice constant and atomic positions ob-

tained using either of the two incarnations of the fragmen-

tation method (MFCC and CC-MFCC) come out extremely

close to the values obtained using the CRYSTAL code when

no fragments were considered. The total energies (per cell) in

all cases are also very close with the differences of less than

0.0002% from each other. This test calculation shows with-

out doubt a high precision one can achieve by employing the

fragmentation technique.

5.3 Adsorption of a hydrogen molecule

In this subsection we shall describe our preliminary results of

an application of the MFCC method to an important problem

of hydrogen storage41. Mueller et al.60 considered several

positions of the hydrogen molecule inside the skeleton of the

MOF-5 system, and their relative adsorption (formation) ener-

gies were calculated to be in the order of tens of meV. To our

knowledge, no such calculations have been performed to date

for the MOF-16 system with much longer ligands. The mag-

nitude of the hydrogen formation (adsorption) energies must

not be too small and too large at the same time to enable both

storage and release of the H2 molecules from the MOF.

Since the results for the MOF-16 were found to be very

close with both MFCC and CC-MFCC methods, we have used

the former method in the calculations described here. The cal-

culations were performed in the following way. We consid-

ered several positions of the molecule with respect to the MOF

vertex which were found having well separated adsorption en-

ergies in Ref.60. In each case full geometry relaxation was per-

formed using the fixed unit cell lattice constant of 21.794Å as

found using the MFCC method for the MOF-16 itself. Then,

the adsorption energy was calculated via

∆Eads = E (MOF +H2)−E(MOF)−E (H2)+EBSSE ,

where E (MOF +H2) is the total (per cell) energy of the

MOF-16 with the hydrogen molecule, E(MOF) and E (H2)
are the total DFT energies of the MOF-16 (per cell) and the

hydrogen molecules relaxed individual, while EBSSE is the ba-

sis set superposition error (BSSE) which was calculated using

Position 60 Coordinates
MOF-16 MOF-5 60

∆Eads EBSSE ∆Eads

I-A
(3.17, 3.17, -3.21)

-15.8 20.0 -21.7
(3.60, 3.61, -3.64)

II-A
(2.98, 2.98, 2.98)

-3.6 17.5 -9.5
(2.55, 2.55, 2.54)

Table 2 Binding energies (in meV) of a hydrogen molecule to the

MOF-16 system at several positions (the first column) next to the

central fragment as calculated using the MFCC method.

Coordinates (in ) of the two hydrogens are given relative to the

central oxygen. For comparison, the results of plane wave

calculations60 at similar positions for the MOF-5 system are also

given. We also show the BSSE energies in each case.

the counterpoise correction method61. In this calculation en-

ergy differences are to be considered between identical sys-

tems (MOF-16 and the H2 molecule) calculated with different

basis sets. Since in all geometries we studied the hydrogen

molecule was next to the central fragment, the BSSE calcu-

lations were considerably simplified by considering only the

central fragment instead of the whole MOF-16.

Coordinates of the relaxed hydrogen molecule shown in Ta-

ble 2 were found to be within 0.1 Å of those in the reference

positions60. The resulting energies together with the corre-

sponding BSSE corrections are shown in Table 2. We see that

in all cases the adsorption is energetically favourable. We also

note that the BSSE correction is significant. We also show

in the same Table for comparison the corresponding results

calculated using the plane wave pseudopotential DFT method

(using PBE, as in our case) for the MOF-5 system. We see that

our calculations give adsorption energies very close to those

obtained for MOF-5 in Ref.60. Moreover, the order of the ad-

sorption sites for the hydrogen molecule with respect to the

binding energies is also preserved. We note that the differ-

ences between the MOF-5 and MOF-16 values may not only

be due to the fact that the two systems are in fact different

(the MOF-16 has longer ligands); the two computational tech-

niques are also rather different. Indeed, in our calculations

we used a localised basis set instead of the plane waves, and

also we did not use the pseudopotential method necessary for

performing plane wave DFT calculations as used by60. Still,

our calculations demonstrate that the fragmentation approach

may be quite useful for not only considering the MOF systems

themselves, but also for studying chemical reactions of small

molecules with them.

6 Discussion and conclusions

In this paper we provide a theoretical foundation of the MFCC

method within local and semilocal DFT as applied to periodic
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systems. Within this scheme a single ab initio local basis set

DFT calculation on a composite system is replaced by a set

of individual calculations on subsystems capped by parts of

adjacent subsystems and treated as “molecules”. “Negative”

fragments are considered to compensate for artificial contribu-

tions of the caps. Provided that the caps map the environment

of every subsystem sufficiently well and long range Coulomb

interactions are accounted for or small, we demonstrate that

one should be able to obtain the total energy, atomic forces

and the charge density for local and semilocal DFT flavours

with sufficient precision. There is also a correction term de-

rived rigorously within the theory provided which is of purely

Coulomb nature.

Our method is capable of calculating the total energy and

atomic forces, which is the most expensive part of the calcu-

lation for almost every system. Thus atomic relaxation and/or

molecular dynamics calculation is supported directly. To ob-

tain a (continuous) electron density, in contrast, an additional

step is needed. This can be done by collecting the densities

from core regions of different fragments similarly to the way

it is done in e.g. the ADMA method11. Alternatively, a con-

tinuous density ρtot for the entire system can be obtained by

summing up electron densities ρJ+ of all positive fragments

and subtracting all the densities ρJK− of the negative ones:

ρtot = ∑
J

(
ρJ+ −

1

2
∑

K∈J

ρJK−

)
(25)

The same expression has been proposed in24. Provided that

the conditions (1) and (2) are satisfied, this expression is for-

mally exact; in practice, it should provide us with a reason-

able approximation for the density. Either way, knowledge of

the density may only be required at the end of the calcula-

tions for the analysis. Also, a continuous density is directly

available for various parts of the system within the cores of

its fragments. This might be sufficient in many cases; since

divisions of the system into regions is usually made through

non-essential bonds, the most important and interesting chem-

istry that occurs in the regions is within an easy reach in our

method if required. The adsorption of a hydrogen molecule on

the MOF-16 system considered above is an example of such a

situation since the redistribution of the electron density in the

region where the molecule bonds to the MOF is fully provided

by our method. Note, however, that the large contribution of

the BSSE correction indicates that in this particular case for

accurate results a larger basis set would be desireable.

The theory has been tested for one Metal Organic Frame-

work (MOF) system, namely for MOF-16. We calculated the

lattice constant, positions of atoms and the Mulliken charges

on them, and compared our results with those obtained using

the CRYSTAL code when no division into fragments was per-

formed. In both cases all electron calculations were performed

(i.e. we did not use pseudopotentials) and identical basis sets

were used. We find that atomic charges are well reproduced

as compared with the CRYSTAL calculation, indicating that

one obtains a correct electron density using our fragmentation

method. Also the total energy comes out very close to the

CRYSTAL value with an absolute error being smaller then 0.3

eV which for such a big system corresponds to a relative er-

ror of about 0.0002% only. Using a simple quadratic fit the

optimal lattice constant for the unit cell was found to be very

close to the CRYSTAL value with an error less then 0.2%.

It is remarkable that the geometries obtained with our method

are almost indistinguishable with those obtained in the CRYS-

TAL calculation. It can be concluded that the MFCC method

may be a feasible choice when it comes to the prediction of

structures of porous systems like the MOF investigated here.

We considered two versions of the method: MFCC which

neither includes a point charge cloud around each fragment

nor the Coulomb correction term, and CC-MFCC which does

include both. Both methods are based on an assumption that

charge densities within corresponding caps as obtained by

considered positive and negative fragments are very close to

each other, and our calculations confirm that this is indeed

the case. It was also shown that a Coulomb field of point

charges can improve the agreement of the charge density for

the caps to the actual (CRYSTAL) ones. Although CC-MFCC

and MFCC methods give very similar results which are very

close (both in the total energy and the atomic geometry) to

those obtained by CRYSTAL, a slight improvement for the

dihedral angles was found when the CC-MFCC method was

used. Overall we did not observed significant effect due to

inclusion of the point charge cloud around each fragment in

a self-consistent manner and our Coulomb correction term in

the calculations.

Considering the contribution to the total energy from the

Coulomb correction, the latter is found very small indeed in

the MOF-16 calculations comparing with the energy itself.

This might be the reason for the MFCC and CC-MFCC meth-

ods giving nearly identical results. However, it may not be the

case for other systems where division into fragments (or re-

gions) will have to be done in such a way that fragments are

charged. Apparently, on average in the case of the MOF-16 the

selected regions are nearly neutral. In some applications, how-

ever, it might be more convenient allowing the total charge of

each fragment to fluctuate. In these cases the Coulomb correc-

tion may actually make a substantial difference to the energy

and the forces on atoms of the system.

A number of approximations which have been employed in

this study for the sake of simplicity deserve further considera-

tion and improvement.

First of all, the Coulomb field was approximated by point

charges. This can be well justified for parts of the system

being far away from the fragment. However, for the charge

18 | 1–22

Page 18 of 22Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



density in close proximity of the caps this can be a rather

crude approximation, which can be improved by taking the ac-

tual charge density or its multipole expansion. Furthermore,

the Coulomb field around the fragments was represented by

charges within a finite radius around the fragment only. This

may influence the results in spite of the fact that we showed

that the electrostatic potential due to the point charge cloud

converges well along a specific direction within the cell. Other

schemes (e.g. based on the Ewald method) may be more

preferable. As the Coulomb field was approximated by point

charges, so was the energy correction term. Correspondingly

there are the same limitations as the accuracy of the correction

term is concerned. While most terms in Eqs. (19) correspond

to Coulomb interaction between well separated regions, there

are several terms, however, which correspond to the Coulomb

interaction between adjacent regions. Thus, an improvement

is possible based on using the appropriate electron densities

or their multipole expansion instead of point charges. In the

current work Mulliken charges were used for obtaining point

charges. In comparison, natural charges62 have been reported

to perform better in the context of fragmentation schemes12,37,

however strongly pronounced improvement has only been re-

ported using distributed mulipoles32. Using higher multipole

moments of the atoms electron density instead of the continu-

ous density may be the method of choice to improve the results

without compromising much the efficiency of the calculations,

and this can be worth considering for future development.

As pointed out by Richard and Herbert13 the gradients used

in this work (as well as in a number of other earlier publica-

tions) are approximate because of a missing contribution due

to updated point charges. In the calculations using the CC-

MFCC method the convergence of the forces was limited to

0.1 eV/Å. To investigate the magnitude of the observed noise

in the forces the forces on three atoms (O2, H1 and C3, see Fig.

5) where calculated numerically from the system energy using

a finite difference method and compared with the “analytical”

CC-MFCC forces on the same atoms. In these test calculations

a geometry which is somewhat off the CC-MFCC relaxed ge-

ometry was used. The mean error in the analytic forces within

the sample chosen was 0.02 eV/Å, with the largest error found

being 0.3 eV/Å. Using the same terms for the energy and the

forces, but with fixed charges no force differed by more then

0.02 eV/Å between the two calculations. This indicates that

some error in atomic forces within the current implementation

of the CC-MFCC method is indeed to be expected due to the

updates of the point charges. Note that the error found here

is of similar magnitude to the one found in the context of the

FMO method, where a maximum deviation in the forces of

about 0.5 eV/Å was reported for the (ALA)10 system63.

In our opinion, there are three ways of how one could deal

with this issue: (i) use fixed charges; (ii) use biased gradients

and (iii) use more sophisticated methods where derivatives of

atomic charges with respect to atomic positions are calculated.

Fixed charges for the calculation of periodic systems have

been obtained from an idependent calculation beforehand in

Ref.64 using periodic boundary conditions. However, this ap-

priach cannot be considerd as entirely from first-principles.

In this work we have chosen the second option, because we

expect that updating charges is essential and it is much eas-

ier to implement than the third. Of course, this results in a

noise in the forces and hence may pose some difficulties in

reaching fully converged atomic geometries and system ener-

gies. Note, however, that our calculations demonstrated that

although a noticable error was found, this effect did not pre-

vent us from converging to the required geometry with an ac-

ceptable precision, at least for the systems studied here. Nev-

ertheless, we believe that work should be directed in our frag-

mentation method towards deriving improved atomic forces

where account is taken of the fact that atomic charges are be-

ing updated during the iteration procedure, as it was done in

the context of XPol65 and FMO63 methods.

Although in this work we have used PBE density functional,

other density functionals may be used within CC-MFCC ap-

proach as well. One has to bear in mind that the total energy

(17) as derived above is based on using local (LDA66) and

semilocal (e.g. PW167 or PBE68) density functionals. Meth-

ods containing intra-atomic corrections, such as DFT+U69,

can be used with the approach developed in the present work

because these corrections can be considered as local in Eq.

(3). The division of the total energy into local contributions

and a contribution from pair interactions between different re-

gions is the key condition for implementation of the devel-

oped fragmentation technique. Therefore, if the total energy

of a system can be written in a similar way, then the devel-

oped technique can be straightforwardly generalised and ap-

plied. In principle, the developed method does not offer a

sound theoretical ground for the usage of functionals which

contain nonlocal exchange contributions, such as e.g. B3LYP

(Becke, three-parameter, Lee-Yang-Parr)70 as well as for van

der Waals systems with the nonlocal density functional71–73.

Still, the method may work reasonably well for these function-

als as demonstrated in our earlier work39. This would be the

case if the nonlocal contributions in the functional are small

across fragments boundaries and thus Eq. (17) may still give

a good approximation to the total energy.

In our formulation of the method we followed the original

ideas of MFCC. However, the novel concept of differentiat-

ing between the densities within the caps and in the central

core of the fragments may be applicable to a number of more

sophisticated fragmentation schemes as well. Correspond-

ingly the correction term derived here should be transferable

to other methods based on overlapping fragments, such as e.g.

the GEBF method12, the method due to Collins and Deev27

based on different level of fragmentation, as well as methods

1–22 | 19

Page 19 of 22 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



implementing the many-body expansion of overlapping frag-

ments13,34.

Within this work the partition of the system was based on

chemical intuition. We believe that a rationale for dividing

the given system into regions and fragments may be devel-

oped based on orbital localisation methods (e.g.49–51 and ref-

erences therein). Although this cannot be a practical method

as the whole idea of the fragmentation approach is to avoid

consideration of the entire system, still we believe that this

direction of research may be useful in gaining necessary ex-

perience in performing fragmentation of various systems and

hence is worth pursuing in the future.

Summarising, in this paper we have demonstrated that our

fragmentation method can be used for considering complex

systems. The simulation of the hydrogen molecule adsorp-

tion on the MOF-16 is one possible example of such applica-

tion. The main advantage of using our method is its poten-

tial efficiency: since DFT methods scale nonlinearly with the

system size, considering several smaller systems can be more

efficient than treating the entire system at once at the same

level of theory. Although at present, the partitioning scheme

is implemented as a serial code, the scheme can be easily par-

allelized. Finally, the partitioning method can be of poten-

tial use in QM/MM calculations74–83 as a way of dividing the

whole system into quantum and classical parts while partially

eliminating the effect of the terminating (link) atoms.
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