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Atomic-scale computer simulations have emerged as a powerful tool to probe at a very high resolution,

the structural and dynamical properties of amorphous and crystalline biomaterials with a direct impact

on their biological activity. In particular, bioactive glasses (BGs) represent a target of high strategic

importance for the simulations, due to the central role that they play in the broad arena of materials for

repairing and regenerating tissues. Simulations aimed at understanding the properties of bioactive

glasses thus reveal the potential, and also the limitations, of computational approaches to support the

rational development of biomaterials. This perspective article examines several key challenges that

computer simulations of BGs are currently dealing with and that will need to be effectively tackled in

order to achieve further substantial progress in this field. Relevant examples are the identification of new

structural descriptors, the modelling of ion migration, and the simulation of nanosized samples, which

are discussed in relation to the underlying issues, such as the limited space and time scales that can be

probed using simulations.

Introduction

Bioactive glasses (BGs) represent a key reference in the field of
materials for biomedicine. Traditional clinical uses of BGs
exploit the ability of the glass to form bonds with existing
tissues, thus providing a stable matrix that promotes the

growth of new bone and supports bone repair.1 Subsequent
developments are attempting to capitalise on the ability of BGs
to promote regeneration of tissues away from the implant
interface, thanks to the osteogenic properties of the ionic
products released at and around the implant site by the glass
dissolution.2,3 Reflecting this shift of perspective, while
bioactivity was sometimes associated only with the bone-
bonding ability of a material, nowadays the term tends to be
used in a broader context, to indicate materials capable of
inducing a favourable response from the body.3 The bone
bonding and tissue regeneration abilities both depend on the
fast release of soluble species such as calcium, silica and
phosphates from the implanted glass. This establishes critical
concentrations of these species in the environment surrounding
the implant, which are then capable of activating bone-bonding
processes at the glass/tissue interface and also triggering osteo-
genic mechanisms at the cellular level.3 The proangiogenic and
anti-osteoporotic properties of these glasses, recently emerged,
also depend on the delivery and release in situ of other ions, such
as nickel, cobalt and strontium from suitably doped bioglasses.4–6

The key role of the glass dissolution in controlling its
biological activity underpins current attempts at rationalising
the performances of these materials based on structural and
dynamical features with a direct impact on the dissolution
process itself.7,8 The typical size and time scales of these
features, involving structural units covering few Å and elemen-
tary dynamical events lasting few picoseconds, make atomistic
computer simulations such as Molecular Dynamics (MD) parti-
cularly suitable to investigate them. Whereas promising

1

5

10

15

20

25

30

35

40

45

50

55

1

5

10

15

20

25

30

35

40

45

50

55

Cite this: DOI: 10.1039/c3cp54913e

Department of Chemistry, University College London, 20 Gordon Street, London

WC1H 0AJ, UK. E-mail: a.tilocca@ucl.ac.uk

Antonio Tilocca

Antonio Tilocca holds a Royal
Society University Research
Fellowship (RS-URF) at
University College London. He
received his PhD in Physical
Chemistry from University of
Sassari, Italy, in 2000. He then
held postdoctoral positions at
University of Insubria at Como
(Italy), Princeton University, and
University College London, before
taking up the RS-URF in 2006.
His research is focused on
rationalising the behaviour of

materials at the atomic scale. He employs classical and ab initio
simulations to model structure, dynamics, and reactivity of
materials including crystalline and amorphous oxides with
applications in biomedicine and (photo)catalysis.

Received 20th November 2013,
Accepted 23rd December 2013

DOI: 10.1039/c3cp54913e

www.rsc.org/pccp

This journal is �c the Owner Societies 2014 Phys. Chem. Chem. Phys., 2014, 00, 1�7 | 1

PCCP

PERSPECTIVE



progress has been made in some respects (for instance, the
identification of direct structure-bioactivity links9) progress has
been slower in other directions, such as in the explicit simula-
tion of dynamical transformation and reactivity at the
interface.10,11

In this Perspective, several challenges faced today by atomistic
computer modelling approaches applied to rationalise the
behaviour of bioactive glasses are discussed, in relation to the
successes and limitations of the simulations in each case. Even
though the discussion is focused on BGs, the established role of
these systems in the field is such that many considerations
made here can be considered relevant in the broader area of
atomistic simulations of biomaterials.

Current challenges for atomic-scale
simulations

The physicochemical behaviour of a bioactive glass following
its implant in a physiological environment can be investigated
and understood using computer simulations targeting different
aspects:

(1) Bulk and surface structure. The rationalisation of the
compositional dependence of several macroscopic properties
of glasses based on the underlying microstructure is a very
active field.12–15 In particular, several structural features of the
bulk glass have previously been associated with the glass
stability, solubility and bioactivity.16–18 The simulations can
directly determine these and other microscopic features, assess
their correlation with available experimental data on the
solubility, and extrapolate these findings to predict the
behaviour of new glasses.19 Furthermore, reactive models of
the surface region exposed to molecular probes such as water
and ammonia11,20,21 allow one to integrate the information
above with additional details about specific surface sites (not
necessarily stable in the bulk glass structure) that contribute to
the interaction of the biomaterial with the host.

(2) Ion migration dynamics. The release of a biologically active
ionic species (e.g., a modifier cation, but also a soluble phos-
phate or a silicate chain, etc.) from the glass depends on the
rate at which the species itself can migrate through the bulk
and gain access to the interface region. Indirect conjectures
about the expected ion migration behaviour can be based on
the static local structure (coordination environment) of the
mobile species, which obviously influences its dynamical
behaviour.5,22,23 However, MD simulations also allow one to
directly observe the diffusive process with very high space and
time resolution, so that the diffusive mechanism of different
soluble species can be fully analysed and linked to the
biological behaviour.24

(3) Reduced size. Once their effect on the glass behaviour has
been fully understood, adjusting the structural and dynamical
features mentioned above is the key to achieve specific resorp-
tion rates and bioreactivity, tailored to a specific application.
The emerging new behaviour exhibited by BG systems of sub-
micrometre dimensions, such as BG nanoparticles (NPs) and

nanofibres,25–28 points to the reduced size as a powerful way to
achieve this target. Simulations can provide answers to the
question of how shape and morphology of the glass substrate
affect the above properties and thus control its performance.

In the following, I will summarize the main findings of
recent simulations performed in the three areas above, and
discuss some important challenges that must be faced to make
further progress in each case.

Bulk structure
New structural descriptors

The largest fraction of computational work in the field of
bioactive glasses has been focused on their bulk structure. This
is because the computational methods to obtain a realistic
model of a bulk melt-derived glass are relatively well developed,
also for more complex, multicomponent compositions.7,30,31

For instance, Reverse Monte Carlo (RMC) modelling enables
the constrained fitting of experimental neutron or X-ray diffrac-
tion patterns with an atomic-scale 3D structure, which can then
be used to isolate short-range features such as the local
coordination of a species.32 The quantitative reproduction of
medium-range features, however, is not necessarily as accurate,
and further independent experimental and theoretical data
may be needed for refining the RMC hypothetical structure,33

which cannot then be completely unbiased. On the other hand,
MD simulations directly yield an unbiased structural picture of
the glass, which does not rely on the availability of additional
structural data, and whose reliability only depends on the
quality of the underlying force field. Accurate force fields are
now available that allow one to access quite large system sizes,
on the order of B104 atoms, with a high level of accuracy.34

Models of this size, spanning lengths between 2 and 10 nm, are
necessary to extract structural properties relevant for the glass
dissolution with a high statistical accuracy. In fact, ion dissolu-
tion rates of glasses indirectly reflect medium-range bulk
features such as network connectivity,16 ion clustering and
nanosegregation9 or organisation in chain and ring nano-
structures.17 Whereas the effect of these features on the bioactivity
is now relatively well established,7 it has also been emerging
that they cannot provide a complete description, allowing
accurate predictive estimates of the glass behaviour in different
cases. Further work is needed to discover additional structural
descriptors that exhibit significant correlation with the glass
durability and can then be employed to expand and comple-
ment the set of structural parameters discussed above. This
task requires experimental reference data on the compositional
trends of the glass biodegradation rate.35 By fitting a suitable
predictive model to the experimental dataset, one can identify
new structural parameters whose inclusion in the set of
descriptors improves the fitting, and discard those descriptors
that do not. Following this approach, we were recently able to
identify a few new structural descriptors that affect the solubility
and thus the performances of glasses used as radioisotope
vectors for in situ radiotherapy,19,29 an application which also
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critically depends on the glass durability. The additional struc-
tural descriptors that were identified complement standard
parameters such as the network connectivity in quantitatively
expressing the strength of the glass network and its resistance to
dissolution. For instance, non-covalent cross-links between separate
portions of the silicate network, bridged by a central modifier
cation, play a key role in this context. Phosphosilicate chains
whose end members are coordinated to the same modifier
cation can be considered as held together (and thus, to some
extent – depending on the specific strength of the cation-glass
network interaction – prevented from dissolving) by that same
cation29,36 (Fig. 1). It turned out that a higher ionic field
strength (such as that of Y3+, used as b-emitter in radiotherapy)
increases the ratio of inter- to intra-tetrahedral linkages in the
ion’s coordination shell, and leads to a greater ability of the
higher-field strength cation to bind together several spatially-
separated fragments of the glass network (Fig. 1).29,37 Because
these effects work together against the break-up and dissolu-
tion of the glass matrix, quantitative measurements of the
corresponding features, extracted from the models, can be
successfully included into the set of structural descriptors that
a solubility-predictive model is built upon.19 The key challenges
here are represented by the need to obtain experimental
datasets covering the biodegradation of a wide range of relevant
compositions, and the task of devising structural descriptors
such as those above that can help to reproduce, and then
eventually predict, the experimental trends.

Cooling-rate and size effects

A key issue to be assessed is the possible effect of the necessa-
rily limited time and space scales common to all MD-based
computational procedures to generate a model of a glass, on
the accuracy of key structural descriptors such as those dis-
cussed above. The MD procedures typically involve a melt-and-
quench approach that mimics the experimental one, but over
much faster cooling rates and with much smaller samples. The
thorough assessment of size and cooling rate effects is con-
ceptually straightforward, but it represents a significant

challenge in practice, because of the implicit difficulty in
evaluating the convergence of the structure over simulation
conditions varied over very different time and space scales,
covering several orders of magnitude. For instance, the 103 time
scaling factor involved when switching from a conventional
(10 K ps�1) to a considerably slower (0.01 K ps�1) cooling rate
leads to a corresponding massive increase in the simulation
time required to complete the simulation.† This difficulty is
vastly amplified for large sample sizes, with the result that even
with powerful state-of-the-art computer resources at hand,
combining large systems (N > 105 atoms) with slow cooling
rates (o10�2 K ps�1) still represents an arduous task.

However, recent investigations38,39 show that the weight of
size and cooling rate effects is indeed small, not only for short-
range properties (which is expected), but particularly for key
structural properties such as Qn speciation, chain/ring struc-
ture, and spatial distribution of modifier cations. For instance,
Fig. 2 illustrates the chain structure of MD models of 45S5
Bioglasss obtained under different simulation conditions.38

The 45S5 structure appears dominated by short silicate chains
containing 2 to 4 monomers: the inset of Fig. 2 confirms that
the average chain length is around 3, essentially unaffected by
the cooling rate, besides statistical fluctuations. The distribu-
tions of chain lengths, shown in the main panel of the figure,
retain a very similar trend in a range of system sizes varied by a
factor of 32, the only apparent effect of a smaller size being a
slightly higher fraction of the smallest (dimer and trimer) chain
fragments. This is consistent with the essentially constant Qn

distribution recently found for sodium silicate glass models
containing up to one million atoms (Fig. 3).39
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Fig. 1 Nanostructures taken from the model of a Y-doped bioglass,
showing a modifier ion (the sphere at the centre of the loop, left: Ca,
right: Y) cross-linking two tetrahedra belonging to the same chain frag-
ment: the modifier ion can be thought as holding the whole O3SiO–
(SiO2)n–OSiO3 unit in place and thus increasing the network durability by
hindering its release. Adapted from ref. 29 with permission from The Royal
Society of Chemistry.

Fig. 2 Main panel: distribution of the lengths of (phospho)silicate chains
identified in MD models of 45S5 Bioglasss of different sizes.38 Inset:
average chain length of models obtained at different cooling rates.

† For instance, a total of 270 ns, or >1.3 billion MD time steps (a typical time step
is 2 � 10�16 s in simulations performed with a shell model potential30) would be
needed to cool down to room temperature a melt pre-equilibrated at 3000 K, as
done in common MD procedures.
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The important message, then, is that medium-range struc-
tural features extracted from models of silicate and phosphate
glasses obtained through conventional MD setups40–43 are
generally reliable, so that CPU-demanding procedures to access
more challenging conditions are in most cases unnecessary.
Essentially, the unrealistic (compared to practical synthesis)
MD conditions employed to obtain the models do not appear to
have a negative impact on the accuracy of the main structural
features that affect the glass durability, and then on key
conclusions based on the analysis of those features. It should
be noted, however, that the different performances of polari-
sable vs. non-polarisable force fields (with the former generally
leading to a more accurate description of the Qn speciation34,44)
means that the convergence of medium-range structural
features should ideally be evaluated on a case-by-case basis,
especially for non-polarisable force fields whose convergence
could be slower.

Dynamical properties

MD simulations are naturally suited to follow dynamical pro-
cesses in condensed phases, and many MD studies have indeed
investigated the migration of modifier ions in silicate and
phosphate glasses.45–50 Not as many studies, however, have
concerned ion migration in bioactive compositions. Even
though some general features identified for conventional, bio-
inactive glasses could also describe the migration of network-
modifier cations in bioactive compositions, the same structural
peculiarities that enhance the biological response of these
glasses can also determine a different dynamical behaviour
for an ion moving in the bioactive matrix, and this different
behaviour can in turn further affect the activity of the bio-
material. For instance, it is well known that the fast dissolution
of highly bioactive compositions such as 45S5 Bioglasss arises
from a highly fragmented, open silicate backbone.7 It turns out
that this fragmentation enables ion migration pathways
not favourable in the denser network of common higher-silica

(bio-inactive) glasses: recent simulations24 have highlighted
how an ion migrating in the fragmented 45S5 matrix can travel
through vacant transient sites created by temporary displacements
of another Na or a Ca cation (Fig. 4). The formation of these
temporary sites, even if still possible, would not be as favourable in
the more rigid network of a higher-silica common glass.48

The main challenge to be faced in order to apply standard
MD approaches to model ion migration in bioactive glasses has
to do with the infrequent nature of the hopping events that
compose the diffusive process. The ‘‘slow’’ (relative to typical
MD time scales) character of ion migration in glasses entails
that prohibitively long trajectories would be needed in order to
gain a reasonably accurate sampling of the diffusive event at
room temperature. Most MD studies of diffusion in glasses of
biomedical interest to date have adopted an effective strategy to
cope with this problem, wherein the simulations are run at a high
temperature, below the glass transition.24,51,52 This approach
should ensure (although this condition must be directly verified
in each case) that the modifier ions move in a static silicate/
phosphate network whose average configuration and energy land-
scape match the ones stable at room temperature, so that the
description of the diffusive phenomenon at the higher tempera-
ture is still representative of practical conditions.

Another potential difficulty is represented by the possible
inadequacy of force fields employed in classical MD runs: being
normally parameterized by fitting structural and (less frequently)
elastic properties of crystalline phases related to the target glass,
a potential that provides a good description of the glass structure
does not necessarily perform equally well in the reproduction of
diffusive processes. Whereas classical potentials have been
employed with good results to model diffusive processes in
bioglasses,51,52 a safer solution would undoubtedly be repre-
sented by parameter-free ab initio MD (AIMD) approaches.53 The
higher computational demands of the latter, however, limit the
AIMD trajectory length to below the nanosecond range, with the
consequence that a straightforward investigation of the migra-
tion of slow-moving cations is complicated, even with the higher-
temperature strategy described above. For instance, using AIMD
it has been possible to characterise sodium migration in 45S5
Bioglasss (Fig. 4), but not enough calcium migration events
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Fig. 3 Qn distribution for several sodium silicate glasses, obtained from
samples of different sizes, from 3000 to 106 atoms. Reprinted from ref. 39,
with permission from Elsevier.

Fig. 4 3D traces of the MD trajectory of key Na and Ca ions, illustrating
the migration of an individual Na+ (red) and the correlated displacements
of several other ions (Na, yellow and Ca, cyan). Reprinted with permission
from ref. 24, Copyright 2010 American Institute of Physics.
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were observed during the simulation time to yield an equally
clear picture of the (slower) diffusive process of Ca.24

A more rigorous approach for tackling the timescale pro-
blem affecting MD simulations of migration in glasses could be
represented by enhanced-sampling methods.54–56 These have
been developed to accelerate the sampling of processes that,
due to high energy barriers or for other reasons, proceed too
slowly in configuration space to provide accurate statistics over
typical MD runs. Whereas the application of these methods to
study ion migration in crystalline solids, often characterised by
well-defined deep energy minima separated by high barriers,
does not present particular difficulties,57–59 the application of
AIMD combined with enhanced-sampling to the more complex
energy landscapes experienced by ions migrating in multi-
component bioactive glasses is less straightforward, and
represents an intriguing challenge for the future.

Reduced size

Several recent examples show the reliability of MD simulations
for modelling crystalline and amorphous nanoparticles
(NPs).60–62 The number of atoms contained, for instance, in
an isolated BG nanoparticle of 5–15 nm is of the order of 104–105,
a manageable size for classical MD simulations. The latter can
then provide, in a relatively straightforward way, an atomistic-
resolution picture of the actual nanosized substrates63 (Fig. 5). A
suitable computational procedure in this case involves fast
quenching a liquid mixture constrained in an isolated sphere of
the desired size, roughly replicating the flame synthesis used to
prepare small BG nanoparticles in a high-temperature environ-
ment.64 Models of a 45S5 particle obtained in this way recently
provided some preliminary indications about which structural
and dynamical effects of the reduced size can be relevant for the
biological behaviour.60 It turns out that some of the key properties
of bioactive glasses most beneficial for their bioactive behaviour
are further enhanced when the size of the glass substrate is

reduced: the high fragmentation of the silicate network further
decreases on the surface of a 45S5 nanoparticle, compared not
only to the bulk glass but, most importantly, to the virtually flat
surface of a corresponding larger glass substrate (Fig. 6).
Moreover, the mobility of modifier cations and the density of
three-membered silicate rings – key features to support rapid
dissolution and bone bonding processes at the surface65 – are also
enhanced at the nanoparticle surface compared to samples of
larger size.

Whereas models of dry nanoparticles are the necessary
starting point to gather information on these systems, they
do not take into account the additional perturbation induced
by the surrounding fluids that come into contact with the
particle in a biological environment. An important future step
thus must involve modelling of the explicit interface between
the nanoparticle and a suitable aqueous medium, and assess
the effects of this interaction on the properties discussed above.
The main challenges that will have to be faced concern: (i) the
need of accurate force fields to model the additional interac-
tions at the biomaterial interface (the considerable size of the
models prevents the straightforward application of AIMD
approaches in this case); (ii) the significantly increased
computational demands of the simulations of solvated systems
compared to the dry cases, especially for the largest NPs.

Conclusions

The direct observation, through computer simulations, of the
chemical processes that follow the implantation of a biomater-
ial in a biological environment is complicated by the character-
istic space and time scales that rule these phenomena. In
principle, a process such as the biodegradation of a bioactive
glass scaffold for tissue engineering can only be explicitly
modelled through very large-scale (coarse-grained, mesoscale
and Finite Elements) numerical approaches.66–68 The coarse-
grained nature of all these approaches, while allowing one to
reach more realistic space and time scales, averages out the
chemical details of the biomaterial and its biointerfaces, such
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Fig. 5 Models of 45S5 Bioglasss nanoparticles of 3–10 nm size, obtained
using Molecular Dynamics.60 The largest particle contains B40 000
atoms.

Fig. 6 Silicon speciation in the external region of 45S5 nanoparticles,
compared to the flat surface and to the bulk structure. Adapted from
ref. 60 with permission from The Royal Society of Chemistry.
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as short- and medium-range structural features and elementary
dynamical (ion migration and reaction) steps. The latter aspects
can only be modelled through the higher resolution of atomistic
simulations. These atomic-level details provide the foundation
for a rational design of the core biomedical materials, whose
performances can be understood and optimised based on the
insight extracted from the atomistic models. While there is some
important degree of complementarity between very different
information provided by the macroscopic and atomic-scale
methods, an important future challenge will involve filling the
substantial gap that separates them, for instance by further
extending the space and time scales that can be accessed in
atomistic simulations, but also in mapping the fundamental
information provided by the latter to develop and refine the
macroscopic approaches.

This is particularly important from the perspective of
modelling nanosized biomaterials of practical sizes, and of
simulating infrequent dynamical processes such as activated
chemical reactions and ion migration on those substrates. The
combined application of enhanced-sampling approaches with
AIMD on high-end parallel supercomputers represents a very
promising tool in this context.
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