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Abstract

Local-nonlocal coupling is an organizational principle in protein folding. It envisions a

cooperative energetic interplay between local conformational preferences and favorable

nonlocal contacts. Previous theoretical studies by our group showed that two classes of

native-centric coarse-grained models can capture the experimentally observed high de-

grees of protein folding cooperativity and diversity in folding rates. These models either

embody an explicit local-nonlocal coupling mechanism or incorporate desolvation barriers

in the models’ pairwise interactions. Here a conceptual connection is made between these

two paradigmatic coarse-grained interaction schemes by showing that desolvation barri-

ers enhance local-nonlocal coupling. Furthermore, we find that a class of coarse-grained

protein models with a single-site representation of sidechains also increases local-nonlocal

coupling relative to mainchain models without sidechains. Enhanced local-nonlocal cou-

pling generally leads to higher folding cooperativity and chevron plots with more linear

folding arms. For the sidechain models studied, the chevron plot simulated with en-

tirely native-centric intrachain interactions behaves very similarly to the corresponding

chevron plots simulated with interactions that are partly modulated by sequence- and

denaturant-dependent transfer free energies. In these essentially native-centric models,

the mild chevron rollovers in the simulated folding arm are caused by occasionally popu-

lated intermediates as well as the movement of the unfolded and putative folding transition

states. The strength and limitation of the models are analyzed by comparison with ex-

periment. New formulations of sidechain models that may provide a physical account for

nonnative interactions are also explored.
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Introduction

A protein’s behavior is encoded by its amino acid sequence and other aspects of its

chemical composition, which collectively determine the physico-chemical interactions of

the protein with itself and with its environment. Protein behaviors that are stipulated to

be governed only by conservative forces may be described, as for any such physical system,

by a potential energy that depends only on the positions of all constituent particles, i.e.,

those comprising the protein as well as the solvent. In biologically relevant aqueous

settings, the dynamics of a protein is generally coupled to that of its surrounding solvent

molecules. However, for dynamic processes such as protein folding that are significantly

slower than the relaxation timescales of the solvent, the kinetic properties of a protein —

along with its thermodynamic properties — may be characterized to a good approximation

by an implicit-solvent energy landscape in which the solvent degrees of freedom are pre-

averaged. In essence, such an energy landscape is a potential of mean force formulated as

a function solely of the protein’s conformational coordinates.

The shape of the energy landscape of a protein is thus dependent upon its amino

acid sequence. For globular proteins, in accordance with the experimentally inspired con-

sistency principle [1, 2] and principle of minimal frustration [3], the energy landscape is

expected to be funnel-like [4, 5]. However, not all landscapes of natural proteins share

this topography. Many proteins playing key roles in cellular signaling and regulation

are intrinsically disordered, lacking the tendency to fold to a unique structure by them-

selves [6, 8–10]. Although some intrinsically disordered proteins undergo coupled folding

and binding [12] and thus retain funnel-like features in the combined landscapes of these

proteins and their binding targets [13–16], some intrinsically disordered proteins can re-

main highly dynamic with a “fuzzy” [17] conformational distribution even upon binding

to their functional partners [18–20].

Folding Cooperativity. Here we restrict our attention to globular proteins with

funnel-like landscapes. One property shared by many globular proteins is their high de-

grees of folding cooperativity, i.e., their folded and unfolded states are well separated in

enthalpy [21] and related structural/energetic measures [22–25]. Folding cooperativity

is not a corollary of a globular protein’s ability to fold to a unique native structure [26].

Experiments showed that some “downhill folder” proteins can adopt an essentially unique

native structure under strongly folding conditions but lack a free barrier separating the

folded and unfolded states [27,28]. The degree of folding cooperativity achievable by a pro-

tein is likely constrained physically by its native topology [29–34]. Taken together, these

observations suggest that folding cooperativity is probably an evolved property [35, 36].
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Possible benefits of this trait include enhancing kinetic stability of folded proteins against

their transformation into nonfunctional forms [37], minimizing risk of disease-causing amy-

loidogenesis [38,39], and modulating or abrogating the potentially complicating effects of

cotranslational folding [40–45]. In a broader perspective, folding cooperativity may be

viewed as a manifestation, in one molecule, of the bistability and switch-like behaviors

that are ubiquitous in biology [46–48].

Considerable effort has been taken in the past 15 years to elucidate the physical origin

of folding cooperativity. Much advance has been made but our understanding is as yet

incomplete. Early investigations uncovered that the issue is more complex than many

protein scientists had surmised. For instance, the conformational densities of states [49]

of common chain models that were set up to embody the presumably dominant role of

hydrophobic effect in protein folding [50,51] do not lend themselves to proteinlike folding

cooperativity [52,53]. This finding led to the view that many-body effects [54,55] beyond

pairwise additive interactions, such as a cooperative interplay between desolvation and

hydrogen bonding strength [56,57], are required to account for folding cooperativity [23,52]

as well as the tremendous diversity [58, 59] in experimentally observed folding rates of

small, single-domain proteins [60, 61].

Local-Nonlocal Coupling. An inference from empirically successful theories of

cooperative folding [59, 62–65] is that folding cooperativity is probably underpinned sig-

nificantly by a local-nonlocal coupling mechanism [53, 59]. The local-nonlocal coupling

hypothesis stipulates that energy landscapes of cooperatively folding proteins are orga-

nized in such a way that the tendency for a segment of a protein to adopt locally native

structure is weak in isolation but is greatly enhanced by formation of proximate nonlocal

native contacts. Likewise, it stipulates that nonlocal native contacts are less favorable un-

less the chain segments containing the contacting residues adopt locally native structure,

which presumably would result in better packing in accordance with the consistency [1]

and minimal frustration [3] principles. This hypothesized organizing principle is sup-

ported by experimental findings of subglobal cooperative units [66] as well as Ising-like

behaviors in the folding of repeat proteins [67] (reviewed in Ref. [53]). The mechanism

may be viewed as a sort of coupled folding and binding similar to that observed in the

binding of some intrinsically disordered proteins [12] except the process is now between

different parts of the same protein molecule.

Desolvation Barriers. Desolvation barriers have been identified as a likely phys-

ical origin of folding cooperativity [68–71]. Desolvation barriers represent the energetic

penalty of water exclusion, as seen in the potentials of mean force between nonpolar so-

lutes [72], when different parts of a protein molecule come together to form a well-packed
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core [73]. Desolvation barriers and the associated enthalpic barriers are a robust feature

in intra- and intermolecular protein interactions [74] and should therefore be a staple in

protein energy landscapes. Simulations of coarse-grained Cα chain models with desolva-

tion barriers in their native-centric potentials showed that such models can rationalize to

a large extent the experimentally observed folding cooperativity [69–71] and huge diver-

sity in the folding rates of proteins with different native topologies [53,75]. More recently,

the cooperativity-enhancing effects of desolvation barriers are seen to be fundamentally

related to their narrowing of the attractive range of intrachain interactions, which is a

crucial determining factor of cooperativity in protein (heteropolymer) folding [76] as well

as homopolymer coil-globule transitions [77]. Desolvation barriers are in essence a many-

body effect resulting from averaging over solvent degrees of freedom. Nonetheless, from a

formulational standpoint, it is noteworthy that pairwise additive native-centric potentials

with desolvation barriers are quite adequate in accounting for proteinlike cooperativity

without invoking explicit many-body terms.

Sidechain Effects. Another likely physical origin of folding cooperativity is sidechain

packing [78, 79]. An early study of sidechain effects on folding cooperativity employed

model chains configured on the simple cubic lattice. Each residue was modeled by two

adjacent positions on the lattice, one for the mainchain and the other for the sidechain (i.e.,

a two-bead representation was used). Interactions between sidechain beads were governed

by a transferrable potential [79]. Similar lattice models have also been used to investigate

the role of nonnative interactions in protein folding [80]. The folding transitions of the

lattice sidechain models were found to be significant sharper than the corresponding

(mainchain) model without sidechains [79], confirming the expectation that sidechains

tend to enhance folding cooperativity. However, the sidechain lattice models considered

at the time do not satisfy the more rigorous van’t Hoff/calorimetric enthalpy [23] or linear-

chevron [81] criterion for cooperative folding, probably because those model chains with

only 15 residues were too short to mimick more realistic protein behavior. In contrast,

a class of recently developed continuum (off-lattice) two-bead sidechain models [82, 83]

exhibits rather proteinlike cooperative behaviors [83,84] and has been applied successfully

to rationalize many aspects of experimental folding behaviors [85–87].

Conceptual Questions and Coarse-Grained Modeling. In view of the above

summary of what we have learned in recent years about folding cooperativity, it is natural

to inquire about the relationship between the proposed organizing principle of local-

nonlocal coupling on one hand, and the two likely physical origins of folding cooperativity

— namely desolvation barriers and sidechain packing — on the other. We limit the

scope of the present study to these two likely contributors, though undoubtedly there
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are other significant contributors such as hydrogen bonding to cooperative folding that

we have to leave for future investigations. One of our main goals here is to ascertain

whether and, if so, how desolvation barriers and sidechain effects enhance local-nonlocal

coupling. As it stands, these conceptual questions are best addressed by coarse-grained

protein chain models, such as those employed in the works discussed above, because the

computational tractability of these models allows for efficient generating and testing of

hypotheses. Accordingly, we utilize and compare results from existing coarse-grained

models as well as develop new formulations for our present purposes. Coarse-grained

protein chain models have provided much insights into protein folding [35, 53, 85, 87–98]

and are complementary to models that contain higher structural and energetic details.

Recent advances in atomic simulations of protein folding by using distributed com-

puting [99] or highly efficient special-purpose computers [100] are impressive. Notable

success in ab initio folding has now been achieved for an increasing number [101–106],

though not all [107], small proteins for which folding simulation was attempted. Al-

though effort is still needed to further improve existing forcefields [108–110], including

their ability to accurately describe not only the folded state but also unfolded conforma-

tional ensembles [111, 112], these recent developments hold great promises for modeling

and understanding a wide range of biomolecular processes in atomistic detail [113, 114].

However, the computational capability of current all-atom simulations is not yet sufficient

for our questions of interest because the issues we address require simulations of thermo-

dynamics and kinetics of protein folding that are far more extensive than what is currently

achievable in explicit-solvent atomic simulations. For instance, accurate determination of

a chevron plot requires simulating thousands to tens of thousands of folding events under

different folding conditions (see below), whereas successful all-atom, explicit-solvent sim-

ulations of folding reported to date involved only several to at most hundreds of folding

events [100–106]. Nonetheless, with continuing advances in computational technology, it

is quite possible that the questions addressed in the present work can become accessible

to all-atom molecular dynamics simulations in the not-too-distance future.

Chevron Plots: Denaturant Dependence and Nonnative Interactions. As

part of our study of folding/unfolding cooperativity, we have also examined the chevron

properties of the desolvation-barrier and continuum sidechain models. Chevron plots

provide logarithmic folding/unfolding or relaxation rates as functions of denaturant con-

centration [115,116]. Through the efforts of many experimental groups, a large repertoire

of chevron plots has been accumulated in past decades. It is therefore important to ad-

vance theoretical understanding of chevron plots because this form of data constitutes

a major and rather comprehensive source of experimental information on protein fold-
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ing/unfolding kinetics. Theoretical analyses indicate that cooperativity of a protein’s

folding/unfolding kinetics is generally linked to the protein’s thermodynamic cooperativ-

ity [63, 70, 71]. Proteins that fold in a highly cooperative, simple two-state-like manner

exhibit linear folding and unfolding arms in their chevron plots [117]. In contrast, nonlin-

ear folding or unfolding chevron arms — showing either a downward curvature (“rollover”)

or a upward curvature — indicate more complex kinetics with transiently populated in-

termediates [116–120], sequential barriers [121], or parallel kinetic pathways with different

dependence on denaturant [122, 123].

Previous studies have demonstrated that models with cooperativity-enhancing features

of desolvation barriers [71,124], local-nonlocal coupling [59] or other forms of many-body

effects [30] can lead to model chevron plots with close-to-linear folding and unfolding arms

that are qualitatively similar to those observed experimentally for small, single-domain

proteins. Without an explicit account of denaturant effects, these model chevrons treated

denaturant implicitly by using native stability as a proxy for denaturant concentration [30,

71,124]. This limitation is now partially overcome by models that incorporate denaturant-

dependent transfer free energies for the sidechains [83]. In light of this recent development,

it is instructive to compare the model chevron plots obtained with an implicit vs. an

explicit treatment of denaturant. We provide such a comparison below.

Another issue of interest is the effects of nonnative interactions on chevron behavior.

Recent atomic simulations suggests that the role of nonnative interactions in the folding of

small proteins is minimal [125], but nonnative interactions do affect the folding pathways

of many proteins, especially larger ones, as is evident from experimentally observed tran-

siently populated intermediates and chevron rollovers [126]. Recent studies showed that

effects of specific nonnative interactions on protein folding can be modeled [124,127–130]

using a mixed native-centric and sequence-dependent formulation [131,132]. In particular,

this method was successful in accounting for the extreme chevron rollover [124] that has

been observed experimentally for the de novo designed protein Top7 [36]. The tranfer free

energies in the recently developed sidechain models of Thirumalai and coworkers [82, 83]

offer a possibility for modeling nonnative interactions because the transfer free energies

constitute a transferrable (not native-centric) potential. However, in the formulation to

date [82, 83], the sidechain model for zero denaturant, i.e., under strongly folding con-

ditions, was invariably native-centric. In those modeling constructs, the transfer free

energies were used only to weaken intrachain interactions as denaturant concentration in-

creases. Here we develop alternate formulations in which the sequence-dependent transfer

free energies can strengthen – not only weaken – intrachain interactions to explore the

possibility of using such models to capture nonnative interactions in protein folding.

7
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Models and Method

We pursue the goals stated above by comparing select thermodynamic and kinetic

properties predicted by several representative coarse-grained protein chain models. The

models we consider are a Cα-Gō model, a desolvation-barrier (db) model, and three for-

mulations of a class of sidechain (SC) models.

Cα-Gō model and db model. The potential energy function for the present Cα-Gō

model is identical to that given in Eq. (1) of Ref. [70], wherein the contact energy Ec for

a native pair i, j (a pair of residues belonging to the native contact set, see below) at a

distance rij apart is given by a 12-10 potential (Fig. 1a). The potential energy function for

the present db model is given by Eqs. (1)–(3) of Ref. [71]. For this model, the interaction

energy Ec between a native pair is given by the potential energy U(rij ; r
n
ij, ǫ, ǫdb, ǫssm)

defined in this reference [71], with db height ǫdb = 0.1ǫ and solvent-separated minimum

well depth ǫssm = 0.2ǫ, where ǫ is the contact-minimum well depth and rnij is the distance

between residues i, j in the Protein Data Bank (PDB) structure (Fig. 1a). The present

simulation parameters, including the force constants for the bond-length, bond-angle,

and torsion-angle terms, are identical to those in Ref. [70]. As in Refs. [70,71], a uniform

length scale of rrep = 4.0 Å is used for the repulsive interactions between nonnative

residues. Langevin dynamics is used for folding kinetics simulations and thermodynamic

sampling in accordance with the formulation and parameters provided in Ref. [71]. As

in our previous studies [70, 71], simulation time is reported in number of Langevin time

steps. In the construction of our native-centric Cα-Gō and db models, any two residues

i, j separated by at least three residues along the chain sequence (|i − j| > 3) and have

at least one pair of nonhydrogen atoms, one from each residue, that are less than 4.5

Å apart in the PDB structure are defined to belong to the native contact set [29, 133].

This definition of native contact set is identical to that used in several recent studies

from our group [29–31, 71, 75, 127] though it is slightly different from the definitions for

native contact sets NCS1 and NCS2 in Ref. [70]. We use Q̃n to denote the total number

of contacts in the native contact set. During Langevin dynamics simulations, a pair

of residues i, j belonging to the native contact set is considered to be forming a native

contact in the Cα-Gō model if rij ≤ 1.2rnij . For the db model, the corresponding condition

for native contact formation is rij ≤ rdb where rdb is the position of the db peak in

the pairwise native-centric potential [70, 71]. As before [29–31, 71, 75, 127], we use the

fractional number of native contacts Q as a progress variable for folding [134, 135].

8
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Sidechain (SC) models. Our approach to SC effects is largely adapted from the

two-bead Cα-SCM formulations of Klimov and Thirumalai [136] and O’Brien et al. [82] in

which amino acid residue i of a protein with n residues is represented by a Cα (backbone)

atom with position vector rα,i and a pseudo-atom centered at the SC centroid with position

vector rSC,i (except when the amino acid residue is glycine, for which no rSC,i is defined).

Our SC models are not entirely identical to theirs, as will be described below. The minor

variations between our and their SC models are technical in nature but these minor

variations may nonetheless serve to assess the robustness of predictions from this class of

coarse-grained SC models.

Following the modeling framework of O’Brien et al. [82], the total potential energy

ET({rα}, {rSC}, C) of the model protein as a function of all its n backone positions {rα}

and n SC positions {rSC} is given by two components, viz.,

ET({rα}, {rSC}, C) = σ(ET)SC−Go({rα}, {rSC}) + ∆Gtrf({rb}, {rSC}, C) , (1)

where (ET)SC−Go({rα}, {rSC}) is the potential energy for the sidechain-Gō (SC-Gō) model

and ∆Gtrf({rb}, {rSC}, C) is a transfer free energy term that depends on the concentration

C of cosolvent (denaturant in our case). The relative contributions of these two terms

to (ET) are controlled by the scaling factor σ. The SC-Gō potential is a sum of several

contributions:

(ET)SC−Go = Ebond + Eangle + EHB + Ec + ENN
NB , (2)

where Ebond, Eangle, EHB, Ec, and ENN
NB are the bond-length, bond-angle, hydrogen-

bonding, native-pair nonbonded (contact) potential, and nonnative repulsive terms, re-

spectively. Here,

Ebond = Kb

{n−1
∑

i=1

[

|rα,i+1−rα,i|−|rnα,i+1−rnα,i|
]2

+

n
∑

i=1

[

|rSC,i−rα,i|−|rnSC,i−rnα,i|
]2
}

, (3)

where for computational efficiency we have used a stiff spring constant Kb = 100.0 kcal

mol−1Å−2 similar to that used in Ref. [136] to limit variations of virtual bond lengths

instead of taking the approach in Ref. [82] that uses SHAKE [137] to fix them. In the above

equation, the conformational coordinates rαs and rSCs are in units of Å. All summations

over SC coordinates in this work, including that in Eq. (3), are restricted to non-glycine

SCs. In Eq. (3), the difference |rnα,i+1 − rnα,i| is the reference (“equilibrium”) distance

between the Cα positions of residues i + 1 and i in the PDB structure, and |rnSC,i − rnα,i|

is the reference distance between the PDB position of the Cα atom of residue i and

the centroid of its SC determined from the PDB coordinates of all nonhydrogen atoms

belonging to the given SC. Thus, in contrast to the constant (= 3.8 Å) Cα-SC reference

9
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distance in Ref. [136], the present Cα-SC reference distances are residue-type dependent

and can vary among residues of the same type depending on the PDB structure. The

bond-angle term is given by

Eangle = Kθ

{

(θ13 − θn13)
2 + (θn2 − θnn2)

2 +
n−1
∑

i=2

3
∑

k=1

(θik − θnik)
2

}

+

+
n−2
∑

i=2

{

K
(1)
φ

[

1− cos(φi − φn
i )
]

+K
(3)
φ

[

1− cos 3(φi − φn
i )
]

}

+ (4)

+Kch

n−1
∑

i=2

(ψi − ψn
i )

2 .

As before, symbols with the superscript “n” denote the PDB values of the corresponding

variables. The bond angles θi1, θi2, and θi3 at the Cα position of residue i are those defined

by the positions {rα,i−1, rα,irα,i+1}, {rα,i−1, rα,i, rSC,i}, and {rSC,i, rα,i, rα,i+1}, respectively

(Fig. 1b). All three angles are defined for residue 2 through residue n− 1, whereas only

one of the three angles is defined for each of the residues at the two chain ends (i = 1

or n). We use a spring constant Kθ = 30.0 kcal mol−1rad−2, which is numerically equal

to the spring constant KA for an identical bond angle term in O’Brien et al. [82]. The

mainchain torsion angle φi is that defined by {rα,i−1, rα,i, rα,i+1, rα,i+2} (Fig. 1b). Here

we use the same form of the potential energy term for φi as that in Refs. [70, 71] (with

K
(1)
φ = 2K

(3)
φ ), which is formally different from the dihedral potential in O’Brien et al. [82].

Nonetheless, we adopt force constants K
(1)
φ = 0.7 kcal mol−1 and K

(3)
φ = 0.35 kcal mol−1

that are numerically equal, respectively, to the dihedral force constants KD1 and KD3 in

Ref. [82]. The last summation in the above equation, which takes the same form as that

in Ref. [82], is for enforcing chirality by penalizing deviations of the improper dihedral

angle ψi at residue i from its PDB value ψn
i . Here ψi is the angle between the plane

defined by {rα,i−1, rα,i, rα,i+1} and the plane defined by {rα,i−1, rSC,i, rα,i+1} (Fig. 1b), i.e.,

ψi = cos−1{[(rα,i−1−rα,i)×(rα,i+1−rα,i−1)/|rα,i−1−rα,i||rα,i+1−rα,i−1|] · [(rα,i+1−rα,i−1)×

(rSC,i − rα,i+1)/|rα,i+1 − rα,i−1||rSC,i − rα,i+1|]}. We use Kch = 18.0 kcal mol−1rad−2 for

this term. This value is comparable to that in the coarse-grained protein chain model of

Takada et al. with explicit backbone atoms [56] and the lower values among the force

constants for improper dihedral angles in the atomic model of Neria et al. [138]. We

have also attempted to use the Kch value of 18.013 kcal mol−1 degree−2 (= 5.9× 104 kcal

mol−1rad−2) in O’Brien et al. [82]; but in that case the resulting energy associated with

ψ was too large for our simulation to behave properly.

Following Ref. [82], we include an EHB term [Eq. (2)], identical to theirs, to account

10

Page 10 of 57Physical Chemistry Chemical Physics

P
h

ys
ic

al
 C

h
em

is
tr

y 
C

h
em

ic
al

 P
h

ys
ic

s 
A

cc
ep

te
d

 M
an

u
sc

ri
p

t



approximately for the effects of native backbone hydrogen bonding:

EHB = ǫHB

∑

(i,j)∈{HB}

[(

rnα,ij
rα,ij

)12

− 2

(

rnα,ij
rα,ij

)6]

, (5)

where the summation is only over the set {HB} of residue pairs i, j for which residue i

and residue j are identified by the STRIDE algorithm [139] to be connected by backbone

hydrogen bonding in the PDB structure of the given protein, rα,ij ≡ |rα,j − rα,i| is the

distance between the Cα positions of residues i and j, and we use the same energy scale

ǫHB = 0.75 kcal mol−1 for this term as in Ref. [82].

The Ec term in Eq. (2) accounts for native nonbonded interactions. It takes the form

Ec =
∑

(i,j)∈{NSC}

{

ǫα−α

[(

rnα,ij
rα,ij

)12

− 2

(

rnα,ij
rα,ij

)6]

+ ǫα−SC

[(

rnα−SC,ij

rα−SC,ij

)12

− 2

(

rnα−SC,ij

rα−SC,ij

)6]

+ ǫSC−SC
ij

[(

rnSC−SC,ij

rSC−SC,ij

)12

− 2

(

rnSC−SC,ij

rSC−SC,ij

)6]}

, (6)

which is similar but not identical to the EN
NB term in O’Brien et al. [82]. In this expression,

the summation is only over the native contact set {NSC} containing residue pairs i, j for

which at least two nonhydrogen atoms, one belonging to residue i and the other belonging

to residue j, are less than 4.5 Å apart in the PDB structure. The summation is further

restricted to interaction sites (Cα or SC beads) that are separated by four or more virtual

bonds in the primary structure of the chain (thus SCs of sequentially adjacent residues

do not interact via this term). Here rα,ij is Cα-Cα distance as defined above; rα−SC,ij ≡

|rSC,i−rα,j | or |rα,i−rSC,j| denotes one of the two Cα-SC distances between residues i and

j (terms for both instances are included in the summation); and rSC−SC,ij ≡ |rSC,i− rSC,j|

is the SC-SC distance between residues i and j. The interaction parameters for Cα-Cα

and Cα-SC are ǫα−α = 0.5 kcal mol−1 and ǫα−SC = 0.37 kcal mol−1, respectively (both

independent of i, j); whereas the SC-SC interaction parameters ǫSC−SC
ij are dependent on

the residue types of i and j. Following O’Brien et al., these native-centric SC-SC energies

are taken to be proportional to a set of shifted energies based upon a statistical potential

obtained by Miyazawa and Jernigan [140] (i.e., ǫSC−SC
ij = 0.7(∆ǫij − 1.2) kcal mol−1 as

for the Cα-SCM for Protein L in Ref. [82], where ∆ǫij is the statistical potential given in

Table V of Ref. [140]). The formulation of our Ec term is essentially identical to that of

the EN
NB term in O’Brien et al. except that Ec contains favorable Cα-Cα interactions but

such interactions are absent in their formulation.

Finally, the nonnative, nonbonded ENN
NB term in Eq. (2) provides excluded-volume
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repulsion between interaction sites that do not belong to the native contact set:

ENN
NB = ǫNN

∑

(i,j)/∈{NSC}

[(

2rrepα

rα,ij

)12

+

(

rrepα + rvdWj

|rα,i − rSC,j|

)12

+

(

rrepα + rvdWi

|rSC,i − rα,j|

)12

+

(

rvdWi + rvdWj

rSC−SC,ij

)12]

, (7)

where the summation is restricted to residue pairs i, j that do not belong to the native

contact set and also pairs of interaction sites that are four or more bonds apart. The length

scales we adopt for these repulsive interactions are equivalent to that in O’Brien et al. [82]:

rrepα = 1.37 Å for Cα and the rvdWi s are SC van der Waals radii that depend on the amino

acid type of residue i as given in Table S2 of Ref. [82]. Here, a relative small ǫNN = 0.01

kcal mol−1 is used to minimize unphysically harsh steric clashes. The ratios between this

ǫNN value we have chosen and the above energy scales ǫα−α, ǫα−SC, and ǫSC−SC
ij for the

native-centric interactions are comparable to the corresponding (0.7)12 = 0.014 ratio in

previous coarse-grained models of Cheung et al. [141] and Azia and Levy [128]; but the

present ǫNN = 0.01 kcal mol−1 is ten orders of magnitude larger than the corresponding

energy scale ǫNN
i = 10−12 kcal mol−1 for the nonnative repulsion term ENN

NB in Ref. [82].

Following O’Brien et al. [82], the transfer free energy term ∆Gtrf({rb}, {rSC}, C) in

Eq. (1) takes the following form:

∆Gtrf({rb}, {rSC}, C) =
n
∑

i=1

[

δgαtrf(C)

(

SASAα({rb}, {rSC})

SASAα
Gly−α−Gly

)

+δgSCtrf,t(i)(C)

(

SASASC
t(i)({rb}, {rSC})

SASASC
t(i),Gly−t(i)−Gly

)]

, (8)

where the summation is over all the residues (labeled by i) in the given protein, t(i)

is the amino acid type of residue i, δgαtrf(C) and δgSCtrf,t(i)(C) are, respectively, the refer-

ence free energies of transfer of the polypeptide backbone and of the sidechain of amino

acid type t(i), embedded in the tripeptide Gly-t(i)-Gly, from an aqueous environment

with zero denaturant to one with denaturant concentration C. SASAα({rb}, {rSC}) and

SASASC
t(i)({rb}, {rSC}) are the solvent accessible surface areas [142], respectively, of the

backbone and the sidechain i [of type t(i)] in the conformation specified by the coordi-

nates {rb}, {rSC}, whereas SASA
α
Gly−α−Gly and SASASC

t(i),Gly−t(i)−Gly are the corresponding

reference solvent accessible surface areas when an amino acid residue of type t(i) is embed-

ded in the tripeptide Gly-t(i)-Gly. In our simulations, solvent accessible surface areas and

their derivatives with respect to Cartesian coordinates (the latter are needed for Langvein

12

Page 12 of 57Physical Chemistry Chemical Physics

P
h

ys
ic

al
 C

h
em

is
tr

y 
C

h
em

ic
al

 P
h

ys
ic

s 
A

cc
ep

te
d

 M
an

u
sc

ri
p

t



dynamics simulations, see below) are computed using the TINKER software [143], which

is partly based upon the methodology developed in Refs. [144, 145]. We use the same

expressions

δgαtrf(C) = mαC + bα (9)

δgSCtrf,t(i)(C) = mSC
t(i)C + bSCt(i) (10)

for the reference C-dependent transfer free energies and the same m and b parameters

as those in O’Brien et al. Specifically, the present mα, bα, mSC
t(i), and b

SC
t(i) are equivalent,

respectively, to their mBB, bBB , mk, and bk parameters [where k = t(i) labels amino

acid type]; the numerical values of which are provided in Table S3 of Ref. [82]. The bα

and bSCt(i) parameters for urea are zero, which is expected if the δgtrfs are indeed linear

in denaturant concentration. However, the corresponding b parameters for guanidinium

chloride (GdmCl) are nonzero [82]. This peculiar behavior is a reflection of the ionic

nature of GdmHCl, which leads to the well-known property that [GdmHCl]-dependent

transfer free energies do not extrapolate to the origin [146].

Three related models based upon the above SC formulation are considered in the

present study. We refer to them as the SC-Gō, SC-urea and SC-GdmHCl models. The

potential energy of the SC-Gō model is given entirely by the (ET)SC−Go function in Eq. (2),

whereas the potential energy functions of the SC-urea and SC-GdmHCl models are given

by the expression ET = σ(ET)SC−Go + ∆Gtrf in Eq. (1) wherein the ∆Gtrf term is spec-

ified to account for urea and GdmHCl dependence respectively. In our SC-urea and

SC-GdmHCl models, σ is adjusted so that the denaturant concentration at the folding-

unfolding transition midpoint (at which point the folded and unfolded populations are

equal) coincides with that determined from experiment. The tuning of σ is similar to the

method of adjusting the simulation temperature in the recent works of Thirumalai and

coworkers [82, 83]. The difference between the two approaches is minimal but they are

not identical because Langevin dynamics (see below) is temperature dependent.

As for the Cα-Gō and db models described above, Langevin dynamics [70, 71, 147] is

used for folding kinetics simulations and thermodynamic sampling in the SC models. The

simulation is based on a set of equations of the form mv̇(t) = Fconf(t)−mγv(t)+η(t) (one

equation for each Cartesian coordinate in {rb}, {rSC}), where m, v, v̇, Fconf , γ, η, and t are

mass, velocity, acceleration, conformational force (including SASA-dependent forces in the

SC-urea and SC-GdmHCl model), friction (viscosity) coefficient, random force, and time,

respectively. The random force autocorrelation function 〈η(t)η(t′)〉 = 2mγkBTδ(t − t′),

where kB is Boltzmann constant, T is absolute temperature, and δ here denotes the Dirac

delta function. Following the prescription of Veitshans et al. [147], we use an integration
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time step δt = 15 fs (1.5 × 10−14s). In the results reported below, time is reported in

units of integration time steps. The mass m for each bead is taken to be 2× 10−22g (120

g mol−1) here, which is similar to the corresponding mass of 1.8× 10−22g per bead used

in the two-bead SC model of Liu et al. [83] and comparable to the mass of 3× 10−22g per

residue used in the Cα model of Veitshans et al. [147]. In view of an earlier test conducted

by our group indicating that shapes of simulated chevron plots are insensitive to variation

of the frictional coefficient over more than three orders of magnitude [30], here we have

adopted a low frictional coefficient [147] γ = 1.65 × 1010s−1 (mγ = 3.3 × 10−12gs−1) to

enhance computational efficiency as in our previous studies [70, 71].

A measure of local-nonlocal coupling. We define a local-nonlocal coupling [53,59]

parameter Clnl to quantify the degree to which two local chain segments centered respec-

tively around each of two residues in a contact pair adopt local conformations consistent

with those in the native structure. For a given native contact between residues i and

j, we compute the root-mean-square deviation (rmsd) values [148] of the two 5-residue

segments centered around each of the contacting residues (i.e., residues i−2, i−1, i, i+1,

i+ 2 and residues j − 2, j − 1, j, j + 1, j + 2) from their respective local conformations

in the native PDB structure. If both rmsd values are < 0.8 Å, we set Clnl = 1; otherwise

we set Clnl = 0 (e.g., Clnl = 1 and 0, respectively, for the configurations in Fig. 1c and

Fig. 1d). If one or both of the contacting residues is/are at or near the chain ends, the

chain segment(s) considered is/are shortened by one or two residues accordingly (for i or

j = 1, the chain segment considered consists of residues 1, 2 and 3; for i or j = 2, the

chain segment considered consists of residues 1, 2, 3, and 4; similar rules apply to i or

j = n− 1 or n).

Results and Discussion

To gain insight into the db and SC effects on local-nonlocal coupling and chevron

behaviors, we apply — as a case study — the above model formulations to the IgG-

binding B1 domain of Protein L from Peptostreptococcus magnus (PDB id: 1HZ6; residues

1–64) [149]. This domain (referred to as Protein L below) is a two-state folder [150]. One

of our reasons for choosing Protein L is to compare our results with those of O’Brien

et al. because it is one of the two proteins that have been investigated using their SC

model [82]. To conduct a comparison of our SC Protein L models among themselves and

with that of O’Brien et al. on as close to an equal footing as possible, we use a uniform

σ = 0.398 [Eq. (1)] for all three of our SC models throughout this work with simulation

temperatures Ts = 331 K for the SC-urea model and Ts = 338 K for the SC-GdmCl model.
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Thermodynamic stability of the native state is modulated by concentration C of urea and

of GdmCl, respectively, in these models; whereas native stability is modulated only by

temperature in the SC-Gō model, for which the midpoint temperature is 356 K. The

parameter choices for our SC models lead to midpoint urea and GdmCl concentrations

that are essentially identical to the corresponding midpoint concentrations in the model

of O’Brien et al., and simulation temperatures that are very similar to their TS = 328

K [82].

Energetics of local-nonlocal coupling: An example. We begin by addressing

how local-nonlocal coupling arises in the models by comparing the energetic favorabilities

of the example conformations in Fig. 2 for two pairs of 5-residue segments. Both pairs

contain a native contact between the center residues of the two segments. However, one

of the pairs satisfies local-nonlocal coupling (Clnl = 1, Fig. 2a and c) whereas the other

does not (Clnl = 0, Fig. 2b and d). Using the potential energy function (ET)SC−Go for the

SC-Gō model in Eq. (2), we analyzed the total interaction energies between the segments

and the contributions from individual terms belonging to (ET)SC−Go. We consider below

three different methods of comparing the segment pairs’ interaction energies. In all in-

stances considered, the local conformations of the segment pair satisfying local-nonlocal

coupling consistently lead to a lower total interaction energy within the pair than the

local conformations of the segment pair not satisfying the aforementioned local-nonlocal

coupling criterion.

We first consider the interaction energies between the two rigid segment pairs in iso-

lation. In this comparison, only the 20 beads (backbone and SC positions) within each

of the two segment pairs are compared, and all the Cα (backbone) and SC positions are

fixed as shown in Fig. 2c and d. In this case, the total interaction energies within the

segment pairs for the configurations in (c) and (d) are 9.54 and 12.26 kcal mol−1, re-

spectively. Thus, the energy difference between the segment-pair configuration in Fig. 2

that satisfies local-nonlocal coupling (c) and the one that does not (d) is ∆E = −2.72

kcal mol−1. Accordingly, the ratio of Boltzmann populations of the two configurations

[population of (c) divided by that of (d)] at the simulation temperature T = Ts = 356 K is

exp(−∆E/kBTs) = 46.6, indicating that configuration (c) is strongly favored over config-

uration (d). Part of ∆E is a consequence of the more favorable inter-segment nonbonded

interactions in configuration (c) than those in configuration (d). Their contributions to

Ec, which depend on the distances between various interaction sites in the two configura-

tions (Fig. 2e and f), are −0.81 and −0.19 kcal mol−1, respectively, accounting for −0.62

kcal mol−1 in the overall energy difference ∆E. A major part of the large ∆E, however,

is attributable to the terms in Ebond and Eangle. For instance, the energies for the Cα-SC
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bond length, backbone bond angle, backbone dihedral angle, and improper dihedral angle

terms in (c) are 3.57, 0.56, 0.048, and 0.84 kcal mol−1, respectively, which are all signif-

icantly lower than the corresponding energies of 5.35, 1.48, 0.46, and 1.82 kcal mol−1 in

(d). This comparison illustrates that more stable inter-segment nonbonded interactions

as well as less strain in bond lengths, angles, and dihedral angles in configurations that

satisfy local-nonlocal coupling relative to configurations that do not can all contribute to

the tendency for the former to be energetically favored over the latter.

To assess the robustness of the above-observed favorability of local configurations

consistent with local-nonlocal coupling, we conduct another comparison in which the

SCs in configurations (c) and (d) in Fig. 2 are allowed to move while keeping only the

backbone positions fixed. The resulting Boltzmann-averaged energy within the segment

pairs for configurations (c) and (d) are 8.79 and 10.92 kcal mol−1, respectively, leading

to ∆E = −2.13 kcal mol−1 and a [(c)/(d)] population ratio (defined above) that equals

to exp(−∆E/kBTs) = 20.3. Thus, on average, the mainchain configuration in (c) remains

significantly favored over the mainchain configuration in (d). Because the SCs can now

sample energetically more favorable positions, the differences in average bond-length,

bond-angle and dihedral-angle energies here between the two configurations are reduced

significantly from the corresponding energy differences in the preceding paragraph.

We also explore the interplay between local-nonlocal coupling of a local configuration

and the rest of the protein conformation. To this end, we compare the average interaction

energies within the two segments as in the preceding paragraph (SC positions allowed

to vary); but instead of considering the two segments in isolation, the conformational

sampling now also takes into account the interactions between the segment pairs and the

rest of the conformations in which the two segment pairs are embedded (Fig. 2a and b). In

other words, the Boltzmann averaging is now weighted also by the interactions between the

segments and the rest of the protein chain. This computation results in averaged energies

of 7.18 and 9.25 kcal mol−1, respectively, for the mainchain configurations in Fig. 2c and

d. It follows that ∆E = −2.07 kcal mol−1 and the above-defined population fraction

exp(−∆E/kBTs) = 18.6, which is approximately equal to the corresponding population

fraction in the preceding paragraph. Thus, in this example, the mainchain configuration

in Fig. 2c that satisfies our local-nonlocal coupling criterion is consistently more favored

over the mainchain configuration in Fig. 2d irrespective of whether their interactions with

other parts of the chain conformations in Fig. 2a and b are taken into consideration.

Desolvation-barrier effects. The mainchain conformations of the segment pairs

in Fig. 2c and d are also a good illustration of how db effects are conducive to local-

nonlocal coupling (Fig. 3). In this example, the Cα positions of the center contacting
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residues in configuration (b) (Fig. 3b) that does not satisfy local-nonlocal coupling are a

bit farther apart than the center Cα positions in configuration (a) (Fig. 3a) that satisfies

local-nonlocal coupling. Because the bond-length and bond-angle terms of configurations

(a) and (b) are essentially identical in this example, the energy difference ∆E between the

two configurations is determined essentially by the difference in nonbonded interaction

energy. For the Cα-Gō model in which db effects are absent, the nonbonded inter-segment

interaction energies of the two configurations do not differ by too much (black arrow in

Fig. 3c and blue arrow in Fig. 3d). However, in the db model in which the finite size

of water molecules is taken into consideration, configuration (b) is strongly penalized be-

cause water is excluded in between the two contacting residues, leading to a much higher

(unfavorable) energy (black arrow in Fig. 3d). Accordingly, the contribution to inter-

segment nonbonded energy Ec from configuration (a) minus that from configuration (b)

in Fig. 3 is −0.98ǫ − (−0.57ǫ) = −0.41ǫ for the Cα-Gō model but is −0.98ǫ− (+0.098ǫ)

= −1.08ǫ for the db model. In other words, by this inter-segment nonbonded term alone,

the favorability of configuration (a) over configuration (b) is increased in the db model

relative to the Cα-Gō model by −1.08ǫ − (−0.41ǫ) = −0.67ǫ, where a more negative

value in this difference means a stronger db-induced discrimination between configura-

tions (a) and (b). When intra-segment Ec energies are also taken into account, the total

Ec energy within the two segments in configuration (a) minus that in configuration (b) is

−1.87ǫ−(−1.19ǫ) = −0.68 for the Cα-Gō model but is −1.87ǫ−0.10ǫ = −1.97ǫ for the db

model, leading to an even stronger db-induced discrimination between configurations (a)

and (b) [−1.97ǫ − (−0.68ǫ) = −1.29ǫ]. This comparison underscores a key consequence

of db, which is that looser configurations of native nonlocal contacts that allow for more

local conformational freedom — and hence weaker local-nonlocal coupling — are strongly

penalized by a significantly shorter spatial range of attractive native interaction entailed

by the db [76]. Deviations of sequentially local conformations are also strongly penalized

by intra-segment db as well. All in all, the db-induced narrowing of the range of at-

tractive interactions implies that even small deviations from native packing are strongly

discouraged, thus leading to a more cooperative, or all-or-none-like transition, between

the folded and unfolded states of a protein [76]. More evidence for this general trend is

offered below.

Folding cooperativity and local-nonlocal coupling: Comparing models. The

free energy profiles of our Protein L models simulated at their respective transition mid-

point as functions of the progress variable Q are provided in Fig. 4a. Consistent with

above considerations, SC and db effects enhance folding cooperativity. Among the mod-

els tested here, the db model appears to be thermodynamically most cooperative in that
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it has the highest free energy barrier (∼ 9kBT at mid-Q) between the unfolded (low-Q)

and the folded (high-Q) minima. The corresponding barriers in the SC models are not as

high (at ∼ 4 – 6kBT ), but are nevertheless significantly higher than the free energy barrier

for the Cα-Gō model (∼ 2kBT ), confirming the expected enhancement of folding coop-

erativity by SC packing. Notably, the SC-urea and SC-GdmCl models are slightly more

cooperative (with slightly higher free energy barriers) than the SC-Gō model, suggesting

that the SASA-dependent interaction potentials likely contain cooperative features that

are absent in the simpler potential function for the SC-Gō model.

Figure 4b shows the degree of local-nonlocal coupling of the conformations sampled

under the same modeling conditions as those in Fig. 4a. As indicated above, the local-

nonlocal coupling parameter Clnl measures the tendency of local conformations centered

around a native contact to also adopt nativelike local conformations. It follows that, by

definition, Clnl = 1 at Q = 1 for all models. However, the dependence of Clnl on Q for

Q < 1 can be different in different models. For the least cooperative Cα-Gō model, the

average 〈Clnl〉 varies in a roughly linear manner with the number of native contacts. In

this case, the slope of 〈Clnl〉 vs. Q is approximately unity. In comparison, the db model

exhibits higher local-nonlocal coupling over the entire range of Q < 1 (green curve). The

highest degree of local-nonlocal coupling is seen for the SC models, with 〈Clnl〉 > 0.4 for Q

values as low as 0.1. In other words, close to one half of the native contacts that exist in the

highly open conformations in the SC models are centered around two spatially adjacent

segments of nativelike local conformations. Among the SC models, the SC-denaturant

models (top two curves in Fig. 4b) exhibit a slightly higher local-nonlocal coupling than

the SC-Gō model (blue curve). Taken together, the observations in Fig. 4b are consistent

with our expectations that db and SC effects are conducive to local-nonlocal coupling. The

quantitative trends obtained here serve to substantiate the above qualitative discussion

of the two example segment-pair configurations analyzed in Figs. 2 and 3. Interestingly,

the SC models entail higher local-nonlocal coupling than the db model (Fig. 4b) despite

the lower cooperativity of the SC models relative to the db model (Fig. 4a). This result

indicates that although local-nonlocal coupling is expected to be correlated with folding

cooperativity, the physical origins of the two properties are not entirely identical. Thus,

comparisons of Clnl values between theory and experiment or between coarse-grained and

atomic simulations should offer new physical understanding in addition to the insights

gained by considerations of folding cooperativity [23, 35, 53].

Native-state fluctuations. A conspicuous difference between the db and other

models in Fig. 4a is that the folded minimum for the db model is at Q = 1 whereas the

folded minima for the other models are at a significantly lower Q = 0.75 – 0.85 with
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the folded minima of the SC models adopting a slightly lower Q values than that of the

Cα-Gō model. This difference, which has been noted for the Cα and db models [31, 71],

means that native-state packing in the db model is significantly tighter than that of the

SC and Cα models. The situation is illustrated by the conformational drawings in Fig. 5.

What degree of structural fluctuation in the native state is realistic? Ultimately this is

a question that has to be settled by experiments; for example, by matching molecular

dynamics simulation data with NMR measurements of bond vector dynamics [151]. As

far as simulations are concerned, the mainchain rmsd at the native free energy minimum

of the db model is ∼ 1 Å (Fig. 5). Such level of structural fluctuation is in line with

Cα rmsd values of ∼ 1.3 Å observed in an explicit-solvent control simulation of ubiqutin

in water by Alonso and Daggett [152]. This favorable comparison between the db model

and atomic simulation suggests that the larger structural fluctuations characterized by

the ∼ 2 Å mainchain rmsd values in Fig. 5 for the SC and Cα-Gō models may be

too large, in general, to mimick behaviors of cooperatively folding proteins in atomic

simulations. In the recent atomic folding simulations of 12 proteins by Lindorff-Larsen et

al., the trajectories of chignolin, villin, WW domain, NTL9, and protein G indicate that

their native-state Cα rmsd is ∼ 1 Å, which is again in line with the trend seen in our

coarse-grained db model. However, their simulated trajectories for trp-cage, BBA, BBL,

protein B, homeodomain, α3D, and λ-repressor show native states that are much more

loosely packed with Cα rmsd value of ∼ 4 Å or more [100].

Route measure. A simple yet informative characterization of the topography of

energy landscapes is provided by the route measure [153]

R(Q) =
1

Q̃nQ(1 −Q)

Q̃n
∑

k=1

[P (ck|Q)−Q]2 , (11)

where P (ck|Q) is the probability of native contact ck among conformations that have a

given Q value. Here Q̃n = 137 is the total number of contacts in the native contact set

of every one of our Protein L models. It follows from this definition that 0 ≤ R(Q) ≤ 1.

As discussed previously, larger R(Q) means that the folding routes at a given Q value

are more channeled [133, 153]. Figure 6 provides a comparison of the route measures of

our Protein L models, which are all computed under the same midpoint conditions as

those in Fig. 4. The main message from Fig. 6 is that the cooperativity-enhancing db and

SC effects also lead to more route channeling. The R(Q) function for the Cα-Gō model

here is similar to the R(Q) functions for other Cα-Gō models for small, single-domain

proteins [75,133]. In comparison, the R(Q) function for the db model is generally higher,

as has been seen in the study of db models of other proteins [75]. Interestingly, SC effects
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lead to even more channeled routes at low Q values; but R(Q) for SC models falls below

that of the db model at intermediate and high Q values. Echoing the trends in folding

cooperativity (Fig. 4a) and local-nonlocal coupling (Fig. 4b), the folding routes of SC-

urea and SC-GdmCl models are slightly more channeled than that of the SC-Gō model.

The R(Q) behavior of the db model is quite unique in that significant route channeling

is observed at Q ∼ 0.9 when the protein structure is very close to being fully native.

A similar double-hump feature of the R(Q) function has also been observed in other db

models [75]. It will be instructive to elucidate how db effects can give rise to this peculiar

property and to ascertain whether similar behaviors can be observed experimentally.

Native stability and chevron behaviors. We next turn to the relationship between

thermodynamic and kinetic properties of these models. The thermodynamic stability of

the folded state relative to the unfolded state as a function of denaturant concentration

is shown in Fig. 7a for the SC-urea and SC-GdmHCl models. The free energy of folding

in units of kBT is given here by ∆Gf/kBT = − ln[P (Q > QF)/P (Q < QU)], where the

threshold Q values QF and QU are chosen to provide physically reasonable demarcations

for the folded and unfolded states (Fig. 7). As stated above in Models and Method, the σ

parameters governing the relative weights of the SC-Gō and denaturant-dependent com-

ponents in these models [Eq. (1)] are tuned for a given midpoint denaturant concentration

at which ∆Gf = 0. For this purpose, we use the experimental transition midpoint for

GdmHCl [150] to set the σ value for our SC-GdmHCl model. Corresponding experimental

data for urea, however, are not available. In the absence of experimental data, we use

the midpoint urea concentration in the Protein L model of O’Brien et al. [82] to set the

σ parameter for the present SC-urea model to facilitate comparison of our results with

those from their model.

Figure 7a shows that the ∆Gf/kBT values for the two models are different at zero

denaturant. This feature of the models appears counter-intuitive but it is a consequence

of the nonzero bα and bSCt(i) parameters in Eqs. (9) and (10) for GdmHCl [82], which

in turn is a reflection of the peculiar effects of GdmHCl discussed above [146]. One

may consider an alternative formulation in which the σ parameters for the models are

tuned to achieve the same zero-denaturant ∆Gf , but in that case the midpoints would

be changed. Taking the models’ simulation temperatures (Ts) into consideration, Fig. 7a

shows zero-denaturant folding free energy ∆Gf ≈ −6.9 and −3.8 kcal mol−1, respectively,

for our SC-urea and SC-GdmHCl models at C = 0. These values are different from the

corresponding values of −5.7 and −6.0 kcal mol−1 reported by O’Brien et al. [82]. Part of

the difference might be related to their definition of fractional native population, which is

not identical to ours. It is not straightforward, however, to compare the C-dependence in
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the two studies because their folding/unfolding transition curves provide fractional native

population rather than ∆Gf as a function of C.

The chevron plots for the two models (Fig. 7b) are simulated by Langevin dynamics

as described above. Each mean first passage time (MFPT) data point in Fig. 7b is

determined by ∼ 200 – 800 trajectories. The chevron plots for both the SC-urea and

SC-GdmHCl models exhibit a mild rollover in the folding and unfolding arms. The

severity of rollover may be measured by the deviation of the actual simulated chevron

(data points) from the ideal two-state chevron consistent with folding thermodynamics

(dotted V-shape). By this criterion, the SC-GdmHCl model shows a lesser degree of

folding-arm rollover than that of the SC-urea model. This trend is possibly related to the

much smaller midpoint C for the SC-GdmHCl model, which means that the range of C

that the chevron folding arm needs to cover is much narrower in the SC-GdmHCl model

than in the SC-urea model.

We have also compared the chevron plots for all the models considered in this study

on the same footing. In Fig. 7c, the logarithmic folding and unfolding rate ln(rate) =

− ln(MFPT) for every model is plotted as a function of the native stability ∆Gf/kBT of

that model. As observed before in models for other proteins [71], the rollover exhibited by

the chevron plot for the Cα-Gō model (red data points) is much more severe than the other

models because the Cα-Gō model is the least thermodynamically cooperative among the

models we consider (Fig. 4a). In the ∆Gf/kBT representation in Fig. 7c, the degrees of

rollover for the db and the three SC models are quite similar. The SC-urea, SC-GdmHCl

and SC-Gō results afford a useful comparison between model chevron plots constructed

in terms of ln(rate) as a function of native stability ∆Gf/kBT and those constructed as a

function of denaturant concentration C as in experiments. Because of the complexities and

uncertainties in modeling denaturant concentration directly and the significantly higher

computational cost it entails, following the approach in early simulations of chevron plots

for two-dimensional lattice models [5, 154], analyses of chevron plots of lattice [59, 81,

155–157] and continuum [26, 30, 53, 70, 71, 74, 81, 124] three-dimensional protein chain

models by our group since 2002 have until now relied solely on using either intrachain

interaction strength (e.g., Refs. [70,155]) or native stability [30,53,59,71,74,81] as proxy for

denaturant concentration [124]. To assess the experimental relevance of this body of work

critically, it is instructive to observe that the chevron plot for the SC-Gō model has only

slightly more folding-arm rollover than the chevron plots for the SC-urea and SC-GdmHCl

models. This trend is consistent [71] with the slightly higher thermodynamic cooperativity

of the SC-urea and SC-GdmHCl models than the SC-Gō model. Because the interactions

in the SC-urea and SC-GdmHCl models are based upon SASA and transfer free energies
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(Fig. 4a), their slightly higher degrees of thermodynamic cooperativity probably originates

from the nonadditive aspects of SASA-type interactions [158]. It should also be recognized

that the variation in ∆Gf/kBT in the present SC-Gō model is brought about by varying

T rather than by varying the intrachain interaction strength while keeping T constant.

Nonetheless, as verified by a test simulation conducted by our group (Fig. 9 in Ref.

[81]), within a range of ∆Gf/kBT values typically spanned by real proteins in denaturant

solutions of various concentrations, the model chevron plot obtained by varying T is

expected to differ little from that obtained by varying interaction strength. In view of all

of the above considerations, the similarity among the chevron plots of the SC-Gō, SC-urea

and SC-GdmHCl models in Fig. 7c suggests quite convincingly that using ∆Gf/kBT as

proxy for denaturant concentration to model chevron plots of thermodynamically two-

state folders is a reasonably accurate and computationally efficient approach.

Internal friction. In view of the prevalence of rollovers in our model chevron plots, we

delve deeper into the origin(s) of this behavior. As outlined above in Introduction, a possi-

ble underlying cause for chevron rollover is transiently populated intermediates [116–120].

For the SC-urea and SC-Gō models, the example trajectories in Fig. 8a,b show that fold-

ing kinetics is two-state-like around the folding-unfolding transition midpoint in that the

unfolded part of the kinetic trajectory under midpoint conditions is concentrated in a

relatively narrow range of Q values. However, intermediate conformations are transiently

and significantly populated under strongly folding conditions (Fig. 8c). Instead of a sharp

kinetic separation between a folded state narrowly distributed around Q ∼ 0.8 and an

unfolded state narrowly distributed around Q ∼ 0.15 as in Fig. 8a,b, we see in Fig. 8c

repeated excursions from the unfolded state to intermediate Q ∼ 0.4 conformations that

fail to proceed directly to the folded state, in many cases the chain returns to the un-

folded state. This deviation from two-state-like kinetic transitions under strongly folding

conditions is concomitant with a decrease in folding rate relative to the ideal folding rate

for a hypothetical two-state transition, i.e., a folding-arm rollover (Fig. 7c). A similar

connection between appreciable transient population of intermediate conformations and

folding-arm rollover was established in a lattice Gō model [156] (see Fig. 4 of this refer-

ence) and is observed in the present Cα-Gō model as well (Fig. 9). In the case of our

Cα-Gō model, even the trajectory under essentially midpoint conditions (Fig. 9a) appears

less two-state-like — i.e., it has more broadly distributed Q values for the unfolded part

of the trajectory — than the midpoint trajectories of the SC models in Fig. 8a,b. This

trend is consistent with our observation above that the Cα-Gō model is less cooperative

than the SC models.

In general, folding-arm rollover entails a stability-dependent pre-exponential front fac-
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tor in the transition state picture, with the front factor for folding decreasing with increas-

ing native stability [70, 155]. The front factor corresponds to an effective conformational

diffusion coefficient, and is an inverse measure of internal friction [70,155]. It follows that

folding-arm rollover may be interpreted [70, 155] as an increase in internal friction of the

protein chain [159, 160] as native stability increases. Because the SC-Gō model does not

admit favorable nonnative interactions, no deep kinetic traps involving attractive nonna-

tive contacts are expected. Nonetheless, mild kinetic traps can arise in Gō-like models

because of topological hindrance to directly reaching the native structures from certain

partially folded conformations, as has been illustrated in a lattice context [156]. Such a

mechanism may underlie some of the transiently populated intermediates in Fig. 8; but

alternatively they may well correspond merely to partially folded conformations that are

not sufficiently stable to incorporate the unfolded part of the chain into a globally folded

structure before the partially folded part unravels itself.

Hammond behavior and ground state effect. The above focus on internal fric-

tion and front factor emphasizes kinetic effects that cannot be deduced soley from the

shape of a free energy profile along a progress variable. In contrast, other suggested causes

of chevron rollover are formulated in terms of proposed shapes for a protein’s free energy

profile. In the latter formulations, attention is largely given to the possible changing

position of the transition-state peak along the progress variable while tacitly assuming

constancy of the front factor(s). In such perspectives, folding-arm and unfolding-arm

chevron rollovers are caused, respectively, by a native-stability-dependent change in the

difference in SASA between the transition state and the unfolded state and between the

transition state and the folded state. (In contrast, these SASA differences are taken to

be constant for a protein that possesses a chevron plot with linear fold and unfolding

arms.) Hammond behavior is a classic, intuitive paradigm for shifting transition state

position in any reaction. Conventional Hammond behavior stipulates that the struc-

tural difference between the reactant and transition states decreases when the free energy

difference between the two states decreases [161]. For example, Hammond behavior in

protein unfolding means that “the transition state moves closer to the folded state along

the reaction coordinate as a result of destabilization of that state” [162]. Inasmuch as

Hammond behavior is a cause for chevron rollovers, it can emerge in the context of free

energy profiles with a broad transition-state plateau [163] or sequential barriers [121,164].

In this context, it has been pointed out that chevron rollovers can also arise from “ground

state effect,” i.e., a shift in position of the unfolded or folded states instead of a shift

in position of the transition state [121], or, more generally, a combination of Hammond

behavior and ground state effect [164].
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As far as our Q-dependent free energy profiles in Fig. 4a are concerned, neither broad

transition-state plateaus nor sequential barriers are observed for our models for Protein L,

though sequential barriers have been featured in db models for other proteins [124, 165].

Nonetheless, Hammond behavior is apparent (Fig. 10). As highlighted in Fig. 10b, the

position of the putative transition state — which corresponds to the peak position of the

free energy barrier — is seen moving toward smaller Q values when the folding conditions

become stronger, i.e., when the unfolded state becomes more destabilized (left arm of the

light blue region). In the same vein, the free energy peak moves toward larger Q values

when the folded state becomes more destabilized (right arm of the light blue region).

A modest ground state effect is also observed in Fig. 10b: the unfolded minimum is

shifted slightly to higher Q values as the unfolded state is destabilized, whereas the folded

minimum is shifted slightly to lower Q values as the folded state is destabilized.

To what extent does this Hammond behavior account for the chevron rollovers in

our SC-urea model? If one assumes a transition state theory (TST) formulation with an

essentially constant front factor, folding and unfolding rates would be given by an equation

in the form of (rate) ∝ exp(−∆G‡/kBT ) and thus ln(rate) = −∆G‡/kBT+constant, where

∆G‡ is the barrier height. Here we compute ∆G‡ as a population ratio while taking into

account the shifting Q-position of the folding/unfolding barrier as urea concentration C

is varied (Fig. 10b). We obtain a TST-predicted chevron plot by choosing the constant

in the above equation for ln(rate) such that the TST-predicted rate coincides with the

actual simulated rate at the transition midpoint. Comparison between this TST-predicted

chevron plot (blue curves in Fig. 10a) and the directly simulated kinetic data for the same

model (filled and open squares in Fig. 10a) indicates that the TST-Hammond picture

does provide a general rationalization for the curved chevron arms from simulation and

may even be nearly adequate as an explanation for the curvature of the unfolding arm.

While these trends are noteworthy, the TST-Hammond picture by itself is quite far from

providing a full account of the observed folding-arm rollover. Specifically, Fig. 10a shows

that as C decreases, the simulated folding rate becomes significantly slower than the TST-

predicted folding rate, suggesting strongly that a diminishing effective front factor, i.e.,

increasing internal friction as discussed above, is at play. Indeed, the insufficiency of a

TST-Hammond account of folding-arm chevron rollover in our model is not surprising in

view of the general limitations of the common TST picture for protein folding [166].

Comparison with experiment: Rollovers and asymmetric chevron arms. To

ascertain the strength and limitation of the denaturant-dependent SC models, we compare

the simulated chevron plot of our SC-GdmHCl model with that determined by experiment

[150] (Fig. 11). It is clear that although the simulated chevron plot (brown data points)
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exhibits a general trend similar to the experimental chevron plot (black data points), there

are notable deviations in three respects. First, the overall thermodynamic stability ∆Gf

of our SC-GdmHCl model at zero denaturant is −3.8 kcal mol−1 as noted above, which is

lower than the corresponding experimental ∆Gf ≈ −4.7 kcal mol−1 reported in Ref. [150].

Second, whereas the simulated chevron arms exhibit small but appreciable rollovers, the

experimental chevron arms are linear. Third, whereas the folding and unfolding arms of

the simulated chevron plot appear symmetric (making a symmetric V-shape), they are

asymmetric in the experimental chevron plot (making a skew V-shape). More specifically,

whereas the slopes of the folding and unfolding arms (−mf and mu respectively) of the

ideal chevron (dotted V-shape in Fig. 11) obtained from fitting simulated logarithmic rates

have essentially the same absolute value, viz., mf = 0.88 kcal mol−1M−1 and mu = 0.83

kcal mol−1M−1 (mf/mu ≈ 1.06), the corresponding kinetic m values for the experimental

chevron plot are mf = 1.5 kcal mol−1M−1 and mu = 0.5 kcal mol−1M−1; and thus a large

ratio of mf/mu ≈ 3.0 between the folding and unfolding kinetic m values.

An evaluation of the physical implications of the above-noted discrepancies between

simulation and experiment is in order. The discrepancy in native stability per se may

not represent a fundamental shortcoming of the model, because it likely arises from the

difference between the present simulation temperature Ts = 331 K for the SC-GdmHCl

model and the experimental temperature Texpt = 295 K. A higher simulation temperature

weakens the denaturant sensitivity of the transfer free energies. If this effect is taken into

account, our simulation result should predict a stability ∆Gf ≈ −3.8(Ts/Texpt) = −4.3

kcal mol−1 at Texpt. This predicted stability is not too far from the experimental value of

−4.7 kcal mol−1.

The presence of mild rollovers in the model chevron plot suggests that the SC-GdmHCl

model is not as cooperative as real Protein L. In other words, SC effects and SASA-

dependent interactions as formulated in this model are likely not quite sufficient to fully

capture the cooperativity of real two-state proteins. In this connection, it is noteworthy

that in the recent study of the src SH3 domain by Liu et al. that used a viscosity

coefficient that corresponds to the viscosity of real water, the zero-denaturant folding rate

simulated using their SC model is 16-fold faster than the experimental folding rate [83].

This result suggests that their SC model for src SH3 is also less cooperative than the real

protein. Nonetheless, because the rollovers in the present model chevron plot are mild, it is

likely that further addition of physical features such as db effects and direction-dependent

hydrogen bonding would be able to bring the cooperativity of the model up to the level

of real two-state folders. In this regard, it is valuable to contrast our GdmHCl-dependent

SC model chevron plot for Protein L with the chevron plot for src SH3 simulated by
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Liu et al. that appears linear [83]. Compared to the number of trajectories we used to

determine folding and unfolding rates (Figs. 7b and 12), their rates were estimated using

a smaller number of trajectories because they employed a higher viscosity coefficient to

mimick the aqueous environment (50 trajectories for C = 0 and 60 trajectories for each

of the data points for other C values). The smaller number of trajectories lead to more

scatter in their data. For instance, their relaxation rate at 0.5 M is appreciably lower

than the fitted chevron curve, suggesting a possible onset of rollover, if not for the higher

relaxation rate at 0 M [83]. In contrast, to ensure better convergence of our simulated

rates, we opted for a lower viscosity coefficient, γ = 0.0125 [29, 70], which corresponds

to a low friction regime [147]. It is possible that the mild chevron rollover we observed

might disappear if the Langevin dynamics simulations were conducted at higher viscosity.

However, as mentioned above, a prior test conducted by our group showed for one example

that the overall shape of model chevron plots remains essentially unchanged over a wide

range of γ (1.25× 10−4 to 22.5) [30] that encompasses the γ = 12.5 value suggested to be

roughly equivalent to that for water [147]. Therefore, we expect the mild chevron rollover

in the present SC-GdmHCl model to be a robust feature even at higher viscosity. As

such, it will be extremely instructive to elucidate the seemingly different behaviors of our

SC model and the Liu et al. model [83] to ascertain, for example, whether the difference

in chevron behavior originates from the different native topologies of the proteins and/or

the differences in the folding and unfolding criteria as well as in other aspects of the two

modeling setups.

Possible difference in the rate-limiting steps of folding and unfolding. The

failure of the SC-GdmHCl model to capture asymmetric chevron plot observed in experi-

ment may represent a fundamental limitation of this class of models. Indeed, all chevron

plots obtained thus far from simulation of native-centric models [30, 53, 70, 71, 81, 83]

and native-centric models augmented with sequence-dependent interactions [53, 124] are

invariably symmetric, i.e., with mf ≈ mu. This phenomenon applies also to the above-

mentioned recent model chevron plot for src SH3 simulated by Liu et al. [83]. However,

in the case of src SH3, the experimental chevron plot is also quite symmetric (though it

is slightly less symmetric than the simulated chevron plot) [167] and thus questions of

discrepancy did not arise.

The inability of common coarse-grained protein chain models to produce asymmetric

chevron plots is a basic deficiency that needs to be addressed because asymmetric chevron

plots are commonplace in experiments. In the extreme case of CspB, the unfolding arm

exhibits hardly any dependence on denaturant concentration (mu ≈ 0) [168]. These ob-

servations imply that, for many two-state proteins, the activation events for folding and
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unfolding have very different denaturant dependence. At a deeper level, this asymmetry

is likely related to the asymmetry observed experimentally for temperature dependent

folding and unfolding kinetics: Whereas folding rates are significantly non-Arrhenius, un-

folding rates are often Arrhenius or nearly so. To our knowledge, this phenomenon was

first identified as early as in the 1960s for bovine chymotrypsinogen A [169, 170], as dis-

cussed by Lumry and Biltonen (Fig. 1 in Ref. [171]). A similar behavior was also observed

in 1984 by Segawa and Sugihara for hen lysozyme [172] and for several other proteins since

then (see discussion in Refs. [74,157]). Because non-Arrhenius folding rates are most prob-

ably attributable to solvent-mediated interactions and principally to hydrophobic effects,

the Arrhenius or near-Arrhenius behaviors of the unfolding rates suggest that the rate-

limiting step of unfolding tends to be less dependent on solvent and thus is less sensitive

to variation of denaturant concentration. This interpretation is consistent with an early

theory stipulating that the rate-limiting event in protein denaturation is the disruption

of the tight SC packing before solvent enters the protein core [78], a physical picture that

was discussed more recently in terms of a “dry molten globule” state [173]. However, the

fact that our SC-GdmHCl model cannot reproduce the experimentally observed chevron-

plot asymmetry indicates the the model cannot fully capture the SC effects proposed in

Ref. [78]. Inspired by these observations, a successful physics-based approach to modeling

chevron asymmetry would likely involve a partial separation between the interactions for

thermodynamic stability and the driving forces for folding kinetics, in a formulation that

follows the same vein as that implemented for a class of rudimentary lattice models to

address folding-unfolding asymmetry [157].

Incorporating nonnative interactions in the SASA-based models. All the

models considered so far in the present study are essentially native-centric, or Gō-like. In

the SC-denaturant (SC-urea and SC-GdmHCl) models, the transfer free energies them-

selves are general physical quantities that do not bias any particular folded structure

and therefore allow for nonnative interactions. However, in the above formulation and

in the formulations of Thirumalai and coworkers [82, 83], the transfer free energies serve

almost exclusively to weaken interactions rather than strengthen interactions — native

or otherwise — because nearly all mα and mSC
t(i) values are negative [82] and therefore, by

Eqs. (8)–(10), promote increase in SASA, and thus unfolding, of the model protein. In

this respect, there is not much substantial difference between the SC-denaturant models

and the SC-Gō model (Fig. 7c). To address potentially unphysical biases in native-centric

formulations, here we explore alternative formulations of the SC-denaturant models that

better utilize the physical possibility of nonnative interactions entailed by the transfer free

energies. Such alternative formulations should be useful in modeling specific nonnative
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interactions in folding that are evident from experiments [126] and may provide a more

physical account of such interactions in the same vein as models that combine Gō-like

and sequence-dependent components [124, 127–132]. As a simple example, we consider a

class of alternative formulations for the SC-urea model. In essence, the formulation of

the SC-urea model in Eqs. (1)–(10) uses a reference denaturant concentration C0 = 0. In

other words, the SC-urea model is equivalent to the SC-Gō model at C = C0 = 0. But

there is no a priori reason, even within the limitations of these models’ basic setup, why

this is the best representation of physical reality. Alternatively, one may choose another

reference denaturant concentration C0 > 0 such that the SC-urea model becomes the

SC-Gō model at this C0. In that case, the transfer free energy contribution provided by

Eqs.(9) and (10) is modified to

δgαtrf(C) = mα(C − C0) + bα (12)

δgSCtrf,t(i)(C) = mSC
t(i)(C − C0) + bSCt(i) , (13)

and the σ parameter in Eq. (1) is re-adjusted accordingly to provide for the same mid-

point as before. In this alternative formulation, because (C − C0) can be negative, the

denaturant dependence is able to promote reduction in SASA and contact formation. As

a result, certain nonnative contacts can be favored by the physico-chemical properties

embodied in the transfer free energies.

We study three such alternative formulations for the SC-urea model by choosing differ-

ent C0 values by monitoring the nonnative interactions in these models and their chevron

behavior (Fig. 12). As expected from previous simulations of chevron plots for models

that allow for favorable nonnative interactions [53,124], C0 > 0 leads to increased folding-

arm chevron rollover (Fig. 12a). Not surprisingly, the number of nonnative contacts

increases with increasing C0, but the increases are modest and are largely confined to

the unfolded state under transition midpoint conditions (Fig. 7c). As has been observed

in similar models [124, 174], nonnative interactions in our modified SC-urea models for

Protein L also tend to lower the folding/unfolding free energy barrier (Fig. 7b). These re-

sults suggest that nonnative interactions in real proteins may be investigated in modified

SC-denaturant formulations in a physical yet straightforward manner.

Concluding Remarks

By conducting a detailed comparison of the thermodynamic and kinetic properties of

a set of native-centric coarse-grained protein chain models that embody physical effects of

desolvation barrier, sidechain packing, and sequence- and denaturant-dependent transfer
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free energies (Figs. 1–3), we have gained several fundamental insights into the general

principles of protein folding, and delineated some of the strengths and limitations of the

different modeling approaches.

Both desolvation barrier and sidechain packing enhance folding cooperativity and

local-nonlocal coupling (Figs. 2–4). They also entail more channeled energy landscapes

(Fig. 6). The impact of sidechain effects on promoting local-nonlocal coupling is particu-

larly prominent (Fig. 4); but the sidechain models we considered lead to folded states that

are much more flexible than models with desolvation barriers (Fig. 5). In future studies,

these model features, especially the flexibility of native proteins, should be compared with

pertinent experimental observations to provide a more rigorous evaluation of the models

and to facilitate development of more physical coarse-grained protein chain models that

may incorporate both desolvation barrier and sidechain effects as well as allowing for the

physical possibility of favorable nonnative interactions (Fig. 12).

Sidechain models here and elsewhere [82,83] that incorporate sequence- and denaturant-

dependent transfer free energies provide a reasonably good account of folding thermody-

namics of real proteins (Fig. 7a). Conceptually, this success is not unexpected given that

SASA and sequence-dependent transfer free energies have long been known to afford a

reasonably accurate account of protein folding thermodynamics in non-explicit-chain anal-

yses that assume a fully folded state and a relatively open unfolded state [175]. In this

regard, the essential native-centric nature of the above-mentioned explicit-chain sidechain

models serve well to provide folded and unfolded states that are clearly separated (with

little intermediate conformations because of the Gō-like potential) as envisioned in — and

needed for — the early non-explicit-chain calculations. Nonetheless, because the explicit-

chain representation of the sidechain models provides a wealth of energetic and structural

information, these recent models are very valuable tools for analyzing and interpretating

data from protein folding experiments [87].

Notwithstanding the success of these sidechain models in thermodynamics, we ob-

served several limitations in their kinetic properties. First, a mild rollover is seen in our

model chevron plot for Protein L (Fig. 7b,c) even though the experimental chevron plot

for this protein is linear. Our analysis indicates that the mild chevron rollover originates

from a combination of factors that have been suggested in the literature, including tran-

sient intermediate and internal friction (Figs. 8 and 9), Hammond behavior, and ground

state effect (Fig. 10). Second, a more basic limitation shared by the sidechain models

and other models that have been used to simulate chevron behavior is their failure to

reproduce asymmetric chevron plots that are often observed experimentally (Fig. 11).

As discussed above, asymmetric chevron plots indicates that the rate-limiting steps of
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folding and unfolding are significantly different [74, 157]. Building on the advance in

coarse-grained modeling of proteins made so far, to account for chevron asymmetry, fu-

ture models will have to capture the physics of the energetic difference of the rate-limiting

steps of folding and unfolding.
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[76] H. Kaya, Z. Uzunoǧlu and H.S. Chan, Phys. Rev. E 2013, 88, 044701.

[77] M.P. Taylor, W. Paul and K. Binder, Phys. Rev. E, 2009, 79, 050801(R).

34

Page 34 of 57Physical Chemistry Chemical Physics

P
h

ys
ic

al
 C

h
em

is
tr

y 
C

h
em

ic
al

 P
h

ys
ic

s 
A

cc
ep

te
d

 M
an

u
sc

ri
p

t



[78] E.I. Shakhnovich and A.V. Finkelstein, Biopolymers, 1989, 28, 1667.

[79] D.K. Klimov and D. Thirumalai, Fold. Des., 1998, 3, 127.

[80] L. Li, L.A. Mirny and E.I. Shakhnovich, Nature Struct. Biol., 2000, 7, 336.

[81] H. Kaya, Z. Liu and H.S. Chan, Biophys. J., 2005, 89, 520.

[82] E.P. O’Brien, G. Ziv, G. Haran, B.R. Brooks amd D. Thirumalai, Proc. Natl. Acad.

Sci. USA, 2008, 105, 13403.

[83] Z. Liu, G. Reddy, E.P. O’Brien and D. Thirumalai, Proc. Natl. Acad. Sci. USA,

2011, 108, 7787.

[84] Z. Liu, G. Reddy and D. Thirumalai, J. Phys. Chem. B, 2012, 116, 6707.

[85] D. Thirumalai, E.P. O’Brien, G. Morrison and C. Hyeon, Annu. Rev. Biophys.,

2010, 39, 159.

[86] G. Reddy, Z. Liu and D. Thirumalai, Proc. Natl. Acad. Sci. USA, 2012, 109, 17832.

[87] D. Thirumalai, Z. Liu, E.P. O’Brien and G. Reddy, Curr. Opin. Struct. Biol., 2013,

23, 22.

[88] J.N. Onuchic and P.G. Wolynes, Curr. Opin. Struct. Biol., 2004, 14, 70.

[89] E. Shakhnovich, Chem. Rev., 2006, 106, 1559.

[90] C. Clementi, Curr. Opin. Struct. Biol., 2008, 18, 10.

[91] K.A. Dill, S.B. Ozkan, M.S. Shell and T.R. Weikl, Annu. Rev. Biophys., 2008, 37,

289.

[92] D.L. Pincus, S.S. Cho, C. Hyeon and D. Thirumalai, Prog. Mol. Biol. Trans. Sci.,

2008, 84, 203.

[93] R.D. Hills and C.L. Brooks, Int. J. Mol. Sci., 2009, 10, 889.

[94] J. Zhang, W. Li, J. Wang, M. Qin, L. Wu, Z. Yan, W. Xu, G. Zuo and W. Wang,

IUBMB Life, 2009, 61, 627.

[95] V. Tozzini, Q. Rev. Biophys., 2010, 43, 333.

[96] S. Takada, Curr. Opin. Struct. Biol., 2012, 22, 130.

35

Page 35 of 57 Physical Chemistry Chemical Physics

P
h

ys
ic

al
 C

h
em

is
tr

y 
C

h
em

ic
al

 P
h

ys
ic

s 
A

cc
ep

te
d

 M
an

u
sc

ri
p

t



[97] A.N. Naganathan, Wiley Interdisciplinary Reviews: Comput. Mol. Sci., 2013, 3,

504.

[98] W.G. Noid, J. Chem. Phys., 2013, 139, 090901.

[99] C.D. Snow, H. Nguyen, V.S. Pande and M. Gruebele, Nature, 2002, 420, 102.

[100] K. Lindorff-Larsen, S. Piana, R.O. Dror and D.E. Shaw, Science, 2011, 334, 517.

[101] H. Lei, X. Deng, Z. Wang and Y. Duan, J. Chem. Phys., 2008, 129, 155104.

[102] P.L. Freddolino and K. Schulten, Biophys. J., 2009, 97, 2338.

[103] V.A. Voelz, G.R. Bowman, K. Beauchamp and V.S. Pande, J. Am. Chem. Soc,

2010, 132, 1526.

[104] C. Zhang and J. Ma, J. Chem. Phys., 2010, 132, 244101.

[105] S. Piana, K. Lindorff-Larsen and D.E. Shaw, Proc. Natl. Acad. Sci. USA, 2012, 109,

17845.

[106] S. Piana, K. Lindorff-Larsen and D.E. Shaw, Proc. Natl. Acad. Sci. USA, 2013, 110,

5915.

[107] D.E. Shaw, P. Maragakis, K. Lindorff-Larsen, S. Piana, R.O. Dror, M.P. Eastwood,

J.A. Bank, J.M. Jumper, J.K. Salmon, Y. Shan and W. Wriggers, Science, 2010,

330, 341.

[108] J.R. Allison, M. Bergeler, N. Hansen and W.F. van Gunsteren, Biochemistry, 2011,

50, 10965.

[109] S. Piana, K. Lindorff-Larsen and D.E. Shaw, Biophys. J., 2011, 100, L47.

[110] R.O. Dror, H.F. Green, C. Valand, D.W. Borhani, J.R. Valcourt, A.C. Pan, D.H.

Arlow, M. Canals, J.R. Lane, R. Rahmani, J.B. Baell, P.M. Sexton, A. Christopou-

los and D.E. Shaw, Nature, 2013, doi:10.1038/nature12595.

[111] W.F. van Gunsteren, R. Burgi, C. Peter and X. Daura, Angew. Chem., 2001, 113,

363.

[112] W.F. van Gunsteren, R. Burgi, C. Peter and X. Daura, Angew. Chem. Int. Ed.,

2001, 40, 351.

36

Page 36 of 57Physical Chemistry Chemical Physics

P
h

ys
ic

al
 C

h
em

is
tr

y 
C

h
em

ic
al

 P
h

ys
ic

s 
A

cc
ep

te
d

 M
an

u
sc

ri
p

t



[113] R.B. Best, Curr. Opin. Struct. Biol., 2012, 22, 52.

[114] D.W. Borhani and D.E. Shaw, J. Comput. Aided Mol. Des., 2012, 26, 15.

[115] C.R. Matthews and M.R. Hurle, BioEssays, 1987, 6, 254.

[116] M.R. Hurle, G.A. Michelotti, M.M. Crisanti and C.R. Matthews, Proteins, 1987, 2,

54.

[117] S.E. Jackson and A.R. Fersht, Biochemistry, 1991, 30, 10428.

[118] A. Matouschek, J.T. Kellis, L. Serrano, M. Bycroft and A.R. Fersht, Nature, 1990,

346, 440.

[119] K.A. Scott and J. Clarke, Protein Sci., 2005, 14, 1617.

[120] M. Tsytlonok and L.S. Itzhaki, Archive Biochem. Biophys., 2013, 531, 14.

[121] I.E. Sanchez and T. Kiefhaber, J. Mol. Biol., 2003, 325, 367.

[122] C.F. Wright, K. Lindorff-Larsen, L.G. Randles and J. Clarke, Nature Struct. Biol.,

2003, 10, 658.

[123] N. Aghera and J.B. Udgaonkar, Biochemistry, 2013, 52, 5770.

[124] Z. Zhang and H.S. Chan, Proc. Natl. Acad. Sci. USA, 2010, 107, 2920.

[125] R.B. Best, G. Hummer and W.A. Eaton, Proc. Natl. Acad. Sci. USA, 2013, 110,

17874.

[126] D.J. Brockwell and S.E. Radford, Curr. Opin. Struct. Biol., 2007, 17, 30.

[127] A. Zarrine-Afsar, S. Wallin, A.M. Neculai, P. Neudecker, P.L. Howell, A.R. Davidson

and H.S. Chan, Proc. Natl. Acad. Sci. USA, 2008, 105, 9999.

[128] A. Azia and Y. Levy, J. Mol. Biol., 2009, 393, 527.

[129] A. Zarrine-Afsar, Z. Zhang, K.L. Schweiker, G.I. Makhatadze, A.R. Davidson and

H.S. Chan, Proteins, 2012, 80, 858.

[130] R.B. Best, J. Phys. Chem. B, 2013, 117, 13235.

[131] J.-E. Shea, Y.D. Nochomovitz, Z. Guo and C.L. Brooks, J. Chem. Phys., 1998, 109,

2895.

37

Page 37 of 57 Physical Chemistry Chemical Physics

P
h

ys
ic

al
 C

h
em

is
tr

y 
C

h
em

ic
al

 P
h

ys
ic

s 
A

cc
ep

te
d

 M
an

u
sc

ri
p

t



[132] T.V. Pogorelov and Z. Luthey-Schulten, Biophys. J., 2004, 87, 207.

[133] L.L. Chavez, J.N. Onuchic and C. Clementi, J. Am. Chem. Soc., 2004, 126, 8426.
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Figure Captions

Figure 1. Energetic and geometric features of the models used in this study. (a) Ec is

the potential energy between a pair of Cα atoms i, j belonging to the native contact set

and at distance rij in the Cα-Gō (blue), desolvation-barrier (db) (black), and sidechain

(SC) (red) models. The model interaction energies are given in units of ǫ, ǫ, and kcal

mol−1, respectively. (b) Basic geometry of the sidechain model. Positions of Cα atoms

and sidechain pseudo-atoms (centered at the centroids of the sidechains) are indicated

by gray and bronze spheres, respectively. Note, however, that the relative sizes of the

Cα atoms and sidechain pseudo-atoms are not necessarily drawn to scale. Angles labeled

by θ1, θ2, θ3, φ1, and ψ1 are examples of the bond angles θiks, torsional angles φis, and

improper dihedral angles ψis in the model. (c) Schematic of an example native contact

(indicated by dotted line) favored by local-nonlocal coupling. The Cα rmsd values (in Å)

indicate small root-mean-square deviations of each of the two 5-residue protein segments

from their corresponding local conformations in the native structure. (d) An example of

native contacts between the same two residues in (c) that are disfavored by local-nonlocal

coupling because in this case the local structures around the two residues have large de-

viations from their corresponding native conformations.

Figure 2. Energetic analysis of local-nonlocal coupling in the SC model. (a, b) Two

different conformations of the Protein L sequence from snapshots of the SC-Gō model

sampled under midpoint conditions at simulation temperature 356 K. According to the

distance criterion in our SC model, the residue pair 30-58 (Thr-Leu) is in contact in

both snapshots. The mainchain rmsd from native for the two 5-residue segments (en-

closed in the dotted boxes) centered at Thr30 and at Leu58 is small for snapshot (a),

viz., 0.207Å and 0.775Å respectively, whereas the corresponding values are larger at

0.336Å and 1.782Å for snapshot (b). In these drawings, only the Cα atoms and sidechain

pseudo-atoms of the two 5-residue segments (positions 28–32 and 56–60) are shown as

spheres. Other parts of the protein sequence are shown merely as mainchain traces. The

pairs of contacting Cα atoms and sidechain pseudo-atoms are further highlighted by their

depiction as red and green spheres respectively. The size of these spheres are larger and

more reflective of their excluded volumes in the model than the size of spheres used for

the rest of the two segments (which is drawn in the same style as that in Fig. 1b). (c,

d) Magnified representation of the two 5-residue segments in (a) and (b) respectively. (e,

f) Contributions from various native-centric terms to the interaction energy in the SC

model between the pair of contacting residues in (c) and (d) respectively. The underlying
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potential energy functions for Cα-Cα, sidechain-sidechain, Cα-sidechain, and sidechain-Cα

of the interaction between residues 30 and 58, respectively, are shown in the same order

by the red, green, light blue, and magenta curves. For each energy term, the correspond-

ing distance between the Cα atom(s) and/or sidechain pseudo-atom(s) is indicated by an

arrow of the same color. The corresponding differences in interaction in the db model

between this pair of residues in the two conformations are also included as black curves

with the corresponding arrows to facilitate comparison with Fig. 3.

Figure 3. Energetic analysis of local-nonlocal coupling in the db model. (a) and (b)

are the mainchain conformations of the two 5-residue segments in Fig. 2c and d. Here

the contacting residues 30 and 58 are shown as large red spheres whereas Cα positions

of the rest of the two 5-residue segments are shown as smaller gray spheres. The size

of the large red spheres highlights the optimal (native) Cα-Cα distance between the two

residues in the model. A water molecule is represented in (b) by a blue sphere of radius

1.5Å to underscore a hypothetical excluded-volume clash that underlies the unfavored

interaction free energy between the two residues at the db distance. (c, d) The native-

centric potential energy functions for the given residue pair in the Cα-Gō model and the

db model are plotted as blue and black curves respectively. The arrows in (c) and (d)

indicate, respectively, the Cα-Cα distances between the two residues in (a) and (b).

Figure 4. Folding cooperativity and local-nonlocal coupling. (a) Free energy profiles of

the models (as marked) for Protein L in this study, where P (Q) is normalized confor-

mational population as a function of Q and hence − lnP (Q) is free energy in units of

kBT . Here, Q is the fraction of the 137 Cα–Cα native contacts in the PDB structure of

Protein L that are present in a given conformation. The − lnP (Q) profiles shown are

computed under each model’s transition-midpoint condition, which can be different for

different models. In units of kB with ǫ = 1, the midpoint temperature for the Cα-Gō

model is 1.01 and that for the db model (where ǫdb = 0.1ǫ and ǫssm = 0.2ǫ) is 0.849.

The midpoint temperature for the sidechain-Gō (SC-Gō) model is 356 K (kBT = 0.707

kcal/mol). The simulation temperatures and midpoint denaturant concentrations for the

SC-urea and SC-GdmCl models are 331 K (kBT = 0.658 kcal/mol), [C] = 6.6 M, and 338

K (kBT = 0.672 kcal/mol), [C] = 2.5 M, respectively. (b) The local-nonlocal coupling pa-

rameter averaged over the native contacts formed, 〈Clnl〉, is simulated under the models’

respective midpoint conditions and shown as functions of Q using the same color code for

the models as that in (a).
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Figure 5. Comparing model native ensembles. For each of the sidechain-Gō, Cα-Gō, and

db (Cα-db) models, ten representative conformations chosen randomly around the native

minimum are depicted in blue, red, or green, viz., the Q values of the conformations

shown for a given model are at or nearly at the high-Q minimum of − lnP (Q) in Fig. 4.

The average Cα rmsd values (in Å) of each of these model native ensembles from the PDB

structure 1HZ6 for Protein L (depicted in black) are indicated below the conformational

drawings.

Figure 6. Route measure. The route measure R(Q) as a function of fractional native

contact Q for each of the models in this study is plotted using the same color code as

that in Fig. 4. A higher route measure at a given Q implies that the conformational

distribution is more restricted at that Q value.

Figure 7. Thermodynamic stability and model chevron plots. (a) Native-state stabil-

ity (free energy of folding ∆Gf in units of kBT ) of SC-GdmCl and SC-urea models of

Protein L as a function of GdmCl (brown data points) or urea (magenta data points)

concentration (C in units of M) at temperatures T = 338 K and 331 K respectively. In

our thermodynamic analysis, the folded state and unfolded state for these models are

defined, respectively, by Q > QF and Q < QU, where QF = 101/137 and QU = 21/137.

(b) The corresponding chevron plots. Data points for negative logarithm of the simu-

lated mean first passage time (MFPT) for folding and unfolding are shown by filled and

open symbols, respectively, using the same colors as in (a) to denote GdmCl and urea

dependence. Folding simulations start with randomly generated conformations with the

Q value at the unfolded minimum, and the model protein is considered to be folded when

Q > QF. Unfolding simulations are initiated from a native Q = 1 conformation, and

the model protein is considered to be unfolded when Q < QU. The dotted V-shapes

are hypothetical two-state chevron plots that are consistent with the denaturant depen-

dence of thermodynamic stability in (a). Transition midpoints of these two SC models

are marked by the vertical and horizontal dashed lines in (a) and (b). (c) Unified com-

parison of model chevron plots, with − ln(MFPT) plotted as a function of native stability

∆Gf/kBT . Here variation of ∆Gf is a result of varying denaturant concentration C for the

SC-GdmCl (brown circles) and SC-urea (magenta squares) models [as in (a)], but is a re-

sult of varying T for the Cα-Gō (red inverted triangles), db (green diamonds), and SC-Gō

(blue triangles) models. As in (b), data points for folding and unfolding are represented,

respectively, by filled and open symbols; and each of the dotted V-shapes is a hypothetical

two-state chevron plot for the model denoted by the same color. QF = 101/137 for all
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three SC models; QU = 21/137 for the SC-urea and SC-GdmCl models [as in (a) and

(b)], and QU = 17/137 for the SC-Gō model. For models without an explicit sidechain

representation, QF = 37/137, QU = 112/137 for the Cα-Gō model, and QF = 23/137,

QU = 135/137 for the db model.

Figure 8. Transient intermediates can be an origin of mild chevron rollovers. (a) An

example trajectory of the SC-urea model simulated at the folding-unfolding transition

midpoint of the model (C = 6.6 M, T = 331 K). (b) An example trajectory of the SC-Gō

model simulated under midpoint conditions (T = 356 K). (c) An example trajectory of

the SC-urea model simulated for zero denaturant (C = 0, T = 331 K). This model is

equivalent to the SC-Gō model simulated under the same temperature. The dependence

of Q on simulation time (number of Langevin time steps) of this trajectory illustrates the

physical connection between transient populations with Q & 0.4 and the mild chevron

rollover in the folding arms of these models observed in Fig. 7b,c. (d) Snapshots of tran-

sient structures (green conformational traces) sampled at three time points [(i), (ii), and

(iii)] along the trajectory shown in (c). To facilitate structural comparison with the native

PDB structure, the PDB structure is depicted by black traces positioned with minimum

rmsd from each of the green transient conformations.

Figure 9. Transient intermediates in the Cα-Gō model. (a) An example trajectory of

the Cα-Gō model simulated near the folding-unfolding transition midpoint (∆Gf/kBT =

0.198). (b) An example trajectory in the same model simulated under strongly folding

conditions (∆Gf/kBT = −10.41). (c) Snapshots of transient structures (green conforma-

tional traces) sampled at three time points [(i), (ii), and (iii)] along the trajectory shown

in (b). As in Fig. 8d, the superposing black traces are the reference native PDB structure

with minimum rmsd from each of the green transient conformations.

Figure 10. Movement of putative transition state along progress variable Q provides a

partial but not a full account of model chevron rollover. (a) Plotted in black [− ln(MFPT),

left vertical scale] is the SC-urea chevron plot (filled and open squares) and the corre-

sponding hypothetical two-state chevron behavior (dotted lines) in Fig. 7b. Plotted as

blue solid curves (−∆G‡/kBT , right vertical scale) are minus (−1×) folding and unfolding

free energy barrier in units of kBT (blue curves spanning the folding and unfolding arms,

respectively) deduced from the populations of the shifting peak of the free energy profiles.

(b) Free energy profiles of the SC-urea model at different urea concentrations (C = [urea])

are shown in black. For the profiles plotted as solid curves, C = 0, 1.5, 3.0, 4.5 and 6.0 M
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from top to bottom. For the profiles plotted as dashed curves, C = 6.6, 7.4, 8.2, 9.0, and

9.8 M from bottom to top. The two vertical grey strips are the low-Q unfolded (left) and

the high-Q folded (right) regions, whereas the curved area shaded in light blue around

Q ≈ 0.3 – 0.5 is the putative denaturant-dependent transition-state region used in the

present analysis. The plotted −∆G‡/kBT values [blue curves in (a)] are determined by

the unfolded (U), folded (F), and putative transition-state (TS) populations in these con-

formational regions (PU, PF, and PTS respectively), whereby −∆G‡/kBT = ln(PTS/PU)

for folding and −∆G‡/kBT = ln(PTS/PF) for unfolding. If ∆G
‡ for folding is alternately

defined as the free energy difference between the top of the barrier and the bottom of the

unfolded-state minimum, the deviation between the TST-predicted and simulated folding

rate would be even larger because there is a gradual shift of the unfolded-state minimum

toward higher Q values as C decreases.

Figure 11. The chevron plot for Protein L predicted by the SC-GdmCl model differs

significantly from that obtained from experiment. Plotted in brown is the chevron plot

predicted by our SC-GdmCl model. As in Fig. 7b, the natural logarithm of folding and

unfolding MFPT (right vertical scale) are represented by filled and open squares, re-

spectively; whereas the dotted brown V-shape is a hypothetical two-state chevron plot

constructed to be consistent with the denaturant dependence of native stability in the

same SC-GdmCl model. Plotted in black is the experimental chevron plot obtained by

Scalley et al. Data points shown as filled and open squares are natural logarithm of relax-

ation rates (kobs, left vertical scale) determined using folding and unfolding experiments,

respectively, by Scalley et al. in the absence of 0.4 M Na2SO4 as reported in Fig. 6 of

Ref. [150]. The black dotted V-shape here is constructed in accordance with the exper-

imentally determined mf = 1.5 kcal mol−1 M−1 and mu = 0.5 kcal mol−1 M−1 provided

in Table 1 of the same reference. It is clear from this comparison that the experimental

folding rate is significantly more sensitive to GdmCl concentration than that predicted

by the present SC-GdmCl model. The inset provides further statistical analysis of simu-

lated folded times using the method in Fig. 4 of Ref. [124]. It shows that the dependence

of logarithmic fractional unfolded population lnP (unfolded) on simulation time t is ap-

proximately linear. The plotted data points are for C = 0 M (red), 1.6 M (green), and

2.4 M (blue). These results indicate that kinetic relaxation of folding simulated using the

SC-GdmCl model is essentially single-exponential, thus folding MFPT = (folding rate)−1.

Figure 12. Native-centric SC models augmented by solvent-dependent free energies of

transfer of amino acids may be used to study sequence-specific nonnative interactions.
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The reference denaturant concentration ([urea]) in the (default) SC-urea model is C = 0,

i.e., the model is a pure SC-Gō model at C = C0 = 0. This model is hereby denoted as

SC-[urea]C0=0M. For the rationale provided in the text, we generalize the SC-urea formula-

tion to consider SC models with any given C0. (a) Simulated chevron plots [− ln(MFPT)

data points plotted as squares, triangles, circles or diamonds] and their corresponding

hypothetical two-state folding and unfolding chevron arms (dotted V-shapes, same style

as in the figures presented above) for the original SC-[urea]C0=0M model (black) and an

SC-[urea]C0=6.2M model with C0 = 6.2 M (red). To ensure numerical accuracy of our

model predictions, results from three sets of independent simulations are shown for the

SC-[urea]C0=0M model (black symbols). For the folding arm (filled symbols), the minimal

numbers of trajectories we have used to determine any folding MFPT are 2497, 159, and

410, respectively, for the data points plotted as circles, squares, and triangles. For the

unfolding arm (open symbols), the minimal numbers of trajectories we have used to de-

termine any unfolding MFPT are 2443, 172, and 197, respectively, for the corresponding

data sets. For the SC-[urea]C0=6.2M model, one set of − ln(MFPT) values simulated using

≥ 2500 trajectories for each data point is shown (red diamonds). (b) Free energy profiles

for the SC-[urea]C0=0M (black) SC-[urea]C0=6.2M (red), and SC-[urea]C0=8.9M (blue) models

simulated at or near the models’ respective transition midpoints. When C0 is increased

from 0 M to 8.9 M, there is an appreciable lowering of the free energy barrier at the

putative transition state. (c) Nonnative contacts increase with increasing C0. Here a pair

of sidechains i, j separated by ≥ 4 virtual bonds in a given conformation is considered to

be in a nonnative contact if and only if (i) the distance rij between their centers satisfies

rij < rvdWi + rvdWj + 1Å, (ii) this condition is not satisfied in the native PDB structure,

and (iii) residue pair i, j is not in the native contact set defined above. We use Nnn,SC to

denote the total number of such nonnative sidechain-sidechain contacts in a given confor-

mation. Using the same color code as that in (b), Nnn,SC is shown as a function of Q for

the three SC models we have considered.
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