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Graphical abstract Part I 

 

 

 

 

 

Using numerical calculations the reliability of the standard analytical models of space 
charge effects is evaluated; improved solutions are proposed. 
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Numerical Calculations of Space Charge Layer Effects in Nanocrystalline 

Ceria. Part I: Comparison with the Analytical Models and Derivation of 

Improved Analytical Solutions 

 

 

Marcus C. Göbel, Giuliano Gregori,I Joachim Maier 

Max Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany 

 

 

Abstract 

Using numerical solutions of the Poisson-equation, one dimensional space charge layer (SCL) 

concentration profiles in CeO2 are calculated. The SCL conductivity effects of nanocrystalline CeO2 

are analyzed as a function of doping content (donor doped, pure and acceptor doped ceria) and SCL 

potential including not only the standard Gouy-Chapman and Mott-Schottky cases, but also the more 

complex mixed situations. The results of the numerical approach are compared with the usual 

analytical approximations. While for the ideal Gouy-Chapman and Mott-Schottky cases for moderate 

and high potentials the agreement between analytical and numerical solutions is found to be 

satisfactory, mixed cases and low potential situations cannot be reliably treated by using the standard 

analytical approaches. Finally, inspired from the numerical solutions, improved analytical equations 

are proposed which are found to generally yield much more precise results and are accurate even for 

the mixed situations and low potentials. 

                                            
I
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1  Introduction 

Space charge layers (SCLs) in ionic conductors are of major importance for both basic research and 

applications.1-3 For many materials SCLs were found to drastically change the electrical transport 

properties at both homo4 and hetero-junctions.5 The origin of the SCLs at the grain boundaries (GBs) 

is generally explained in terms of an electrically charged interface core, due to a deviation from the 

bulk cation-to-anion ratio or due to extrinsic effects such as excess or deficiency of dopants. The 

resulting core charge CoreΣ  leads, in the surrounding material, to the enrichment of oppositely and the 

depletion of likewise charged charge carriers. As a consequence, the core charge CoreΣ  is balanced 

by two SCL charges (
SCLΣ ), i.e. the global electroneutrality condition is fulfilled, as schematically 

shown in Fig. 1:  

 

  1
2SCL CoreΣ Σ= − . {1} 

 

 

 

Fig. 1  Basic features of a SCL (here Gouy-Chapman 
case). Top panel: charge density ρ  as a function of 

the distance x from the interface. Bottom panel: Charge 
carrier concentration ln(c) as a function of x. 
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For the exact definition of the different quantities please refer to Table 1. As long as the carrier 

concentration ic  is diluted,II the equilibrium distribution in the space charge zone is given by  

 

 ,

i

B

z e

k T
i ic c e

Φ−

∞= ⋅ ,  {2} 

 

where ,ic ∞  is the bulk concentration of the mobile charge carrier i, iz  its corresponding charge 

number, e the elementary charge, and Bk T  the Boltzmann term. Note that Φ  is the deviation of the 

local electrical potential from the bulk value. The electric potential adjacent to the grain boundary 

core 0Φ  (namely for 0x = ) is termed space charge potential. In the SCL the enrichment or depletion 

of charged defects (see eq. {2}) results in a local charge density ρ  as graphically shown in Fig. 1: 

 ( )
1

MN

i i IM
i

e z cρ ρ
=

= ⋅ +∑    {3} 

 0 0SCL r

o

dx EΣ ρ ε ε
+∞

= ⋅ = −∫ . {4} 

Hereby 0ε  is the vacuum permittivity, rε  the relative permittivity, 0E  the electric field at the interface, 

N the number of charge carriers, while the subscripts M and IM refer to the mobile and immobile 

charge carriers, respectively. Note that the concentrations of the immobile charge carriers ,IM jc , 

which are not able to follow the SCL potential are here considered as constant (and hence also their 

charge density IMρ ).III 

 

 ( ), ,
1

IMN

IM IM j IM j
j

e z cρ
=

= ⋅∑ ,   {5} 

 

The local charge density is again connected with the electric potential via the Poisson-equation: 

 

 
Φ ρ

ε ε
= −

2

2
0r

d

dx
. {6} 

 

                                            
II
 In case of a very high potential (and in particular in combination with a high bulk concentration of the enriched 

charge carrier) eq. {2} can yield unrealistically high concentration values above 1. Such an unreasonably strong 
enrichment of charge carriers corresponds to an unrealistically high SCL charge and, hence, to an 
unrealistically high GB core charge (see eq. {1}). The limitations arising from the fact that the SCL and the core 
charges cannot surpass a certain physical limit (hence the situations in which eq. {2} is not valid), are discussed 
in detail in Part II of this contribution (Section 2.2). 

6
 

 
III
 A study dealing with the more complex situation of a not flat profile of the immobile charge carriers is given in 

ref. 7. 
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In order to determine the potential profile function Φ (x) and, hence, also the concentration profile 

functions ic (x) (see eq. {2}) the Poisson-equation needs to be solved. 

Before dealing with this aspect, it is well worth mentioning that a rearrangement and integration 

of eq.  {6} (after eq. {2} and {3} have been inserted) yields the following analytical expression for 

SCLΣ : 

 

 ( )
Φ ρ

Σ ε ε Φ ε ε Φ
−

∞
=

   
   = − = − ⋅ − −        

∑
0

0 0 0 0 , 0
1

sgn 2 1

i
M

B

z e
N

k T IM
SCL r r B i

Bi

E k T c e
k T

. {7} 

 

The derivation of eq. {7} is given in the Supplementary Information. The key aspect is that eq. {7} is 

obtained without making use of any further simplifying assumptions. Hence, it allows for a reliable 

determination of the total SCL charge even for very complex situations and, quite remarkably, even if 

the SCL profile functions Φ (x) and ic (x) are unknown, given that for the derivation of eq. {7} the 

Poisson-equation does not need to be solved.  

However, the analysis of the influence of SCL effects on the conduction properties of an ionic or 

mixed conductor requires the understanding of the precise profile functions (with very few 

exceptions). Usually, it is based on a series of analytical solutions – Gouy-Chapman (GC) and Mott-

Schottky (MS) cases – which, nonetheless, present some limitations as they are valid under certain 

approximations. 

In this study, we present instead a numerical approach to accurately solve the Poisson-equation 

of the SCL profiles. This approach deals with non-overlapping, one dimensional SCLs (a study of 

overlapping SCLs in ceria is given in ref. 8). The contribution is organized as follows:  

(i) The results of the analytical approximations are presented for a broad range of dopant 

concentrations and space charge potentials with the purpose of displaying the limits of the currently 

used formulas.  

(ii) The numerical approach is described and its reliability is verified by comparing its results with the 

analytical solutions of those situations (symmetrical Gouy-Chapmann case) for which the Poisson-

equation of the SCL can be analytically solved without approximations. (iii) Subsequently, the 

numerical approach is used to map the conductivity variations also in those cases, for which the 

assumptions made for the Mott-Schottky and asymmetric Gouy-Chapman approximations are 

questionable (mixed situations and low SCL potentials).  

(iv) In the light of the results obtained with the numerical approach, a set of new, refined analytical 

solutions is proposed, which provide more accurate solutions of the space charge profiles.  

(v) Finally, 3 examples from the literature are considered and treated according to the approximated 

analytical solutions, the numerical approach as well as the improved analytical solutions. 
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1.1  Cerium oxide 

As a case study we consider here cerium oxide (CeO2), which is a prominent example of a material 

dominated by SCL effects.7, 9-18 Typically, undoped and acceptor-doped CeO2 exhibit positive 0Φ  

values at the GBs ranging between 0.19 and 0.34 V.19-24 This results in a depletion of the oxygen 

vacancies at the SCLs and an enrichment of the excess electrons. Depending on the experimental 

conditions (temperature and doping content), in nanocrystalline samples the total ionic conductivity 

was found to be varied by up to three orders of magnitude (compared with the bulk properties) 

leading to unusual phenomena such as a pronounced electronic contribution to the conductivity even 

for strongly acceptor doped samples at low temperatures and under oxidizing conditions.IV 23 

SCL effects in ceria are particularly interesting not only for basic research but also for 

applications such as solid oxide fuel cells,25-27 oxygen membranes28-32 and catalysis.33-35 Notably, for 

the first two mentioned technologies it is the very high oxygen vacancy conductivity in acceptor 

doped ceria that is of highest importance. However, as mentioned above, due to the positively 

charged GB core, the overall ionic conductivity of polycrystalline ceria is limited. Therefore, a number 

of different approaches have been reported in the literature aimed at modifying the SCL properties. 

They include inhomogeneous doping by GB diffusion,36 segregation of aliovalent cations at the 

boundaries,37 decoration of the GBs of nanocrystalline ceria,38, 39 and use of substrates on which 

CeO2 films with only small positive potentials can be grown.24 

Before addressing the SCL effects, it is worth briefly considering the bulk defect chemistry of 

CeO2, which (at low oxygen partial pressures 2pO ) is affected by the reduction of cerium(IV) to 

cerium(III) upon formation of oxygen vacancies OV
��

 40, 41: 

 

 1
22 2 '

X
O OO O V e+ +��

�    {8} 

 
1

22
2 ,OV

K pO c n•• ∞∞
= ⋅ ⋅    {9} 

 0
B

H

k T
K K e

∆
−

= ⋅    {10} 

 ',
2

O
AV D

c c n c•• • ∞∞
+ = + .   {11} 

 

In equation {11} (electroneutrality condition), 
D

c •  and 'Ac  are donor and acceptor dopant 

concentrations with 1z = , while n∞  is the electron concentration. It is important to note that the 

values of the approximately temperature independent parameters H∆  (oxygen excorporation 

enthalpy) and 0K  (the corresponding equilibrium constant of the law of mass action) in the literature 

                                            

IV
 25% of the total conductivity is electronic for 10 mol% Gd doping at 280°C and 

5
2 10pO

−=  bar.
22
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vary depending on the investigated samples. This is the case particularly for H∆ , whose values 

reported in previous studies are considerably scattered.13, 20, 40, 42, 43 In the present contribution, for the 

electron bulk concentration, the experimental data obtained from epitaxial nominally pure CeO2 

layers studied in ref. 20 are considered, namely 
18 -3

2 10 cmn∞ = ⋅ , obtained at 700 °C and 

2O 1p =  bar. The other relevant parameters used in the present study are listed in Table 2.V Note 

that the case of nanocrystalline ceria is considered here ( = 40 nmd ), for which the extent of the 

space charge layer is always smaller than the average grain size ( 2 SCL d<l , see also Fig. 3a in Part 

II).6 Moreover, the dopant is considered here as immobile. 

 

 

Table 1  Definition of the physical quantities used in the present study. Note that in this contribution the 

subscript 0 generally denotes the coordinate x = 0, i.e. the position adjacent to the interface (e.g. 0Φ  is the 

electric potential at the interface). The subscript ∞ denotes the bulk of the material. Furthermore, a prime ‘ 
denotes a preliminary, non-corrected quantity. 
 

Variables Description 

A  parameter in the GC case, see parameters section in Table 6 

'Ac  acceptor dopant concentration ( 1z = − ) 

D
c •  donor dopant concentration ( 1z = ) 

,deplc ∞  bulk concentration of the depleted charge carrier 

ic , ,i xc  local concentration of mobile charge carrier i (at coordinate x ) 

,ic ∞  bulk concentration of mobile charge carrier i 

,IM jc  bulk concentration of immobile charge carrier j 

,majc ∞  bulk concentration of the enriched majority charge carrier 

,enrc ∞  bulk concentration of the enriched minority charge carrier 

OV
c ••  local oxygen vacancy concentration 

,OV
c •• ∞

 oxygen vacancy bulk concentration 

d  grain size 

Ld  individual layer thickness 

TFd  thin film thickness 

e  elementary charge (1.60217648 � 10
−19

 C) 

E , xE  electric field (at coordinate x) 

i  counter variable for mobile charge carriers 

j  counter variable for immobile charge carriers 

k  counter variable for calculation steps 

Bk  Boltzmann constant (1.381 � 10
−23

 J/K) 

K  equilibrium constant of the CeO2 reduction reaction  

                                            

V
 Note that in undoped ceria (

1/6
2n pO
−

∞ ∝ ), the electron concentration 
18 -3

2 10 cmn∞ = ⋅  (at 2 1pO =  bar) 

corresponds to 
19 -3

9 10 cmn∞ = ⋅  at 
10

2 10pO
−=  bar. 
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0K  pre-exponential factor of the equilibrium constant 

SCLl  combined length of the SCL 

n  local electron concentration 

n∞  electron bulk concentration 

IMN  number of immobile charge carriers 

MN  number of mobile charge carriers 

2pO  oxygen partial pressure 

',e ms  normalized conductivity of the electrons (including parallel and perpendicular boundary 
contributions) 

,i ms  normalized conductivity of the charge carrier i  (including parallel and perpendicular 
boundary contributions) 

||
,i ms  

normalized conductivity of the charge carrier i  in a sample only containing only 
parallel SCLs 

,i ms
⊥

 
normalized conductivity of the charge carrier i  in a sample only containing only 
perpendicular SCLs 

,
Approx
i ms  normalized conductivity of the charge carrier i  calculated using an analytical approach 

,
Num
i ms  

normalized conductivity of the charge carrier i  calculated using the numerical 
approach 

,OV m
s ••  normalized conductivity of the oxygen vacancies (including parallel and perpendicular 

boundary contributions) 

T  temperature  

x , kx  distance from boundary (at calculation step k) 

MSx  distance corresponding to 0/SCLΣ ρ  (see Table 6) 

deplz  charge number of the depleted charge carrier 

'ez  charge number of the electrons ( 'ez  = -1) 

iz  charge number of mobile charge carrier i 

,IM jz  charge number of immobile charge carrier j 

enrz  charge number of the enriched minority charge carrier 

majz  charge number of the enriched majority charge carrier 

OV
z ••  charge number of the oxygen vacancies (

OV
z ••  = +2) 

||Γ  one-dimensional density of the parallel SCLs (see Table 3) 

Γ ⊥
 one-dimensional density of the perpendicular SCLs (see Table 3) 

iδ  
deviation between the outcome (normalized conductivity value) of an analytical 
approach and the numerical calculations 

H∆  reduction enthalpy 

||
is∆  normalized conductivity change of the charge carrier i  due to the parallel SCLs 

kx∆  length interval (at calculation step k ) 

∆ρ  (3-dimensional) charge density difference 

,i GC∆Σ  contribution of the GC-like part of the profile on iΣ  in the mixed case (Table 6) 

,i MS∆Σ  contribution of the MS-like part of the profile on iΣ  in the mixed case (Table 6) 

,i GC∆Ω  contribution of the GC-like part of the profile on iΩ  in the mixed case (Table 6) 

,i MS∆Ω  contribution of the MS-like part of the profile on iΩ  in the mixed case (Table 6) 

θ  temperature in °C 

iϑ  influence factor in the symmetrical GC case 

λ  Debye length 
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*λ  screening length (Mott-Schottky case) 

'eλ  Debye length (concerning 'e  bulk concentration) 

OV
λ ••  Debye length (concerning OV

••  bulk concentration) 

0ε  vacuum permittivity (8.854 � 10
−12

 F/m) 

rε  relative permittivity 

ρ , xρ  (3-dimensional) charge density (at coordinate x) 

IMρ  charge density contribution of immobile charge carriers 

',e mσ  absolute conductivity of the electrons (including parallel and perpendicular boundary 
contributions) 

',eσ ∞  bulk conductivity of the electrons 

,i mσ  total effectively measured conductivity of charge carrier i  (including parallel and 
perpendicular boundary contributions) 

,iσ ∞  bulk conductivity of charge carrier i  

,OV m
σ ••  absolute conductivity of the oxygen vacancies (including parallel and perpendicular 

boundary contributions) 

,OV
σ •• ∞

 bulk conductivity of the oxygen vacancies 

CoreΣ  grain boundary core charge 

iΣ  charge contribution due to the enrichment (or depletion) of mobile charge carrier i 

SCLΣ  charge of the SCL 

Φ , xΦ  electric potential (at coordinate x) 

TΦ  transition potential in the mixed case 

iΩ  
reduced resistance change of the SCL in perpendicular direction concerning the 
transport of mobile charge carrier i 

 

 

 

Table 2  Values of the parameters used in the present study. 

n∞  18 -3
2 10 cm⋅  

θ  700°C 

2pO  10
10 bar

−
 

rε  26 

d  40 nm 
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1.2  Analytical solutions of the Poisson-equation 

It is worth noting that in the vast majority of contributions dealing with SCL effects in ionic and mixed 

conductors analytical approximations have been employed. 1, 2, 44 Remarkably, the Poisson-equation 

of the SCL profile can be solved analytically only for the “symmetrical” Gouy-Chapman situation of 

two intrinsic charge carriers 1 and 2 with 1 2z z= − . For all the other cases (which are actually present 

in CeO2 with ' 1ez = −  and 2
OV

z •• = + ) certain approximations are available.44 They rely on the strong 

enrichment (or depletion) of only one charge carrier, while the influence of the counter-charge carrier 

is entirely neglected. For this reason, the analytical approximations can only describe the ideal Gouy-

Chapman and Mott-Schottky situations for large effects but neither for mixed cases nor weak effects 

(low potentials). In the following, the main analytical results regarding the space charge potential 

profile are summarized.2, 45 Further details on the relationships can be found in the Supplementary 

Information.1, 2, 44 

 

MS case:   
2 0 0

0

2
( *) ,   * ,   *

2
rIM IM

r IM IM

z ec
x x

z ec

ε ε Φ
Φ λ λ λ

ε ε
= − − = − <   {12} 

 

GC case:   
0

2 0
0 2 2

,

2
ln 1 ,   ,   2

2 2

maj

B

z e

k T r BB

maj maj maj

k Tk T x
e x

z e z e c

Φ ε ε
Φ Φ λ λ

λ

−

∞

 
 = + + = <  
 

 {13} 

 

symmetrical GC case:   

0

0

2

2

2 1 1
ln ,   

1 1

i

B

i

B

z ex
k T

B i
ix z e

i
k T

i

k T e e

z e
e e

Φ
λ

Φ
λ

ϑ
Φ ϑ

ϑ

−−

− −

 
 + ⋅ −

= − = 
 

− ⋅ + 

,  {14} 

 

where *λ  is the Mott-Schottky length and λ  the Debye length, while ,majc ∞  and majz  are the bulk 

concentration of the majority charge carrier and its corresponding charge number, respectively. If the 

above relationships are inserted in eq. {2} the SCL concentration profiles are obtained. The 

integration of the concentration profile of a mobile defect i yields its charge contribution iΣ  to the total 

SCL charge SCLΣ : 

 

 Σ
∞

∞= ⋅ −∫ ,

0

( )i i i iz e c c dx . {15}VI 

 

                                            
VI

 The upper integration limit is different for the GC and MS cases. For details see the Supplementary 
Information. 
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In a similar manner, in the case of a depletion of the charge carrier i, the normalized electrical 

resistance across the SCLs iΩ  (aligned perpendicularly to the transport direction) can be defined: 

 

 
1 1

,

0

1
( )i i i

i

c c dx
z e

Ω
∞

− −
∞≡ ⋅ −∫ . {16} 

 

Obviously, a change the mobile charge carrier concentrations within the SCLs, results in a 

conductivity change compared with the bulk situation, which can be expressed as  

 

 
,

,
,

i m
i m

i

s
σ

σ ∞

= , {17} 

 

with σ ,i m  being the total effectively measured conductivity of the charge carrier i (including the 

influence of both parallel and perpendicular SCLs) and σ ∞,i  its corresponding bulk conductivity. Here, 

it is convenient to treat the material microstructure according to the brick layer model1, 46 (cubically 

shaped grains having here size d), which allows for estimating the effect of the non-overlapping SCLs 

on the conductivity of a polycrystalline material. In the case of an enrichment of charge carriers the 

SCLs which are aligned parallel to the direction of electric transport are of relevance and the 

following relationship results: 

 

Enriched charge carrier: 
|| || ||

, , ,
,

with 1i
i m i m i m

i i

s s s
z ec

Σ
Γ

∞

= = ⋅ + .  {18} 

 

In the case of depletion, the perpendicular boundaries are crucial and one can write: 

 

Depleted charge carrier: ( ) 1

, , , ,
with 1i m i m i m i i i

s s s z ecΓ Ω
−⊥ ⊥ ⊥

∞= = + . {19} 

 

Here, in the brick layer model ||Γ  and Γ ⊥  are the one-dimensional densities of the parallel and 

perpendicular SCLs, respectively. They are given in Table 3 for several sample geometries. 
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Table 3  One-dimensional densities of the parallel and perpendicular SCLs 
||Γ  and Γ ⊥

 for different, relevant 

experimental situations 

 

Geometry 
||Γ  Γ ⊥  

pellet 
4

d
 

2

d
 

thin film with polycrystalline, columnar 
structure, measurement parallel to the 

substrate 

2

d
 

2

d
 

thin film with polycrystalline, columnar 
structure, measurement perpendicular to 

the substrate 

4

d
 0 

thin film with epitaxial multilayers, 
measurement parallel to the substrate 

2

Ld
 0 

thin film with epitaxial multilayers, 
measurement perpendicular to the 

substrate 
0 

2

Ld
 

epitaxial thin film with SCL at the film 
substrate interface (or at the film 

surface), measurement parallel to the 
substrate 

1

TFd
 0 

 

 

As far as the SCL profiles in ceria are concerned, 8 different cases depending on doping content 

and 0Φ  can be identified, as illustrated in Fig. 2: Here the designations of ref. 43, where the 

analytical solutions are compiled, are used for clarity. The relevant formulas (derived using the 

models described above) and concentration profiles are given in Table 4. The variations of the 

normalized oxygen vacancy conductivity 
, , ,O O OV m V m V

s σ σ•• •• •• ∞
=  (i.e. effectively measured ionic 

conductivity over bulk ionic conductivity) obtained analytically are plotted in the left contour plot of 

Fig. 3 as a function of a broad range of dopant concentrations and 0Φ  values (cf. also footnote II). 

The resulting conductivity change (z-axis) is color-coded. For clarity, the bulk concentrations are 

plotted in Fig. 4 (note that for the donor doped situation, only the case expected for pO2 = 10-10 bar 

and 
D

c n• = , is considered – see also ref. 18). Experimentally, only pure and acceptor doped ceria 

have been extensively investigated in terms of SCL effects with 0Φ  values ranging between 0.19 and 

0.34 V 19-24, as indicated by the blue rectangle in Fig. 3.  

As mentioned above, there are a number of studies, which have addressed the possibility of 

adjusting 0Φ  with the purpose of improving the GB conduction properties. For this reason, a wider 

range of 0Φ  (including even 0 0Φ < ) was considered here, in order to predict the possible outcome of 

such adjustments.VII A detailed description of this kind of contour plot is given in Section 2.1. Here it 

                                            
VII

 Note that for some situations SCL profiles with very large potentials cannot be realized since in these cases 
the charge of the SCL becomes unrealistically large. These situations and a detailed discussion of the role of 
the SCL charge are given in Part II of this contribution (in Section 2.2). 
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is sufficient to focus on only one particular aspect, which is indicated by the crossed area in Fig. 3: 

Notably, for | 0Φ | < 0.2 V (for the oxygen vacancies, left panel of Fig. 3) the approximations yield 

wrong conductivities: e.g. the approximations give 
,OV m

s ••  < 1 (indicating depletion) for negative 

potentials whereas OV
••

 are enriched, and 
,

1
OV m

s •• >  (indicating enrichment) for positive potentials 

which instead are characterized by a depletion of OV
••

. This effect is even more pronounced for the 

electrons due to their smaller charge (see the right panel). 

 

 

 
 

Fig. 2  Map of the different analytical approximations given in Table 4 as a function of the dopant 

concentration and 0Φ  (designations according to ref. 43). In order to define the border between the GC 

and the MS cases, the concentration of the enriched charge carrier at the interface is compared with 

the dopant concentration: For positive 0Φ  and acceptor doping the MS case was applied if the electron 

concentration at the interface ( )0 0exp / Bn n e k TΦ∞=  is smaller than the dopant concentration 'Ac . 

Similarly for negative potentials and donor doping the criterion ( )0,0 ,
exp 2 /

O O
BV V D

c c e k T cΦ•• •• •∞
= − <  was 

used to border the MS case. 
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Table 4   Approximative solutions of the SCL conductivity effects given in ref. 43. 

Case Type Example 
Profile 

Condition 
,

,
,

O

O

O

V m

V m
V

s
σ

σ

••

••
•• ∞

=  ',
',

',

e m
e m

e

s
σ

σ ∞

=  

b 

G
o
u
y
-C

h
a
p

m
a

n
 

 

 

0
3

2

4
B

O

e

k T

V

d
e

Φ

λ ••

−

⋅  
0

1
2

'8
B

e

k Te e
d

Φ

λ
⋅  

c 

 

08
O B

e

V k T
e

d

Φλ ••
−

⋅  
' 04

B

e

d k T

eλ Φ
⋅
−

 

k 

 
0

3
2

,
4

B

O O

e

k T

V V

d n
e

c

Φ

λ •• ••

−

∞

∞

⋅ ⋅  
0

1
2

'8
B

e

k Te e
d

Φ
λ

⋅  

o 

 

0
A

n c •>  

l 

 

 

08
O B

e

V k T
e

d

Φλ ••
−

⋅  
,

' 04
OV B

e

cd k T

n eλ Φ

•• ∞

∞

⋅ ⋅
−

 

p 

 

,0
O

V D
c c•• •>  

m1 

M
o
tt
-S

c
h

o
tt
k
y
 

 

,0
O

V D
c c•• •<  

0

0

2

'2 B

B

e

k T
e

e

k T

e

d

Φ

Φ

λ

−

−
⋅  

0

0
'2

B

B

e

k T

e
e

k T

d

e

Φ

Φλ

−

−
⋅  

m2 

 

0
A

n c •<  

0

0

2

22

B

O B

e

k T

e

V k T

d

e

Φ

Φλ ••

⋅  

0

0
1
2

4 B
O

B

e

k T
V

e

k T

e

d

Φ

Φ

λ ••

⋅  

 

0
2

,
8O

O

r B

V

V

k T

e c

ε ε
λ ••

•• ∞

= ,    0
' 2

2

r B
e

k T

e n

ε ε
λ

∞

=  
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Fig. 3  Normalized effective conductivities m ms σ σ∞=  of (a) oxygen vacancies and (b) electrons calculated using 

the analytical approximations given in Table 4 in a polycrystalline CeO2 pellet with d =  40 nm as function of 

doping content and SCL potential. The crossed areas indicate positions where the relationships produce non-
physical results (i.e. depletion in case of enrichment and vice versa). The blue dashed rectangle indicates the 

range of characteristic values of dopant concentration and Φ0 determined experimentally in the literature for 
CeO2. 

19-24
 The sm values plotted along the z-axis are color-coded. The black areas correspond to sm ≈ 1 

( mσ σ∞≈ ), indicating no or only very small SCL effects. For the oxygen vacancies, sm decreases when 0 0Φ > . 

The corresponding sm drop is depicted by the yellow, red and purple colors, which correspond to 0.1 mσ σ∞≈ , 

0.01 mσ σ∞≈  and 0.001 mσ σ∞≈ , respectively. For 0 0Φ < , the effective ionic conductivity is expected to increase. 

The corresponding color-coding is here grey ( 10 mσ σ∞≈ ), blue ( 100 mσ σ∞≈ ) and green ( 1000 mσ σ∞≈ ). The 

SCL effects in the case of the electrons are more moderate due to ' 1ez = . Note that a more comprehensive 

discussion of the here displayed SCL conductivity effects is given in Section 2.1 and in Part II of this study.
6
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Fig. 4  Bulk concentrations 
,OV

c •• ∞
 and n∞  as a 

function of doping content 
D

c •  and 'Ac  calculated 

using the parameters of Table 2. 
 

 

The origin of these obvious discrepancies is the fact that the total effective conductivity in ref. 43 and 

Table 4 is set to be equal to the conductivity change (e.g. 
|| || ||

1i i is s s∆ ∆= + ≈ ). In order to avoid this 

uncertainty the terms in Table 4 have to be set equal to , 1i ms −  in the case of enrichment and 

1 1
,( 1)i ms

− −−  in the case of depletion. The improvements upon this rather straightforward correction 

are graphically illustrated in Fig. 5.  
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Fig. 5  Normalized conductivity of (a) oxygen vacancies and (b) electrons obtained using the analytical 
solutions in Table 4 and taking into account the bulk conductivity contribution (see main text). Note that a 
detailed explanation of the color-coding is given in the caption of Fig. 3. 

 

 

Here it is instructive to consider once again that the analytical solutions are derived under the 

assumption of strong effects (large potentials). Obviously, for small potentials this assumption does 

not hold. Here, one should also note that, as illustrated in Fig. 3, the region of small potentials is not 

negligibly small. For cerium oxide, it clearly extends into the range of experimentally determined SCL 

potentials, which spans between 0.19 and 0.34 V19-24 (see the blue rectangle in Fig. 3 and Fig. 5).  

Therefore, also the further simplifications, which rely on the assumption of a strong effect (e.g. 

the fact that in the Gouy-Chapman case only the enriched charge carrier is considered) are 

questionable at potential values being experimentally relevant. These considerations made a 

systematic analysis of the accuracy of the analytical solutions by means of a numerical approach 

particularly interesting. 

 

 

2  Numerical Method 

This section gives a brief overview of the numerical approach used here. The details and definitions 

of the related quantities are elucidated in the Supplementary Information. It is worth stressing here 

that this study deals with the effects of non-overlapping SCLs as schematically depicted in Fig. 1.  

The algorithm to numerically solve the Poisson-equation is based on a stepwise calculation of 

the electrical potential Φ  using a Taylor expansion of degree three: 
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1 1 1

2

02 3k k k k

k
x x k x x

r

x
x E

∆ ∆ρ
Φ Φ ∆ ρ

ε ε− − −

 
≈ − ⋅ − + 

 
  {20} 

 

Note that 1k k kx x x∆−= + . The calculation step k ranges from 1 to stepsN  (cf. the Supplementary 

Information). The electrical field E , the charge density ρ  and the defect concentrations ic  can be 

determined using the following relationship 47 

 

 ( ) ( ), ,
0 1

2
sgn

M

k k k k

N
B IM

x x i x i x
r Bi

k T
E c c

k T

ρ
Φ Φ

ε ε ∞
=

 
= ⋅ − −  

 
∑  {21} 

 

and taking into account eq. {2}, {3} and {5}. Notably, in addition to the material properties (e.g. dopant 

concentration) and the experimental conditions (e.g. T and pO2), 0Φ  is used here as input parameter 

for the calculation. The profiles obtained in this way were tested for the “symmetrical GC case” (two 

intrinsic charge carriers 1, 2 with 1 2z z= − ), for which the exact analytical solution is available without 

any approximation.2 As shown in the Supplementary Information (Section S3), the relative differences 

were found to be extremely small, namely in the range between 10-10 % and 0.1 % even for extremely 

steep profiles with very high potentials. In order to determine SCL effects on the conductivity, the 

brick layer model described in Section 1.2 was applied, i.e. eq. {17} to {19} (the integration of the 

concentration profiles was performed numerically). 

 

 

 

2.1 Conductivity maps 

Fig. 6 shows the effect of the space charge properties on the overall conductivity of the oxygen 

vacancies (left panel) and electrons (right panel) calculated according to the numerical method 

illustrated above. As expected for potentials close to zero the conductivity change is only small as 

indicated by the black area. For 0 0Φ > , the oxygen vacancies are depleted and the perpendicular 

GBs block the ionic transport, whereas for 0 0Φ <  the OV
••

 enrichment at the parallel GBs leads to a 

conductivity increase. Clearly, with rising absolute values of 0Φ , the blocking (or short-circuiting) 

effect of the SCLs increases (see the yellow, red and purple areas (conductivity decrease) and the 

grey, blue and green areas (conductivity increase) in the left panel of Fig. 6). The maximum 

conductivity enhancement (or depression) amounts up to 3 orders of magnitude compared with the 

bulk properties (for the given parameters). For the electrons (enriched for positive and depleted for 

negative potentials) the conductivity changes are qualitatively similar but much less pronounced due 

to their lower valence (see eq. {2}). In addition, it is worth noting that the variations of mσ  with 
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respect to σ∞  do not only depend on 0Φ  but also on the dopant content. Notably, for a given 

potential, the conductivity change becomes smaller when the dopant concentration increases (i.e. sm 

approaches unity). 

 

     

Fig. 6  Normalized effective conductivity m ms σ σ∞=  of (a) oxygen vacancies and (b) electrons calculated 

using the numerical approach. Note that a detailed explanation of the color-coding is given in the description of 
Fig. 3.  
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3  Analytical approximations vs numerical solutions 

At this point, it is instructive to quantitatively compare the analytical approximations with the 

numerical solutions using the deviation values δ  (Fig. 7), which are defined as follows: 

 

 
,

,

1
in the case of enrichment of the charge carrier :

1

Approx
i m

i Num
i m

s
i

s
δ

−
=

−
   {22} 

 

 
( )
( )

1

,

1

,

1
in the case of depletion of the charge carrier :

1

Approx
i m

i
Num
i m

s
i

s

δ

−

−

−
=

−
.  {23} 

 

Here, ,
Approx
i ms  results from the analytical approximations (including the correction given at the 

end of Section 1.2 by setting , 1i ms −  or 
1 1

,( 1)i ms
− −− – see also Fig. 5), while ,

Num
i ms  are the numerical 

results. Depending on the values of iδ , it is possible to verify whether the analytical approximations 

correctly estimate ( 1iδ = ), underestimate ( 1iδ < ) or overestimate ( 1iδ > ) the change of ,i ms . For 

example, an increase of the conductivity (compared with the bulk) of 5% obtained with the numerical 

approach and an increase of 10% obtained using the analytical approximations results in a deviance 

value of 2 (calculated according to eq. {22}). 
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Fig. 7  Panels (a) and (b): deviance δi between the analytical
43

 (upon having taken into account the bulk 

conductivity – cf. Fig. 5) and the numerical solutions calculated as a function of dopant concentration and 0Φ  

for oxygen vacancies and electrons, respectively. The black regions (δi = 1) indicate that both approaches yield 
identical results. If δi < 1 (δi > 1), the analytical approach underestimates (overestimates) the effective 
conductivity change. In (c) and (d) maps of accuracy defined according to the deviance value are plotted for 
oxygen vacancies and electrons, respectively.  
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The deviance values can be used to define regions of different accuracy as depicted in green, yellow 

and red in Fig. 7c and Fig. 7d.  

• The green region (1) corresponds to the analytical approximations being very precise and 

exhibiting a difference of less than 10 % compared with the numerical approach (0.9 1.1iδ< < ). 

• In the yellow region (2), 0.5 2.0iδ< <  holds, meaning that the analytical approximations deviate 

by up to a factor of 2 from the numerical calculations. Although at a first glance these deviations 

seem to be rather large, they are still acceptable if one considers that other simplifications 

contribute to a systematic error of similar magnitude (e.g. those concerning the geometry of the 

grains, i.e. the brick layer model). 

• Finally, the red region (3) corresponds to deviations exceeding a factor of 2 ( 0.5iδ <  or 2.0iδ > ). 

Clearly, here the analytical approach is rather limited and should not be employed to estimate the 

conductivity changes.  

 

These accuracy maps shown in Fig. 7c and Fig. 7d are useful to illustrate under which 

conditions the formulas of Table 4 yield precise outcomes or, on the contrary, unreliable results. It is 

worth noting that the range of dopant concentration and potential values, in which the reliability of the 

analytical approximations is limited, is rather large. Furthermore, it includes values of 0Φ  and 'Ac  that 

have been often encountered experimentally (see the blue rectangle in Fig. 7c and Fig. 7d).  

The reasons why the analytical approach gives - in certain situations - undependable outcomes 

are summarized in the following (see also Section 4.1). 

(1) First, the equations listed in Table 4 are obtained under the assumption of a strong enrichment 

(or depletion) effect. It is, therefore, obvious that the accuracy of such solutions is particularly limited 

when the term 0 Bi e k Tz Φ  is small (see eq. {2}), e.g. for low values of 0Φ  and/or high temperatures 

(see Fig. 7). Note also that, due to the same reason, for the electrons ( ' 1ez = ) the accuracy 

region (1) is smaller while region (3) is larger compared to the oxygen vacancy case ( 2
OVz •• = ). As 

discussed in Section 4.1, the neglect of the further constant (potential independent) terms in the 

derivation of the formulas shown in Table 4 can yield particularly large errors, where the term 

0i Bz e k TΦ  is not in the exponent (compare the cases c, l and p for the electrons in Table 4 and 

Fig. 2 with the extended red area at negative potentials in Fig. 7d). 

(2) The second reason is related to the misleading assumption that the mixed case can be treated as 

the GC case. One should note that, in the mixed case, despite its low bulk concentration, the minority 

charge carrier is enriched above the much higher dopant concentration level (i.e. cases o and p in 

Table 4 and Fig. 2), while, in the GC case, it is the majority charge carrier which is enriched (cases 

b, c, k and l in Table 4 and Fig. 2). Such discrepancy causes large inaccuracies in proximity of the 

transition zones between the MS and GC situations (see Fig. 7). In the light of these considerations, 
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and since analytical approximations (Table 4) VIII have been extensively used in the literature, we 

propose here new analytical solutions which can provide more satisfactory solutions of the space 

charge layer profiles. 

 

 

 

4  New analytical solutions 

 

4.1  Gouy-Chapman Case 

For the GC case, the reduced accuracy results from the fact that the corresponding analytical 

solutions given in Table 4 rely on the potential function obtained for the symmetrical GC case (see 

Section 1.2). This case, however, does not apply in a number of mixed and ionic conductors (such as 

CeO2), as the condition 1 2z z= −  does not hold.44 In the following, it is shown that two modifications 

can significantly improve the accuracy of the analytical approach: 

 

(1) Let us start with recalling that the formulas summarized in Table 4 (derived under the assumption 

of strong SCL effects) are obtained neglecting the constant contributions to the space charge 

profiles, namely 0 Be k T
e const

Φ
+  is set equal to 0 Be k T

e
Φ

.44 Obviously, to enhance the accuracy of 

the solutions, this approximation should be avoided. This is particularly important for those cases, in 

which the SCL profiles do not depend exponentially on 0Φ  (e.g. the electronic conductivity in cases 

c, l and p in Table 4). If the analytical relationships of the GC case are derived without ignoring the 

constant contributions, eq. {31} and {33}-{38} in Table 6 are obtained, which as expected are found 

to yield more precise outcomes.  

 

(2) Let us now consider the outcomes of eq. {31} and {33}-{38}, i.e. the iΣ ′  and iΩ ′  values, as 

preliminary (denoted here by the prime superscript). The second modification concerns the fact that 

the derivation of these relationships relies on the potential profile ( )xΦ  of the symmetrical GC 

situation. For non-symmetrical situations (e.g. for CeO2), which cannot be solved analytically, this 

results in an over- or underestimation of the potential profile and, hence, in an over- or 

underestimation of the iΣ ′  and iΩ ′  values. Here it is instructive to consider a rather general property 

of SCLs. If the potential profile is overestimated (or underestimated) the degree of the resulting 

overestimation (underestimation) of the iΣ ′  values of the enriched charge carriers and of the iΩ ′  

values of the depleted charge carriers is comparable. Since in the GC case the majority charge 

carrier (which contributes most to the SCL charge) is enriched and not depleted also SCLΣ ′  is 

                                            
VIII

 or similar ones, depending on the charge numbers 
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overestimated (or underestimated) by approximately the same degree as the iΣ ′  values and the iΩ ′  

values.IX Hereby SCLΣ ′  is the preliminary total SCL charge; i.e. the sum of all iΣ ′  values. 

However, as the real total SCL charge SCLΣ  can be analytically calculated without the use of further 

approximations (see eq.  {4}), the degree of over- or underestimation can be evaluated easily by 

comparing SCLΣ ′  with SCLΣ . In the case of significant differences, the values of iΣ ′  and iΩ ′  can be 

corrected by using the factor SCL SCLΣ Σ ′ . This yields the final quantities iΣ  and iΩ  (see eq. {30} in 

Table 6). Furthermore, if only the enriched majority charge carrier contributes significantly to SCLΣ ′ , 

then eq. {31} simply becomes maj SCLΣ Σ=  (eq. {32}). The correction considerably improves the 

preciseness of the analytical approach even for low values of 0Φ . 

 

 

 

4.2  Mott-Schottky Case 

 

Low Space Charge Potentials 

Let us now consider the case of a conducting material having an enriched charge carrier 1 and an 

immobile charge carrier 2 (for simplicity 1 2z z= −  and 1, 2,c c∞ ∞= ). This corresponds to a GC case with 

1 0 1 0
1 1, 2 2, 1 1, ( 1)B Bz e k T z e k T

z ec e z ec z ec e
Φ Φρ − −

∞ ∞ ∞= ⋅ + = ⋅ − . For low 1 0 Bz e k TΦ  values, 

1 0
1 01Bz e k T

Be z e k T
Φ Φ− −�  and thus 1 1, 1 0( )Bz ec z e k Tρ Φ∞ ⋅ −� . 

In a reverse situation (the charge carrier 1 is immobile and 2 is mobile and depleted), the MS 

case applies, for which 2 0 1 0
1 1, 2 2, 1 1, (1 )B Bz e k T z e k T

z ec z ec e z ec e
Φ Φρ −

∞ ∞ ∞= + = ⋅ −  holds. For low 

1 0 Bz e k TΦ  values, it follows that 1 1, 1 0( ))Bz ec z e k Tρ Φ∞ ⋅ −� , which is exactly the same relationship 

derived above for the GC case. This means that, as long as only low 0Φ  values and/or high 

temperatures are considered, the conductivity effects in the MS case can be treated in good 

approximation using the same relationships of the GC case (i.e. eq. {33}-{38} including the above 

described correction eq. {30}, see Table 6 for further details). Notably, the numerical calculations 

showed that this analytical solution yields very precise conductivity values for 0 4Be k T
e

Φ
< . 

 

 

                                            
IX

 This is not the case if the MS case applies (unless the SCL potential is only low). Here for moderate and high 
potentials the majority charge carrier is strongly depleted. Therefore, an overestimation (underestimation) of the 

potential profile will result in an only very slight overestimation (underestimation) its iΣ  value and of the total 

SCL charge. In marked contrast, the resulting overestimation (underestimation) of its iΩ ′  value will be very 

pronounced. 
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Moderate and Large Space Charge Potentials 

The MS assumption of a constant charge density determined only by the immobile dopant results in a 

parabola profile of ( )xΦ  as shown in eq. {12} (see also the Supplementary Information). However, 

the expressions of the analytical solutions for the MS case available in literature (cases m1 and m2 in 

Table 4) rely on a further simplification, namely on the linearization of the potential profile: 

 

 0(1 *)xΦ Φ λ= −    {24} 

 

More precise relationships are expected if the more realistic ( )xΦ  parabola profile of eq. {12} is used 

instead. It is worth noting that the integration of the resulting 
2xe−  terms from 0 to *λ  yields the 

analytical, non-elementary inverse error function erfi, which is closely related to the error function 

erf.X Rather surprisingly, the so-obtained relationships (see Table 5) yield less precise conductivity 

values compared with the expressions obtained by using the linear potential profile.  

 

 

Table 5  Relationships obtained considering the parabolic profile of the space charge potential in eq. {12}. 
||Γ  

and Γ ⊥
 are defined in Table 3. The Debye lengths are given in Table 4. 

case m1:   ( )/
||

0,
2 erfi 2 1

O
BV m e

s e k TΓ λ π Φ•• = ⋅ − +    ( )/ /
1

0,
( erfi 1)Be m e

s e k TΓ λ π Φ⊥ −= ⋅ − +  

case m2:   ( ) 1
0,

( 2 erfi 2 1)
O O

BV m V
s e k TΓ λ π Φ•• ••

⊥ −= ⋅ +  ( )/
||

0,
erfi 1

O
Be m V

s e k TΓ λ π Φ••= ⋅ +  

 

 

Fig. 8 illustrates the reasons of this outcome. Here, the ( )xΦ  profile calculated without further 

assumptions using the numerical approach (the dashed black curve) can be applied as a reference to 

check the accuracy of the analytical profile functions. The comparison shows that an underestimation 

of the potential profile results from eq. {12}. In contrast, the linear profile (eq. {24}) overestimates the 

potential at the interface (i.e. at 0x = ) and underestimates it only for large x values. Here over- and 

underestimation seem to partly compensate each other with the consequence that the resulting 

outcomes of the relationships relying on eq. {24} (Table 4) appear to be more precise than the ones 

relying on eq. {12} (Table 5).  

Nonetheless, eq. {12} does not adequately describe the profile function obtained numerically 

because of its different slope at the interface which corresponds to the electric field 0E− . Indeed, the 

value obtained with eq. {12} does not match with the corresponding quantity calculated with eq. {4}, 

                                            

X
  erfi( ) erf( )x i i x= − ⋅ ⋅  ( i  = imaginary unit) and 

2

erf( ) 2
x t

o
x e dtπ −= ∫  
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which yields the precise value for 0E  without the use of any assumption or approximation. To 

overcome this problem, it is convenient to use the following equation  

 

 
20

0 0
02 r

x E x
ρ

Φ Φ
ε ε

= − − + ,      {25} 

 

for which, at 0x = , not only 0Φ Φ=  and 
2 2

0 0rd dxΦ ρ ε ε= −  but also 0d dx EΦ = −  holds (with 0E  

being derived from eq. {4}). As illustrated in Fig. 8, eq. {25} reproduces the potential profile of the 

numerical approach much more accurately than eq. {12} and eq. {24}. The integration of eq. {25} 

inserted in eq. {2} from 0x =  to the minimum of the parabola at 0MS SCLx Σ ρ=  results in eq. {39} 

and {40} in Table 6. Using the numerical approach as a reference, these formulas are found to 

provide effective conductivity values which are much more accurate compared with those obtained 

from the equations available in the literature (Table 4). 

 

 

 

  

– – – –  numerical approach 

———   eq. {12} 

- - - - - -  eq. {24} 

———    eq. {25} 

———    eq. {26} 

———    eq. {27} 

 

Fig. 8  SCL potential profiles of the MS case: Eq. {12} underestimates the potential profile obtained using the 
numerical approach whereas eq. {25} deviates less strongly from this curve (and is also more precise than eq. 

eq. {24}). In addition to eq. {25}, two further profile functions (with 0d dx EΦ = −  at 0x = ) were tested, which 

allow for an analytical integration upon insertion in eq. {2}: 0 0
0

x E
e

ΦΦ Φ − ⋅= ⋅  {26} and 

( )23 2 1
0 0 004 / 2E x EΦ Φ Φ− −

= +  {27}. However, they describe the potential profile less satisfactorily than eq. {25}. 

The parameters used in this case are: 0 0.6 VΦ = , 26rε = , 700 °Cθ = , 1Dop deplz z= − = −  and 

19 -3
, 1.25 10 cmdepl Dopc c∞ = = ⋅ . 

 

 

Page 26 of 36Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



     

26 / 35 

 

4.3  Mixed Case 

Usually, the region in proximity of the border between the GC and MS case, i.e. the mixed case, is 

treated by simply using the GC solutions.44 Fig. 7 shows, however, that this modus operandi 

generates highly unreliable results. For this reason, a more dependable approach to analytically 

solve the mixed case is suggested here. 

What differentiates the mixed case from the MS case is that in the mixed case the enrichment of 

the minority charge carrierXI (subscript enr) becomes so pronounced close to the interface that its 

charge density contribution surpasses the one of the immobile dopant: enr enr IMz ec ρ>  (see the 

example profiles given for cases o and p in Table 4). Here, the enriched charge carrier dominates the 

charge density of the space charge zone similarly to the GC case, whilst for larger distances from the 

interface the charge density is determined by the constant doping content as in the MS case (i.e. 

constenr enr IMz ec ρ< = ).XII Therefore, it is possible to identify a so called transition potential TΦ , at 

which enr enr IMz ec ρ= . 

 

 
,

lnB IM
T

enr enr enr

k T

z e z ec

ρ
Φ

∞

 
= ⋅  −  

   {28} 

 

According to this method, the conductivity effects, i.e. the iΣ  and iΩ  values, can be expressed 

as the sum of the GC-like contribution (where TΦ Φ> ) and the MS-like contribution (where 

TΦ Φ< ).  

 

 , ,i i GC i MSΣ ∆Σ ∆Σ= +    and   , ,i i GC i MSΩ ∆Ω ∆Ω= +  {29} 

 

For the calculation of the GC-like and the MS-like contributions the same equations and 

parameters as for the real GC and MS cases can be applied. Further details on the calculation are 

given in Table 6. Despite the complexity of the mixed case, this approach was found to yield very 

precise results. 

 

                                            
XI

 e.g. the electrons for acceptor doped ceria and positive SCL potentials 
 
XII

 A further example is given in the mixed case profile shown in Fig. S1 of the Supplementary Information. 
Here, for x < 2.5 nm the enrichment of the minority charge carrier dominates resulting in a steep GC-like charge 
density profile whilst for x > 2.5 nm the charge density profile is rather flat (MS-like). 
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Table 6  Improved analytical approximations for non-overlapping SCLs. The subscripts i, enr and depl indicate 
an arbitrary, an arbitrary enriched and an arbitrary depleted charge carrier, respectively, while maj indicates the 
enriched majority charge carrier in the Gouy-Chapman case. 
 

Conductivities 

The conductivity effects are given in terms of SCL charge contributions iΣ  and reduced resistances 

iΩ . In order to determine the normalized conductivities , , ,i m i m is σ σ ∞=  from these quantities, the 

geometry of the sample (e.g. microcrystalline pellet or thin film) needs to be taken into consideration. 

The geometrical factors ||Γ  and Γ ⊥  are given in Table 3. 

Enriched charge carriers:  
|| || ||

, , ,
,

with 1i
i m i m i m

i i

s s s
z ec

Σ
Γ

∞

= = ⋅ +  

Depleted charge carriers:  ( ) 1

, , , ,
with 1i m i m i m i i i

s s s z ecΓ Ω
−⊥ ⊥ ⊥

∞= = +  

Note that the assumptions 
||
,, i mi ms s=  and ,, i mi ms s

⊥
=  are valid for SCLd >> l . If SCLd � l  (but the SCLs do 

not yet significantly overlap) then both 
||
,i ms  and ,i ms

⊥
 contributions become relevant and 

||
, ,, i m i mi ms s s

⊥
≈ ⋅  

should be applied instead. 

Gouy-Chapman Case 

In the Gouy-Chapman case, the enriched majority charge carrier should be considered (subscript maj). 

Its charge contribution is calculated using eq. {31} (or {32}) (for A and λ  see the parameters section at 

the end of this Table). The relationships which need to be applied for the depleted charge carriers and 
for the enriched minority charge carriers depend on the ratio of their charge number and the charge 
number of the majority charge carrier (eq. {33}-{38}).  

The resulting preliminary values iΣ ′  and iΩ ′ , however, are still rather imprecise and need to be 

corrected with the factor SCL SCLΣ Σ ′  (eq. {30}). This yields the final quantities iΣ  and iΩ . Hereby SCLΣ ′  

is simply the sum of all iΣ ′  values whereas the SCL charge SCLΣ  can be calculated easily using eq. {4}. 

Correction 

 
1

and with
MN

SCL SCL
i i i i SCL i

SCL SCL i

Σ Σ
Σ Σ Ω Ω Σ Σ

Σ Σ =

′ ′ ′ ′= = =
′ ′ ∑   {30} 

Enriched Majority Charge Carrier 

 

 in general:  ( ) ( ) ( )1 1
, ,2 1 , 2 1maj maj maj maj maj majz ec A z ec AΣ λ Ω λ

− −
∞ ∞′ ′= ⋅ − = ⋅ −  {31} 

 if all  iΣ ′  except majΣ ′  are very small:   maj SCLΣ Σ=       {32} 

Depleted Charge Carriers 

 

 if 
1

2

depl

maj

z

z
= − :  ( ) ( ) ( )11

, ,

1 1
2 ln 1 , 2 ln 1

2 2
depl depl depl depl depl deplz ec A z ec AΣ λ Ω λ

−−
∞ ∞

   ′ ′= + = +      
   {33} 

 if 1
depl

maj

z

z
= − :  ( ) ( ) ( )11

, ,2 1 , 2 1depl depl depl depl depl deplz ec A z ec AΣ λ Ω λ
−−

∞ ∞′ ′= ⋅ − = ⋅ −       {34} 

 if 2
depl

maj

z

z
= − :  ( )

3 3
11

, ,

4 4
2 , 2

3 3 3 3
depl depl depl depl depl depl

A A
z ec A z ec AΣ λ Ω λ

−
−−

∞ ∞

   
′ ′= + − = + −   

   
   {35} 
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Further Enriched Minority Charge Carriers 

 

 if 
1

2
enr

maj

z

z
= :   ( ) ( ) ( )1 1

, ,

1 1
2 ln 1 , 2 ln 1

2 2
enr enr enr enr enr enrz ec A z ec AΣ λ Ω λ

− −
∞ ∞

   ′ ′= ⋅ ⋅ + = ⋅ +      
    {36} 

 if enr majz z= :  ( ) ( ) ( )1 1
, ,2 1 , 2 1enr enr enr enr enr enrz ec A z ec AΣ λ Ω λ

− −
∞ ∞′ ′= ⋅ − = ⋅ −                    {37} 

 if 2enr

maj

z

z
= :    ( )

3 3
1 1

, ,

4 4
2 , 2

3 3 3 3
enr enr enr enr enr enr

A A
z ec A z ec AΣ λ Ω λ

−
− −

∞ ∞

   
′ ′= ⋅ + − = ⋅ + −   

   
   {38} 

 

Mott-Schottky Case 

Here two different situations can be distinguished. For low SCL potentials (i.e. 0 Be k T
e < 4

Φ
) the 

equations of the Gouy-Chapman case have to be applied. For higher SCL potentials the iΣ  and iΩ  

values are calculated using eq. {39} and {40}. 

Moderate and High Potentials (i.e. 0 Be k T
e > 4

Φ
) 

   

0
0

20 0 0
, 0

0 0

1
erfi

2 2

MSi

B

x Ez e

k T ir B r
i i i MS

Bi

zk T e
z ec x e E

e k Tz

Φρ πε ε ε ε
Σ

ρ ρ

−  
− 

 
∞

   = ⋅ − − ⋅ ⋅ ⋅ ⋅      
       {39} 

   

0
0

20 0 0
0

, 0 0

1 1
erfi

2 2

MSi

B

x Ez e

k T ir B r
i MS

i Bi i

zk T e
x e E

ec e k Tz z

Φρ πε ε ε ε
Ω

ρ ρ

 
− 

 

∞

  − − = − + ⋅ ⋅ ⋅ ⋅      
   {40} 

Note that depending on the sign of 0ρ  and iz  the term 0 izρ  is not always equal to 0 izρ . For 

0 0iz ρ⋅ <  (e.g. for iΣ  of the depleted charge carrier) the argument of the erfi function becomes 

imaginary and eq. {39} and {40} can be rearranged according to erfi( ) erf( )x i i x= − ⋅ ⋅  (with i being the 

imaginary unit here). 
 

Low Potentials (i.e. 0 Be k T
e < 4

Φ
) 

This case can be treated using the equations of the Gouy-Chapman case {33}-{38} including the 

correction {30}. To calculate λ  and A  with eq. {13} and {43} set [ ]0sgnmajz Φ= −  and ,maj maj IMz ec ρ∞ = . 

Mixed Case 

In the mixed case firstly the transition potential TΦ  needs to be determined 

 
,

lnB IM
T

enr enr enr

k T

z e z ec

ρ
Φ

∞

 
= ⋅  −  

. {28} 

For TΦ Φ>  the profile has the characteristics of the GC case whereas for TΦ Φ<  it is MS-like. Both 

contributions sum up to the total iΣ  and iΩ  values. 

 , ,i i GC i MSΣ ∆Σ ∆Σ= +  and , ,i i GC i MSΩ ∆Ω ∆Ω= +       {29} 

The GC-like and MS-like contributions are calculated as follows. 
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Gouy-Chapman Contributions ,i GC∆Σ  and ,i GC∆Ω  

The Gouy-Chapmann like part of the profile is only valid for potentials between TΦ  and 0Φ . Therefore, 

firstly the values 
0,i ΦΣ ′  and 

0,i ΦΩ ′  need to be determined using the equations of the GC case, namely 

eq. {31} and {33}-{38} (hereby the enriched charge carrier is considered as majority charge carrier; i.e. 

eq. {31} holds). The 
0,i ΦΣ ′  and 

0,i ΦΩ ′  values, however, contain also the part of the profile where 

TΦ Φ<  (i.e. the MS-like part). This contribution needs to be subtracted: 

  
0, , , Ti GC i iΦ Φ∆Σ Σ Σ′ ′ ′= −  and 

0, , , Ti GC i iΦ Φ∆Ω Ω Ω′ ′ ′= −                     {41} 

For this purpose the values , Ti ΦΣ ′  and , Ti ΦΩ ′  are calculated using again equations {31} and {33}-{38} in 

which, nevertheless, 0Φ  needs to be replaced by TΦ . In analogous manner, the value 

0, , , TSCL GC SCL SCLΦ Φ∆Σ Σ Σ= −  is calculated using eq. {4}. The GC correction is obtained as shown in 

eq. {42}, yielding the final ,i GC∆Σ  and ,i GC∆Ω  values: 

  , ,
, , , , , ,

, , 1

, and
MobileN

SCL GC SCL GC
i GC i GC i GC i GC SCL GC i GC

SCL GC SCL GC i

∆Σ ∆Σ
∆Σ ∆Σ ∆Ω ∆Ω ∆Σ ∆Σ

∆Σ ∆Σ =

′ ′ ′ ′= = =
′ ′ ∑ . {42}. 

Mott-Schottky Contributions ,i MS∆Σ  and ,i MS∆Ω  

The MS-like part of the profile is valid for Φ Φ< <0 T . Hence, the MS contributions ,i MS∆Σ  and ,i MS∆Ω  

are determined as described in the above MS section of this table. In this case, 0Φ  needs to be 

replaced by TΦ  in the respective formulas.  

Parameters 

General case: 

0 0SCL r EΣ ε ε= −      {4},             [ ] ( )0 0 ,0 , 0
0 1

2
sgn

MN
B IM

i i
r Bi

k T
E c c

k T

ρ
Φ Φ

ε ε ∞
=

 
= ⋅ − −  

 
∑      {21} 

( )0 ,0
1

MN

IM i i
i

e z cρ ρ
=

= + ⋅∑      {3},           ( ), ,
1

IMN

IM IM j IM j
j

e z cρ
=

= ⋅∑      {5},          
0

,0 ,

i

B

z e

k T
i ic c e

Φ−

∞= ⋅      {2} 

Gouy-Chapman case:  0
2 2

,2

r B

maj maj

k T

z e c

ε ε
λ

∞

=      {13},           

0
1
2 maj

B

z e

k T
A e

Φ−

=      {43} 

Mott-Schottky case: 
0

SCL
MSx

Σ
ρ

=      {44} 
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4.4  Accuracy of the Improved Analytical Solutions 

The so-obtained new analytical solutions are summarized in Table 6 while the corresponding 

conductivity values are displayed in Fig. 9. Notably, thanks to the improved relationships the 

transition between the GC and MS case is now smooth and without the discontinuities observed 

previously (compare Fig. 9 with Fig. 5). 

 

     

Fig. 9  Normalized effective conductivity of the (a) oxygen vacancies and (b) electrons calculated using the 
improved analytical solutions given in Table 6. The blue rectangle indicates the range of SCL potential 
(between 0.20 V and 0.34 V) and dopant concentration, which was observed experimentally in nominally pure 
and acceptor doped ceria.

19-24
 

 

 

Fig. 10 displays the deviance between the numerical and the improved analytical approach. 

Notably, for the improved analytical solutions (for the parameters considered here), the region of low 

accuracy (3) vanishes, while the region of medium accuracy (2) is considerably reduced compared 

with Fig. 7. Therefore, the deviance is adequately low (uncertainty < 10 %) for almost the entire 

range of space charge potential and dopant concentration considered here. Even for very intricate 

situations which cannot be treated with the analytical approximation given in the literature (such as 

low potentials and the mixed case), the improved formulas yield very precise results. 
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Fig. 10  Panel (a) and (b) illustrate the deviance δi between the new analytical (Table 6) and the numerical 
solutions (as a function of dopant concentration and SCL potential) for oxygen vacancies and electrons, 
respectively.  Panel (c) and (d) show the accuracy map as defined in Fig. 7c and d for the oxygen vacancies 
and the electrons, respectively. 
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5  Examples 

 

5.1  Low space charge potentials 

In this case, it is worth considering the case of the nanocrystalline ceria films treated in ref. 24 with 

16 nmd �  and 'Ac  = 10 %, which at 700°Cθ =  exhibited only a relatively small conductivity change 

of 
,

0.5
OV m

s •• ≈ . Notably, the values of 0Φ  obtained numerically and through the improved analytical 

formulas (Table 6) are in very good agreement (0.19 V vs. 0.20 V), whereas the non-improved 

equations (Table 4) yield a rather inaccurate value of 0.25 V. 

 

5.2  Moderate space charge potentials 

In a different previous study,20 a rather large SCL potential (0.32 V at 700°Cθ = ) was found in ceria 

films grown on a different substrate (again with 16 nmd �  and 'Ac  = 10 %). For this case, it is worth 

checking which conductivity values are expected by using the different approaches discussed here.  

The numerical solution yields 
,

0.077
OV m

s •• = , while the improved and the non-improved 

analytical approximations yield 0.077 and 0.089, which are in excellent and just acceptable 

agreement with the numerical solution, respectively. For the electrons the situation is comparable 

and the numerical, improved analytical and non-improved analytical approaches yield the values 

e',ms = 2.06, 2.06 and 1.90, respectively. Hereby, however, the results of the non-improved analytical 

solutions already include the correction due to the bulk conductivity contribution as explained in the 

end of Section 1.2 (compare Fig. 3 with Fig. 5). An application of the formulas given in the literature 

(i.e. a strict use of the equations given in Table 4) yields even more unreliable outcomes of 

,OV m
s ••  = 0.098 and in particular e',ms  = 0.90. 

 

5.3  Mixed case 

Finally, it is worth looking also at samples belonging to the mixed case (between GC and MS 

situation).23 To do so, let us consider the same parameters as in the 2 previous examples (namely, 

16 nmd = , ' 10%Ac = , 700°Cθ = , 0 0.32 VΦ = ) and in a thought experiment decrease the pO2 until 

n∞  increases up to 
19 -3

6 10 cm⋅ . At this point, for 0 0.32 VΦ = , 0n  lies just above the dopant 

concentration 'Ac . Hence, here the mixed case applies. For such a situation, the improved analytical 

solution yields 
,

0.076
OV m

s •• = , which is in good agreement with the numerical solution 

(
,

0.083
OV m

s •• = ). In marked contrast, the non-improved solution (including the bulk conductivity 

correction) is strongly unreliable: 
,

0.025
OV m

s •• = . A similar outcome is found also for the electrons as 
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the numerical calculation yields e', 1.98ms = , the improved analytical solution e', 1.96ms =  and the 

non-improved e', 4.38ms = . Clearly, for the mixed case, the boundary conditions of the non-improved 

analytical approximations are insufficient, while the improved equations can be dependably employed 

to determine the effective conductivity values with a good accuracy. 

 

 

 

6  Summary 

In summary, a numerical approach was used to calculate SCL profiles and determine the expected 

conductivity changes in CeO2. The SCL effects were discussed for the whole dopant range (donor 

doped, pure and acceptor doped ceria) and as a function of SCL potential 0Φ . Using the numerical 

calculations not only the SCL profiles of the ideal Gouy-Chapman and Mott-Schottky cases could be 

analyzed but also the more complex mixed cases and SCLs with low potentials. 

The accuracy of the analytical approximation equations was tested. Here situations of higher 

and lower accuracy were found depending on doping level and SCL potential. The approximations 

were found to be most precise for an enrichment of charge carriers (Gouy-Chapman case), whereas 

for low potentials and for the transition between the Gouy-Chapman and the Mott-Schottky cases the 

accuracy was found to be insufficient.  

Modifications of the analytical relationships (improved analytical solutions) were proposed which 

considerably increase the accuracy of the analytical approach. Notably, such improved solutions 

were found to be precise even for complicated situations, namely the mixed case and low SCL 

potentials. Finally, three experimental examples were considered, which emphasize the relevance of 

both the numerical and the modified analytical approach. 
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