This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Rapid synthesis of photocatalytic (BiO)$_2$CO$_3$ single-crystal nanosheets via an eco-friendly approach

Fan Donga, Ji Biana, Yanjuan Suna, Ting Xionga, Wendong Zhangb

a Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing, 400067, China,

b College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, 400045, China

* To whom correspondence should be addressed. Tel/Fax: + 23-62769785-605, E-mail: dfctbu@126.com (Fan Dong)
Abstract: (BiO)$_2$CO$_3$ single-crystal nanosheets were successfully fabricated via an eco-friendly aqueous process using CO$_2$ and bismuth nitrate as raw materials under mild conditions within 30 min. Compared with previous preparation methods, this facile method avoids treatment at high temperature, use of organic precursors and production of undesirable organic byproducts during synthesis process. The as-prepared samples were characterized by XRD, SEM, TEM, BET-BJH measurement, UV-vis DRS, FT-IR, Time-resolved ns-level PL in detail. It was found that the size and the thickness of (BiO)$_2$CO$_3$ nanosheets can be influenced by reaction temperature and CO$_2$ concentration. The as-prepared (BiO)$_2$CO$_3$ nanosheets were applied to photocatalytic removal of NOx under artificial UV–vis and UV light irradiation and showed admirable photocatalytic performance. Significantly, (BiO)$_2$CO$_3$ nanosheets can be directly fabricated using the CO$_2$ in air without extra separation process, and the as-prepared (BiO)$_2$CO$_3$ nanosheets exhibited efficient and durable photocatalytic performance for NOx removal. The present work developed a novel method utilizing CO$_2$ to produce functional (BiO)$_2$CO$_3$ nanosheets with potential applications in environment and energy, which is expected to fabricate other functional metal carbonate.

Keywords: (BiO)$_2$CO$_3$ nanosheets, carbon dioxide, eco-friendly approach, photocatalytic performance, rapid synthesis.
1. Introduction

Recently, two-dimensional (2D) nanostructures such as nanoplates and nanosheets are of particular interests due to their intriguing, unusual properties and potential applications in various fields.1-3 Graphene nanosheet, a typically 2D nanostructure, has been found to exhibit intriguing properties in optical4 and electronic devices,5 energy generation and storage,6 hybrid materials,7 and sensors,8 which subsequently stimulates the interest in nanosheets of various materials such as graphitic carbon nitrides(g-C\textsubscript{3}N\textsubscript{4}),9 transition metal dichalcogenides,10,11 transition metal oxides,12 BN13, and other 2D compounds. These 2D nanomaterials are expected to possess desirable properties comparable or complementary to that of graphene. Consequently, numerous efforts have been devoted to exploring their synthesis and unique morphology or structure dependent properties.

For photocatalytic materials, 2D nanosheets or nanoplates-like materials exhibit intriguing photocatalytic performance due to the enhanced surface areas, good crystallinity, high structured anisotropy, exposed active facets or effective charge transfer and separation. For example, g-C\textsubscript{3}N\textsubscript{4} nanosheets with large surface areas showed improved photocatalytic activities compared to the bulk g-C\textsubscript{3}N\textsubscript{4}.15 BiOCl single-crystalline nanosheets with exposed \{001\} facets exhibited high activity for photodegradation of methyl orange under UV light.16 In addition, the 2D layered nanojunctions such as TiO\textsubscript{2}/graphene,17 Bi\textsubscript{2}S\textsubscript{3}/BiO\textsubscript{I}18 also showed enhanced photocatalytic activity towards removal of pollutants mainly because of the effective charge transfer and separation. Obviously, 2D nanostructures play a significant role in
enhancing the photocatalytic activity due to their distinct properties.

Recently, (BiO)$_2$CO$_3$, a type of Sillén phase material consists of alternative layers of [Bi$_2$O$_2$]$_{2+}$ and CO$_3^{2-}$ groups, has drawn considerable attention due to its promising antibacterial performance and photocatalytic activity. Up to now, various (BiO)$_2$CO$_3$ nanostructures including nanoparticles, nanotubes, nanoplates, nanosheets, nanocubes, flower-like microsphere, hollow microsphere and other 3D hierarchical nanostructures have been fabricated by different synthetic routes, such as template-assisted synthesis, hydro-/solvothermal routes, reflux method and so on. Among them, (BiO)$_2$CO$_3$ nanosheets and nanoplates exhibit excellent photocatalytic properties, which have mainly been fabricated by hydro-/solvothermal methods. For example, Zhao et al. hydrothermally synthesized plate-like (BiO)$_2$CO$_3$ at 180°C in a span of 24 h. Chen et al. fabricated (BiO)$_2$CO$_3$ nanoplates by solvothermal method. Likewise, Huang and co-worker obtained (BiO)$_2$CO$_3$ nanosheets through hydro- and solvothermal processes. However, these methods suffer from high temperature and long reaction time. Thus, it is still a big challenge to develop a simple and fast route to prepare 2D (BiO)$_2$CO$_3$ nanostructures with well defined shapes and good crystallinity.

Our group recently have fabricated various (BiO)$_2$CO$_3$ nanostructures with highly active photocatalytic performance using a bottom-up aqueous approach. Carbonate and bismuth ions were provided simultaneously in the aqueous solution to form (BiO)$_2$CO$_3$ nanostructures during fabrication. This simple chemical reaction inspires us to design new approach to fabricate functional (BiO)$_2$CO$_3$ nanostructures using CO$_2$ as raw material based on the fact that CO$_2$ can be simply transformed to
carbonate ions in basic aqueous environment.

In the present work, we developed an eco-friendly aqueous process to fabricate \((\text{BiO})_2\text{CO}_3\) nanosheets using \(\text{CO}_2\) and bismuth nitrate as raw materials under mild conditions. This aqueous chemical approach to functional \((\text{BiO})_2\text{CO}_3\) nanosheets features process simplicity, mildness and scalability. The effects of reaction temperature and \(\text{CO}_2\) concentration on the microstructure and photocatalytic performance were investigated. Going further, \((\text{BiO})_2\text{CO}_3\) nanosheets were directly fabricated using air as \(\text{CO}_2\) feed stock without extra separation process, and the as-prepared \((\text{BiO})_2\text{CO}_3\) showed high performance in the removal of NOx under artificial UV–vis light irradiation. The present work could be further extended to fabricate other functional metal carbonates (e.g., \(\text{Ag}_2\text{CO}_3\), \(\text{SrCO}_3\)) in economical and ecological way competitive to current technologies.

2. Experimental

2.1 Formation of \((\text{BiO})_2\text{CO}_3\) nanosheets

![Schematic illustration of the experimental procedure for conversion of \(\text{CO}_2\) gas to \((\text{BiO})_2\text{CO}_3\) nanosheets and the photocatalytic application.](image)

All the chemicals used in this study were analytical grade and were used without
further purification. Distilled water was used in all experiments. In a typical synthesis, a certain amount of Bi(NO$_3$)$_3$·5H$_2$O (1.21g) were dissolved in 100 mL of nitric acid solution (0.9 mol/L) and stirred for 50 min. Then, 15 mL of concentrated ammonia solution was added and white precipitate was produced. CO$_2$ gas stream (1.0 L/min) was introduced to the above suspension with stirring and maintained for 30 min. After the gas stream was closed, the resulted precipitate was filtered, washed with water and ethanol for four times and dried at 60 °C to get the final (BiO)$_2$CO$_3$ with no further treatment. In order to investigate the effects of reaction temperature and CO$_2$ concentration, the reaction temperature and the CO$_2$ concentration were varied. The samples prepared at temperature of 25, 45, 65 and 85 °C with CO$_2$ concentration of 100% were labeled as BOC-T25, BOC-T45, BOC-T65 and BOC-T85, respectively. The samples prepared at CO$_2$ concentration of 0.1, 1, 10 and 100% under reaction temperature of 45 °C were labeled as BOC-C0.1, BOC-C1, BOC-C10 and BOC-C100, respectively. The experimental procedure for conversion of CO$_2$ gas to (BiO)$_2$CO$_3$ nanosheets and their photocatalytic application was illustrated in Fig. 1.

For the sample prepared using CO$_2$ in air as raw material at room temperature, the CO$_2$ gas stream was replaced by pumped air stream at a flow rate of 1.0 L/min for 3 h with other conditions identical. The resulted sample was labeled as BOC-Air.

For the hydrothermal synthesis of (BiO)$_2$CO$_3$, appropriate amounts of bismuth citrate (1.60 g) and sodium carbonate (0.46 g) were mixed with 75 mL of H$_2$O in a 100 mL autoclave Teflon vessel and stirred for 30 min. The resulting aqueous precursor suspension was then hydrothermally treated at 210 °C for 24 h. The sample
obtained was filtered, washed with water and ethanol three times and dried at 60 °C for 12 h to get final (BiO)$_2$CO$_3$ samples with no further treatment. This sample was labeled as BOC-H.

2.2 Characterization

The crystal phase was analyzed by X-ray diffraction with Cu Kα radiation (XRD: model D/max RA, Japan) at a scan rate of 0.01° 2θ/s. FT-IR spectra were recorded on a Nicolet Nexus spectrometer on samples embedded in KBr pellets. A scanning electron microscope (SEM, JEOL model JSM-6490, Japan) was used to characterize the morphology of the samples. The morphology and microstructure were examined by transmission electron microscopy (TEM: JEM-2010, Japan). The UV-vis diffuse reflection spectra were obtained for the dry-pressed disk samples using a Scan UV-vis spectrophotometer (UV-vis DRS: UV-2450, Shimadzu, Japan) equipped with an integrating sphere assembly, using BaSO$_4$ as reflectance sample. The photoluminescence spectra were measured with a fluorescence spectrophotometer (F-7000, Japan) using a Xe lamp as excitation source with optical filters. Nitrogen adsorption-desorption isotherms were obtained on a nitrogen adsorption apparatus (ASAP 2020, USA) with all samples degassed at 50°C for 12 h prior to measurements. Time-resolved photoluminescence (PL) spectroscopy was recorded on FLsp920 Fluorescence spectrometer (Edinburgh Instruments) with excitation at 330 nm.

2.3 Evaluation of photocatalytic activity
The photocatalytic activity was investigated by removal of NO at ppb levels in a continuous flow reactor at ambient temperature. The volume of the rectangular reactor, made of stainless steel and covered with Saint-Glass, was 4.5 L (30 cm × 15 cm × 10 cm). A 150 W commercial tungsten halogen lamp was vertically placed outside the reactor. Photocatalyst (0.1 g) was coated onto a dish with a diameter of 12.0 cm. The coated dish was then pretreated at 70 °C to remove water in the suspension. Two dishes were placed in the reactor. The NO gas was acquired from a compressed gas cylinder at a concentration of 100 ppm of NO (N₂ balance, BOC gas). The initial concentration of NO was diluted to about 600 ppb by the air stream. The desired relative humidity (RH) level of the NO flow was controlled at 50% by passing the zero air streams through a humidification chamber. The gas streams were premixed completely by a gas blender, and the flow rate was controlled at 2.4 L/min by a mass flow controller. After the adsorption-desorption equilibrium was achieved, the lamp was turned on. The concentration of NO was continuously measured by a chemiluminescence NO analyzer (Thermo Environmental Instruments Inc., 42i-TL), which monitors NO, and NO₂ with a sampling rate of 1.0 L/min. The removal ratio (η) of NO was calculated as \(\eta (\%) = (1 - C/C_0) \times 100\% \), where \(C \) and \(C_0 \) are concentrations of NO in the outlet steam and the feeding stream, respectively. The kinetics of photocatalytic NO removal reaction is a pseudo first order reaction at low NO concentration which can be described as \(\ln(C_0/C) = kt \), where \(k \) is the apparent rate constant.
3. Results and discussion

3.1 Phase structure

Fig. 2 XRD patterns of the samples obtained at different temperatures (a) and different CO$_2$ concentrations (b).

Fig. 2a shows the XRD patterns of the samples obtained at different reaction temperatures compared with standard PDF card. The diffraction peaks for each sample can match the orthorhombic (BiO)$_2$CO$_3$ crystallites (JCPDS file No. 25-1464). No peaks of any other phases or impurities are detected. The reaction temperature has no obvious effect on the phase structure of (BiO)$_2$CO$_3$. As the reaction temperature increases, the crystallinity of the samples is slightly improved. This fact can be attributed to the high thermal energy at elevated temperatures that may allow Bi$^{3+}$ and CO$_3^{2-}$ ions to overcome the activation energy barrier and to accelerate the nucleation and growth of (BiO)$_2$CO$_3$ crystallites. Fig. 2b shows the XRD patterns of the samples obtained under different CO$_2$ concentrations. When the CO$_2$ concentration is set 0.1%, the resulting sample is amorphous. When the CO$_2$ concentration increases from 1% to 100%, (BiO)$_2$CO$_3$ crystallites are produced. Further observation indicates
that the intensity of the diffraction peaks for each sample is strengthened with increased CO$_2$ concentration, which suggests that the crystallinity of the samples is enhanced gradually.

The formation of (BiO)$_2$CO$_3$ follows the following simple chemical reactions (Eq. 1-4). Considering the yield of (BiO)$_2$CO$_3$, all the Bi(NO$_3$)$_3$·5H$_2$O used were transformed to (BiO)$_2$CO$_3$ product under the present conditions.

\[
\begin{align*}
\text{NH}_3 + \text{H}_2\text{O} & \rightarrow \text{NH}_4^+ + \text{OH}^- \\
\text{Bi}^{3+} + \text{NO}_3^- + 2\text{OH}^- & \rightarrow \text{BiONO}_3 + \text{H}_2\text{O} \\
\text{CO}_2 + 2\text{OH}^- & \rightarrow \text{CO}_3^{2-} + \text{H}_2\text{O} \\
\text{BiONO}_3 + \text{CO}_3^{2-} & \rightarrow \text{(BiO)}_2\text{CO}_3 + 2\text{NO}_3^-
\end{align*}
\]

According to the crystal structure of (BiO)$_2$CO$_3$, the (Bi$_2$O$_2$)$^{2+}$ layers and CO$_3^{2-}$ layers are inter-grown with the plane of the CO$_3^{2-}$ group orthogonal to the plane of the (Bi$_2$O$_2$)$^{2+}$ layer. The internal layered structure would naturally guide the lower growth rate along certain axis to form two-dimensional nanosheets. These facts indicate that the well-crystallized (BiO)$_2$CO$_3$ can be produced in a short time using inorganic precursors.

Fig. S1 shows the FT-IR of the samples obtained at different conditions. The samples prepared at reaction temperature between 25 and 85 °C and with CO$_2$ concentration from 1 to 100% have similar vibration peaks (Fig. S1a and S1b). The “free” CO$_3^{2-}$ ions (point group symmetry D$_{3h}$) exhibit four internal vibrations, including symmetric stretching mode ν_1 (1067 cm$^{-1}$), the corresponding anti-symmetric vibration ν_3 (1468 and 1391 cm$^{-1}$), the out-of-plane bending mode ν_2.
(846 and 820 cm\(^{-1}\)) and the in-plane deformation \(\nu_4\) (698 and 670 cm\(^{-1}\)). The band groups of \(\nu_1 + \nu_4\) (1756 and 1730 cm\(^{-1}\)) can be also observed. The broad peaks at 1500-1600 cm\(^{-1}\) and 3400-3600 cm\(^{-1}\) can be assigned to the characteristic stretching vibrations of surface hydroxyl groups from absorbed water molecules.\(^{30}\) Fig. S1b shows that the sample prepared with CO\(_2\) concentration of 0.1% has minor amount of (BiO)\(_2\)CO\(_3\) as the CO\(_3^{2-}\) ions supplied by CO\(_2\) were not enough to finish the complete transformation.

3.2 Morphology

![SEM and TEM images of BOC-C1](image)

Fig. 3 SEM (a, b) and TEM (c, d) images of BOC-C1.

The low-magnification SEM image of Fig. 3a reveals that the BOC-C1 sample is composed of a large amount of randomly aggregated nanosheets. The magnified image in Fig. 3b shows that all the nanosheets have an irregular morphology with...
thickness of 20-30 nm. TEM image in Fig. 3c shows that the BOC-C1 sample is composed of well-defined nanosheets. The yield of the nanosheets morphology reaches 100%. The lattice spacing \(d \) value is determined to be 0.27 nm (Fig. 3d), matching with the spacing of the (110) crystal plane of \((\text{BiO})_2\text{CO}_3\).

Fig. 4 SEM (a, b), HRTEM (c) images and SAED (d) of BOC-C10.

When the \(\text{CO}_2 \) concentration is increased to 10%, large amount of nanosheets with relatively large size are produced, as shown in Fig. 4a. These nanosheets are attached together in a layer-by-layer style. Fig. 4b shows that the surface of the nanosheet is smooth and the shape is irregular. The thickness of the nanosheets is increased to 30-40 nm. Fig. 4c shows the HRTEM image of a single nanosheet. The lattice spacing \(d \) value is determined to be 0.27 nm, matching with the spacing of the (110) crystal plane of \((\text{BiO})_2\text{CO}_3\). The SAED pattern (Fig. 4d) with well alignment implies that the
The nanosheet is single-crystal. The diffraction spots of the SAED pattern can be indexed as the (110), (10) and (020) reflections, suggesting that the exposed wide facet of the nanosheet is (002) plane.

Fig. 5 SEM (a, b), HRTEM (c) images and SAED (d) of BOC-C100 (BOC-T45).

When the CO$_2$ concentration is increased to 100%, large amount of nanosheets can also be produced as shown in Fig. 5a. It seems that the average size of the nanosheets is further increased (Fig. 5b). The thickness of the nanosheets is further increased to 40-50 nm. The HRTEM image of a single nanosheet shows that the lattice spacing d value is 0.27 nm, assigning to the spacing of the (110) crystal plane of (BiO)$_2$CO$_3$.

The SAED pattern (Fig. 5d) is similar to that of BOC-C10. That is, the nanosheet with (002) planes exposed is also single-crystalline. Combing the Fig. 3, 4 and 5, we can find that the size and thickness of the single-crystal nanosheets was increased with the
increased CO$_2$ concentration.

Fig. 6 SEM (a, b) and TEM (c, d) images of BOC-T25.

At low reaction temperature of 25 °C, the size of the nanosheets is significantly reduced (Fig. 6a and 6b) probably due to slow reaction rate. The TEM image (Fig. 6c) shows that the BOC-T25 sample is also composed of nanosheets. The HRTEM image shows the lattice spacing d value of a single nanosheet is 0.27 nm, assigning to the spacing of the (110) crystal plane of (BiO)$_2$CO$_3$.
Fig. 7 SEM (a, b) and TEM (c, d) images of BOC-T65.

When the reaction temperature is raised to 65 °C, the product is transformed to nanosheets with large smooth surface (Fig. 7a and 7b). Note that some pores on the surface of the nanosheets can be observed (Fig. 7b). The TEM image (Fig. 7c) shows thin nanosheets morphology. The lattice spacing d value of a single nanosheet is determined to be 0.27 nm with HRTEM image in Fig. 7d, assigning to the spacing of the (110) crystal plane of (BiO)$_2$CO$_3$.

Fig. 8 TEM (a) and HRTEM (b) images of BOC-T85.

At high reaction temperature of 85 °C, the layered structures are also composed of smooth and thin nanosheets stacked together (Fig. 8a). The HRTEM image (Fig. 8b) reveals clear lattice fringes of single nanosheet with d-spacing of 0.27 nm, which corresponds well with the (110) plane.
3.3 Surface areas and pore structure

Fig. 9 BET-BJH of samples obtained at different temperature (a) and different CO$_2$ concentration (b).

Fig. 9 shows the N$_2$ adsorption-desorption isotherms and the corresponding pore size distribution curves of samples obtained at different temperature and different CO$_2$ concentration. All samples exhibit the Type IV isotherms characteristic of mesoporosity. These hysteresis loops with type H3 indicate the formation of slit-like pores due to the aggregations of the sheet-like particles. This is in good agreement with the TEM images (Fig. 3-8). Each sample is composed of aggregated nanosheets. The mesopores can be directly observed from the BJH pore size distribution curves as set in Fig. 9a and 9b. The very small pores can be ascribed to the porosity within the continuous nanosheets. And the large mesopores can be attributed to the pores formed between the aggregated nanosheets. The BET specific surface areas and total pore volume of the samples are shown in Table 1.

Table 1 The BET surface areas (S_{BET}), total pore volume (V_p), peak pore volume (D_p), NO removal ratio (η) of (BiO)$_2$CO$_3$ nanosheets obtained at different temperature
and CO₂ concentration.

<table>
<thead>
<tr>
<th>Sample</th>
<th>S_{BET} (m²/g)</th>
<th>V_p (cm³/g)</th>
<th>D_p (nm)</th>
<th>η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOC-T25</td>
<td>15</td>
<td>0.084</td>
<td>2.1/31.6</td>
<td>24.0</td>
</tr>
<tr>
<td>BOC-T45</td>
<td>12</td>
<td>0.071</td>
<td>2.3/21.1</td>
<td>33.9</td>
</tr>
<tr>
<td>BOC-T65</td>
<td>13</td>
<td>0.078</td>
<td>2.0/32.3</td>
<td>40.0</td>
</tr>
<tr>
<td>BOC-T85</td>
<td>17</td>
<td>0.096</td>
<td>4.6/13.9</td>
<td>36.9</td>
</tr>
<tr>
<td>BOC-C1</td>
<td>11</td>
<td>0.063</td>
<td>2.3/14.9</td>
<td>28.8</td>
</tr>
<tr>
<td>BOC-C10</td>
<td>14</td>
<td>0.11</td>
<td>3.5/33.2</td>
<td>30.4</td>
</tr>
<tr>
<td>BOC-C100</td>
<td>12</td>
<td>0.071</td>
<td>2.3/21.1</td>
<td>33.9</td>
</tr>
</tbody>
</table>

3.4 Optical properties

![Optical properties graph](graph.png)
Fig. 10 UV-vis DRS and plots of \((\alpha h \nu)^{1/2}\) vs. photo energy of samples obtained at different temperature (a, b) and different CO\(_2\) concentration (c, d).

Fig. 10 shows the UV-vis DRS spectra and plots of \((\alpha h \nu)^{1/2}\) vs. photo energy for samples obtained at different temperature and different CO\(_2\) concentration. The band edge is determined to be 380 and 388 nm for the different temperature and different CO\(_2\) concentration samples, respectively. The corresponding band gap energy is calculated to be 3.26 and 3.20 eV, which is consistent with literature values\(^{34-35}\) For the amorphous sample prepared with CO\(_2\) concentration of 0.1%, the band edge is 407 nm and the band gap energy is 3.05 eV.

Fig. 11 Room-temperature PL spectra of samples obtained at different temperature (a) and different CO\(_2\) concentration (b), Excitation light source: 310 nm.
Fig. 11 shows the room-temperature PL spectra of samples obtained at different conditions using the excitation light of 310 nm. As PL emission originates from the recombination of excited electrons and holes, the lower PL intensity indicates a higher charge separation rate, which is advantageous for promoting the photocatalytic activity.36-37 Fig. 11a and 11b shows that the PL intensity of the sample is decreased with increased reaction temperature and CO\textsubscript{2} concentration. The change in PL intensity should be probably associated with variation of the structure of the nanosheets. As can be seen from XRD result, the crystallinity of the samples is gradually improved with increased reaction temperature and CO\textsubscript{2} concentration. The improved crystallinity is favorable for reduction of structural defects serving as charge recombination center.38 As a result, PL intensity of the samples is gradually decreased with the improved crystallinity. When the reaction temperature is further raised to 85 °C, the PL intensity is increased probably because the solubility of CO\textsubscript{2} in the aqueous solution at high temperature is decreased, which may be not favorable for the formation of (BiO)\textsubscript{2}CO\textsubscript{3}. Note that the (BiO)\textsubscript{2}CO\textsubscript{3} sample prepared using air as CO\textsubscript{2} feed stock has the lowest PL intensity, indicating its potential high photocatalytic activity.

<p>| Table 2. The kinetics of emission decay parameters of BOC-T25, BOC-T45, BOC-T65 and BOC-T85 samples. |
|---|-----------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Samples</th>
<th>Component</th>
<th>Life time (ns)</th>
<th>Relative Percentage (%)</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOC-T25</td>
<td>τ_1</td>
<td>0.201</td>
<td>100</td>
<td>1.083</td>
</tr>
<tr>
<td>BOC-T25</td>
<td>τ_2</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

In order to understand the carriers transfer kinetics of the samples under irradiation, the time-resolved fluorescence decay spectra at ns-level were recorded as shown in Fig. 12. The radiative lifetime with different ratio can be calculated by fitting the decay spectra as summarized in Table 2. The fluorescence decay kinetics for BOC-T65 is slower than all other samples. The short lifetime (τ_1) of BOC-T25 is

<table>
<thead>
<tr>
<th></th>
<th>τ_1</th>
<th>τ_2</th>
<th>$%$</th>
<th>$\times 100$</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOC-T45</td>
<td>0.275</td>
<td>1.47</td>
<td>83.3</td>
<td>1.007</td>
</tr>
<tr>
<td>BOC-T65</td>
<td>0.444</td>
<td>1.945</td>
<td>90.9</td>
<td>1.035</td>
</tr>
<tr>
<td>BOC-T85</td>
<td>0.356</td>
<td>-</td>
<td>100</td>
<td>1.003</td>
</tr>
</tbody>
</table>

Fig. 12 Time-resolved ns-level PL spectra at ns-level monitored at 380 nm under the excitation of 330 nm light for BOC-T25 (a), BOC-T45 (b), BOC-T65 (c) and BOC-T85 (d).

- BOC-T25
- BOC-T45
- BOC-T65
- BOC-T85
0.201 ns. When the reaction temperature is increased to 65 °C, the short lifetime of BOC-T65 is increased up to 0.444 ns, which is 0.243 ns longer than that of BOC-T25. On the other hand, the long lifetime (τ_2) of charge carriers is increased to 1.945 ns for BOC-T65 and the corresponding percentage of charge carriers with long lifetime is increased simultaneously. The prolonged lifetime of charge carriers is certainly favorable for increasing the number of charge carriers involved in photocatalysis. However, the lifetime of BOC-T85 is decreased. These results imply that the radiative lifetime of all charge carriers are increased by increasing the reaction temperature and then decreased when further increasing the reaction temperature. The variation of lifetime of charge carriers are probably associated with the structural defects induced by the reaction temperature.

3.5 Photocatalytic performance for NOx removal

Fig. 13 The UV–vis photocatalytic removal of NOx over samples obtained at different temperature (a) and different CO$_2$ concentration (b).
NOx (NO and NO₂), producing from fossil fuels combustion and vehicle exhaust, is a primary air pollutant. It causes adverse implications on atmospheric environment, leading to photochemical smog, acid rain and ozone layer depletion. (BiO)₂CO₃ as a semiconductor can be employed as photocatalyst for NOx removal. However, (BiO)₂CO₃ exhibits no visible light photocatalytic activity due to its wide band gap energy (Fig. S2). Fig. 13a shows the photocatalytic removal of NOx curves over samples obtained at different temperatures. According to previous reports, the NOx reacted with the photo-generated reactive radicals and produced final HNO₃, which involved the following four main reactions in Eqs. (1)-(4).³⁹-⁴⁰

\[
\begin{align*}
\text{(1)} & \quad \text{NO} + 2 \cdot \text{OH} & \rightarrow & \text{NO₂} + \text{H₂O} \\
\text{(2)} & \quad \text{NO₂} + \cdot \text{OH} & \rightarrow & \text{NO₃⁻} + \text{H}^+ \\
\text{(3)} & \quad \text{NO} + \text{NO₂} + \text{H₂O} & \rightarrow & 2 \text{HNO₂} \\
\text{(4)} & \quad \text{NO} + \cdot \text{O₂⁻} & \rightarrow & \text{NO₃⁻}
\end{align*}
\]

As the photocatalytic reaction was going on, the NO concentration in the outlet was decreased gradually due to the conversion of NO to NO₃⁻. The NO concentration
would reach minima until the photocatalytic reaction reached equilibrium. The slight rising of NO concentration was due to the accumulation of HNO$_3$ product on the catalyst surface. After long term irradiation, the NO concentration in the outlet would reach a steady state. The removal ratio of NOx increased from 24.0 to 40.0% when the reaction temperature increased from 25 to 65 °C, and then reduced to 36.9% when the reaction temperature is further increased to 85 °C. The apparent rate constant (k) is 0.0953 min$^{-1}$ for BOC-T25, 0.0445 min$^{-1}$ for BOC-T45, 0.0582 min$^{-1}$ for BOC-T65, and 0.1184 min$^{-1}$ for BOC-T85, respectively. The reaction temperature cannot be further raised because the solubility of CO$_2$ in the aqueous solution would be decreased, which is not favorable for the formation of (BiO)$_2$CO$_3$. Fig. 13b shows the photocatalytic removal of NOx curves over samples obtained with different CO$_2$ concentration. The removal ratio of NOx increased from 25.4 to 33.9% when the CO$_2$ concentration increased from 0.1 to 100%. The apparent rate constants (k) are 0.0654, 0.0343, 0.0575 and 0.0582 min$^{-1}$ for BOC-C0.1, BOC-C1, BOC-C10 and BOC-100, respectively. Fig. 14a and 14b show that all the samples exhibit decent UV photocatalytic removal of NO over samples obtained at different temperature and different CO$_2$ concentration, respectively. The order of the activity of the samples was consistent with the order of the PL intensity and the lifetime of charge carriers. That is, the lower the PL intensity and the longer the carriers lifetime, the higher the photocatalytic activity. Furthermore, (BiO)$_2$CO$_3$ obtained by the present method demonstrates higher photocatalytic activity than that of (BiO)$_2$CO$_3$ prepared by hydrothermal method (BOC-H), which demonstrates that our eco-friendly preparation
method is very promising for rapid synthesis of high-performance photocatalysts.

3.6 The direct formation of (BiO)$_2$CO$_3$ nanosheets using CO$_2$ in air and the photocatalytic application

![Fig. 15](image)

Fig. 15 XRD pattern (a), SEM image (b), TEM (c) and BET-BJH (d) of (BiO)$_2$CO$_3$ nanosheets using air as CO$_2$ feeding stock.

![Fig. 16](image)

Fig. 16 UV-vis DRS (a) and plots of $(\alpha h\nu)^{1/2}$ vs. photo energy (b) of (BiO)$_2$CO$_3$
nanosheets using air as CO$_2$ feeding stock.

![Graph](image)

Fig. 17 Photocatalytic removal (a) and repeated photocatalytic removal (b) of NO of (BiO)$_2$CO$_3$ nanosheets using air as CO$_2$ feeding stock.

Currently, the CO$_2$ concentration in the air is about 380 ppm. In order to utilize the CO$_2$ in air directly without additional separation, the CO$_2$ gas stream in the fabrication process was replaced by pumped air stream at a flow rate of 1.0 L/min. The air flow was maintained for 3 h and the whole fabrication process was controlled at room temperature. It is amazing to find that the resulted product is orthorhombic (BiO)$_2$CO$_3$ crystallites in pure phase as shown in Fig. 15a. Fig. 15b and 15c implies that the BOC-Air sample exhibit nanosheets morphology, which is similar to that of the samples in Fig. 3-8. The isotherms of the BOC-Air sample (Fig. 15d) can be classified to type IV, indicating the presence of mesopores. The corresponding pore size distribution of BOC-Air sample (inset in Fig. 15d) further confirms the mesopores (~15 nm). The absorption edge of the BOC-Air sample is determined to be 413 nm (Fig. 16a). The band gap of the BOC-Air (E_g) estimated from the intercept of the tangent to the plot of $(a(hv))^{1/2}$ vs. photo energy (Fig. 16b) is 3.00 eV. To further test the photocatalytic activity and photochemical stability of the BOC-Air sample for
practical application, multiple reaction tests were carried out. The sample after the first run was used directly without further treatment for the next photocatalytic reaction runs. As shown in Fig. 17a, the activity of BOC-Air sample for removal of NOx is higher than that of other samples. Furthermore, the NOx removal ratios of BOC-Air could be well maintained at 52.2% after five cycles under repeated light irradiation (Fig. 17b). These results clearly demonstrate that (BiO)$_2$CO$_3$ nanosheets can be directly fabricated using air as CO$_2$ feed stock through an economical and eco-friendly aqueous process, and that the as-prepared (BiO)$_2$CO$_3$ nanosheets can be applied for efficient photocatalytic air purification. As is known that the photocatalyst could be operated at room temperature and normal pressure, ensuring that the (BiO)$_2$CO$_3$ photocatalyst has a long lifetime without decomposition or corrosion.

4. Conclusion

In summary, a novel eco-friendly approach was developed to fabricate valuable (BiO)$_2$CO$_3$ single-crystal nanosheets utilize CO$_2$ as raw material for the first time. This facile rapid synthesis method is free of using organic precursors and treating at high temperature. As a functional semiconductor, the as-prepared (BiO)$_2$CO$_3$ nanosheets can be applied as photoluminescent material for electronics and photocatalyst for pollutant removal. The size and the thickness of (BiO)$_2$CO$_3$ nanosheets could be controlled by the reaction temperature and CO$_2$ concentration. The as-prepared (BiO)$_2$CO$_3$ nanosheets exhibited high photocatalytic activity toward removal of NOx in air. Importantly, the (BiO)$_2$CO$_3$ nanosheets can be directly
fabricated using air as CO$_2$ feed stock, demonstrating its great potential for utilizing CO$_2$ in air without additional separation process, and the (BiO)$_2$CO$_3$ nanosheets exhibited efficient and durable photocatalytic performance for NOx removal due to the efficient charge separation. The present work provides an economical and convenient approach to synthesize (BiO)$_2$CO$_3$ nanosheets, which also can be extended to fabricate other functional metal carbonate products.

Acknowledgements

This research is financially supported by the National Natural Science Foundation of China (51108487), the Natural Science Foundation Project of CQ CSTC (cstc2013jcyjA20018), the Innovative Research Team Development Program in University of Chongqing (KJTD201314, KJTD201020).

Notes and references

 5, 6717.

 Chemistry*, 2013, **5**, 263.

Graphic Abstract

(BiO)$_2$CO$_3$ single-crystal nanosheets with efficient and durable photocatalytic performance were fabricated using CO$_2$ as feed stock within a short time of 30 min.