Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/crystengcomm

Fine tuning of crystal architecture by intermolecular interactions: synthon engineering

Petra Bombicz,*^a Tobias Gruber,^b Conrad Fischer,^{b,†} Edwin Weber,^b Alajos Kálmán^a

^a Department of Structural Chemistry, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 17, H-1525 Budapest, Hungary, e-mail: bombicz.petra@ttk.mta.hu

^b Institut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Str. 29, D-09596 Freiberg, Sachs., Germany. E-mail: edwin.weber@chemie.tu-freiberg.de; Fax: +49 3731 392386

[†] Present address: Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada

Abstract

There is a long time effort to influence or favourably fine tune structural properties by introduction of substituents or guest molecules of different size, shape and chemical composition to consequently alter physico-chemical properties of the respective crystals. These attempts require the recognition, understanding and application of intermolecular interactions, crystallographic and in case of occurrence non-crystallographic symmetries. It brings us to the field of crystal engineering, which aims to produce new substances with required properties based on the knowledge of the structural properties of already characterised solids. A series of calixarene crystal structures are presented where the crystal packing is determined by spatial or by electrostatic effects. A series of laterally substituted calixarenes where both steric requirements and electrostatic forces play a role in the crystal architecture shows how the supramolecular synthon can be engineered.

Keywords:

crystal engineering, synthon engineering, supramolecular chemistry, calix[4]arenes, lateral substitution, fine tuning, intermolecular interactions, polymorphy, isomorphy, morphotropy, crystal packing motifs

Introduction

The properties of materials depend on the properties of the building blocks and the interactions among them.¹ The non-covalent interactions perform influence on the molecular conformation, the packing arrangement and the molecular recognition processes. They effect the stability of inclusion compounds and clathrates, as well as the biological activity of macromolecules. Crystal forces are often sufficient to influence intramolecular torsion angles of a flexible molecule enhancing the importance of secondary weak interactions. The conformational variability makes calizarenes ideal target compounds both in the field of crystal engineering and supramolecular complex formation.

Polymorphs, the different crystal structures with the same chemical composition, can be thought of as supramolecular isomers, species in which the relative positioning of the same molecule is different.² In turn, a given packing arrangement may tolerate small changes caused either by the gradual change in site and/or size of substitution or by the gradual change of guest molecules incorporated into a host lattice. How far can a crystal structure tolerate small molecular changes?

The packing coefficient³ for organic crystals is around 0.6-0.7. It means there is ca. 30-40 % free space in close packed organic structures. This free space offers the opportunity to tolerate small molecular changes in a given structural arrangement.

The investigation of isostructurality is a useful tool for a deeper understanding of close packing principles. It is an advantage, in contrary to polymorphy, that the degree of similarity can be described by numerical descriptors.⁴⁻⁶ The Cell Similarity Index $(\pi)^{4-6}$ is for the comparison of the unit cells, calculated by the orthogonalized lattice parameters of the related crystals. In the event of great similarity of the two unit cells, π is close to zero. The Isostructurality Index $(I(s))^{4}$ ⁶ calculates the distance differences between the crystal coordinates of identical non-H atoms within the same section of the related structures. I(s) takes into account both the differences in the geometry of the molecules and the positional differences in the same asymmetric unit caused by rotation and translation. The Molecular Isometricity Index $(I(m))^{4-6}$ is introduced for the comparison of the molecular conformation, it is a direct measure of the degree of approximate isomorphism of two molecules. $(I(m))^{4-6}$ is calculated by least-squares fitting⁷ of the positions occupied by the identical non-H atoms of the two molecules resulting from the superposition of the molecules. The (I(m)) value is space group independent. The Volumetric isostructurality index $(I(v))^8$ gives the percentage ratio of overlapping volume of molecules. The advantage of the calculation of I(v) is that weakly isostructural structures, even with different guest molecules, or with disordered atomic positions can be compared, as well as hydrogen atoms are included in the calculation. For the quantification of similarity relationships "supramolecular constructs", e.g. sub-components of complete crystal structures are identified by XPac⁹ by consistent geometrical features in crystal structures implying only geometrical similarity. A reference (kernel) molecule is defined and a coordination shell is generated on the basis of some distance criteria in the calculation.

When no more chemical change can be supported by a crystal structure either a different packing arrangement and/or a different molecular conformation appears. When the tolerance is terminated and a different packing arrangement is developed, packing motifs may still be kept but the motifs are moved relative to each other. The relationships among the remaining structural motifs in the new crystal packing compared to the commencing crystal arrangement are often non-crystallographic symmetries. They may be non-crystallographic rotation and translation. This phenomenon is called morphotropy, a link between the isostructurality and polymorphy.¹⁰

During the effort of fine-tuning of the structural properties with the application of substituents or guest molecules we influence intermolecular interactions and crystallographic symmetries. With regard to this, calixarenes represent one of the most investigated compound types due to their easy availability, conformational flexibility, tunable amphiphilic properties, and versatile inclusion features.¹²⁻¹⁹ A series of calixarene crystal structures are presented where spatial requirements have a determining role in the crystal packing over the electrostatic interactions and *vice versa* where the electrostatic effects are the driving forces of the conformation and packing behaviour. A series of laterally substituted calixarenes demonstrate how the well balanced spatial requirements and electrostatic forces play a role in the arrangement of packing motifs in the crystals. The directed manipulation of the supramolecular packing architecture²⁰ can be perceived as a case of crystal engineering, for which "synthon engineering" might be an appropriate designation.

Discussion

Structures having similar chemical composition can be isostructural. The challenge is more complex if we have not monomolecular solids but multi-component host - guest systems, where the guest is a carefully selected solvent or small molecule. However, there is a limit in the changes of the size and properties of the host or guest molecules not being tolerated by the crystal anymore, and thus a different crystal structure appears. Packing motifs may still remain in the different crystal structures. There is a morphotropic relationship^{10, 11} between the structures if these packing motifs are related with non-crystallographic symmetries. The determining forces of the packing arrangement can be the spatial requirements or the electrostatic effects or their combination on a well-balanced manner.

Spatial driving force

There are 53 individual structures of the inclusion compounds of 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetrahydroxycalix[4]arene in the Cambridge Structural Database,²¹ version 5.34 where 3D coordinates are free of redundancy and errors. Most of the structures crystallize in three space groups: 7 structures in space group P2/n (13), 18 structures in space group P4/n (85) and 11 structures in space group P4/nnc (126). The arrangements of the molecules in the space groups P2/n and P4/n are identical, the host and guest stoichiometry is 1 : 1, the guest is nested in the cavity of the calizarene molecule (Fig. 1a). The divergence of the P2/n monoclinic unit cells in the 7 structures from the higher symmetry P4/n tetragonal one is small. The maximum difference in the P2/n cell dimensions is 0.74% in lengths (a and c) (BEGYIW01) and 0.26° in β angle from 90° (EZUMUH). The host and guest stoichiometry is 2:1 in the P4/nnc structures: two host molecules encapsulate one guest (Fig. 1b). The guest molecules are often found disordered in the cavity of the calixarenes. Irrespectively of the chemical functionality of the guest molecule it is the size of the guest molecule which determines the packing arrangement in these inclusion compounds (Table 1). For example pentane, n-butanol and benzene inclusion compounds crystallize in the space group P4/n, but n-dodecane, n-heptanol and nitrobenzene inclusion compounds crystallize in the space group P4/nnc. If the longitudinal length of the guest molecule is 3, 4, 5 or incidentally 6 atoms, then the 1 : 1 stoichiometry and the P2/n or P4/nspace groups are realised. If the length of the guest molecule is 5 atoms or more, 6, 7, 8 atoms and so on, then the 2 : 1 stoichiometry and the space group P4/nnc appear. The inclusion compounds with n-butylamine and nitrobenzene, where the 1D length of the guest molecule is 5 and 6 atoms, represent the subset of the two groups, they are able to crystallise in both space groups. This calixarene inclusion system succeeds to be a fine tuned molecular switch based purely on the spatial requirements.

Figure 1 The two most often occurring packing arrangements of the inclusion compounds of 5,11,17,23-tetra-*tert*-butyl-25,26,27,28-tetrahydroxycalix[4]arene in the space groups of a) P2/n and P4/n with 1 : 1 stoichiometry (MUBHUM, P4/n) as well as b) P4/nnc with 2 : 1 stoichiometry (QUSGOA).

Table 1 The inclusion compounds of 5,11,17,23-tetra-*tert*-butyl-25,26,27,28-tetrahydroxycalix[4]arene in the three most often occurring space groups of P2/n and P4/n with 1 : 1 stoichiometry, as well as of P4/nnc with 2 : 1 stoichiometry. The guest molecule is indicated only, the CSD refcode referring to the inclusion compound is given. The 1D length of the guest molecule is highlighted.

Electrostatic driving force

In most of the crystal structures the role of the guest molecule is more than to be present and to fill voids but to participate actively in the construction of the structure by intermolecular interactions. The manner of the guest recognition seriously affects the crystal structures.

The upper rim dinitro and lower rim ethyl ester substituted calix[4]arene molecule crystallized from selected polar aprotic and protic solvents: acetone, DMF, DMSO and n-BuOH as guests have identical space group $(P2_1/n)$ and the calculated cell similarity indices $(\pi)^{4-6}$ show only slight differences in the unit cell dimensions.¹² The upper rim of the host is involved in the complexation of the non-protic guests (cavitate type), whereas the protic butanol molecule forms favourable secondary interactions at the lower-rim site (clathrate type) (Fig. 2). The location of the calix[4]arene molecule in the unit cell of the n-BuOH containing system is related to the host position in all other three complexes by a non-crystallographic twofold axis (Fig. 3). Due to the different location and orientation of the calix[4]arene host within the unit cell of the n-BuOH clathrate, no reasonable isostructurality I(s) indices⁴⁻⁶ are calculated for the involved pair of host molecules. The rotation of the host in the unit cell of the n-BuOH inclusion compound is a consequence of the change in the supramolecular (host–guest) recognition mode. It is a morphotropic change induced by supramolecular interactions indicated by the end of isostructurality but keeping molecular isometricity at the same time.

Figure 2 The location of the a) DMF and b) n-BuOH guest molecules related to the calix[4]arene host molecules.¹²

Figure 3 The position of the calix[4]arene host molecules in the unit cells of the inclusion compounds containing a) DMF and b) n-BuOH guest molecules viewed along the c axis. The

locations of the hosts are related by a virtual, non-crystallographic twofold symmetry thus indicating a morphotropic relationship.¹²

The introduction of n-hexanoyl substituents to the upper rim of a calix[4]arene enlarges the cavity volume and enables complex formation with keto and hydroxylic terpenes, guest molecules such as (-)-menthone, (-)-menthol.¹⁶ The host : guest stoichiometry 2 : 2 and the space group $P2_1$ are identical, the low cell similarity index $(\pi)^{4-6}$ indicates a high structural similarity. There is a substantial change in the placement of the molecules in the unit cell by the complementary size and polarity relationships between the cone shaped calixarene cavity and the guest molecules (Fig. 4). The two structures cannot be transformed to each other by crystallographic symmetries determined by the space group without an enantiomeric change. The host positions in the (-)-menthone and (-)-menthol complexes are related by non-crystallographic twofold axes parallel to the b crystallographic axis in a and c at 1/4 and 3/4 (Fig. 5). However, there is no twofold axis in the space group $P2_1$. The host frameworks have a morphotropic relation described by non-crystallographic motions as the result of close packing requirements. The rotation or translation of the common motif may transform one specific pattern into another with denser packing. Morphotropy is the phenomenon where the structural motifs can be correlated with non-crystallographic symmetries.¹⁰⁻¹¹ Morphotropy was described first for monomolecular crystals. These structures are the first examples of morphotropy initiated by supramolecular effects in multicomponent crystals.

Figure 4 The position of the calix[4]arene host molecules in the unit cells of the inclusion compounds containing a) menthone and b) menthol guest molecules viewed from the c axis. There are two inclusion complex molecules in the asymmetric unit. The locations of the hosts are related by a virtual, non-crystallographic twofold symmetry thus indicating a morphotropic relationship.¹⁶

Figure 5 The space groups a) $P2_1/n$ and b) $P2_1$ indicating the existing symmetry elements and the virtual twofold axes (see also Figs. 3 and 4) which organize the morphotropic relation between the morphotropic pairs.^{12,16} (Adapted from Ref 16.)

Lateral substitution; balanced spatial and electrostatic driving forces

Packing motifs may remain in chemically fine tuned systems, where the crystal systems and the space groups are different. In order to study the effect of bridge modification on the supramolecular properties series of laterally non-, mono- or disubstituted tetra-*tert*-butyltetramethoxycalix[4]arene compounds were synthesised (Scheme 1).^{17-19, 22, 23} Either one or two bridge substituents on opposite methylene units of the parent tetramethoxycalix[4]arene exercise a distinct influence on the molecular conformation of the host, as well as on the supramolecular architecture of the crystal packing.

Scheme 1. Bridge non- $(R^1=H, R^2=H)$, mono- $(R^2=H)$ and disubstituted calix[4]arenes. The lateral substituents act as a spacer.

No substitution

The laterally non-substituted host inclusion compound,²² 5,11,17,23-tetra-*tert*-butyl-25,26,27,28-tetramethoxycalix[4]arene, crystallised with THF has the partial cone conformation (monoclinic, $P2_1/c$, Host : Guest stoichiometry is 2 : 2) (Fig. 6a). The guest molecules are positioned interstitially in channels bonded by weak C-H^{...} π interactions. There are serpentine like channels disposable to the solvent guest molecules in the crystal structure.

Figure 6 Laterally a) non-²² b) mono-¹⁷ or c) disubstituted^{18,19} tetra-*tert*butyltetramethoxycalix[4]arene compounds: formula diagrams and crystal packing arrangements showing the serpentine like channels, the straightened channels and the individual voids, respectively. (With kind permission from Springer Science and Business Media [17] (packing diagrams of Figures 6a and 6b).)

Monosubstitution

The calixarene molecules in the laterally monosubstituted structures^{17, 23} all adopt the partial cone conformation. It has already been calculated to be the lowest energy conformer.²³ All methoxy groups point out of the cavity. The bridge mono-ethyl substituted 5,11,17,23-tetra-tertbutyl-25,26,27,28-tetramethoxycalix[4] arene crystallizes in the monoclinic crystal system, space group $P2_1/n$, without inclusion of any molecule.¹⁷ The presence of different solvent molecules¹⁷ induces the formation of the higher symmetry orthorhombic structures of the laterally substituted calix [4] arene ($Pca2_1$, Host : Guest stoichiometry is 1 : 1), being isostructural irrespective of the included guest molecule (THF, CHCl₃ and CH₂Cl₂). The guest molecules are always being positioned interstitially in channels bonded by weak C-H^m π interactions in the vicinity of the aromatic ring neighbouring the lateral ethyl substituent. The introduction of a lateral substituent to the host decreases the packing ability of the inclusion crystals, it may expand the total space available for guest molecule inclusion by nearly 30%. Due to the consequence of bridge monosubstitution, the serpentine like channels observed in the laterally unsubstituted calixarene structure are straightened to linear channels (Fig. 6b). It looks like the crystal is breathing as the effect of chemical modification of the calixarene host at the lateral position. Being increasingly in possession of supramolecular chemical information the proper crystal engineering is getting closer: chemical tools were applied to change the crystal structure - the serpentine like channels of a calixarene crystal were straightened.

Disubstitution

A conformational change upon attachment of a second lateral substituent to the opposite methylene bridge site in the diametrically bridge-disubstituted calix[4]arenes transforms molecular geometry from partial cone to 1,2-alternate,^{18, 19} resulting in dense packing with highly

reduced solvent accessible voids (Fig. 6c). Different types of packing arrangement occurs in the acetonitrile solvates of the diversely bridge-disubstituted 5,11,17,23-tetra-tert-butyl-25,26,27,28tetramethoxycalix[4]arenes (Table 2). In all examined structures, the lateral substituents act as a spacer. The main packing motif consists of molecular chains in each structure along the axis of the bridge substitution irrespective to the varying crystal systems and space groups. Perfect centrosymmetry can only be realized if the two bridge substituents are the same. The bridge substitution clearly influences the packing arrangement and the inclusion behaviour of the host molecules, which can be fine-tuned very sensitively by size and functionality of the substituents (Table 2). The chain formation is the determining packing motif irrespective to the chemical functionality of the lateral substituents. The chain is assembled even if the lateral substituent is an apolar alkyl chain or a polar carboxyl group. If a size limit is exceeded, the bridge substituents are forced to participate in the supramolecular bonding system. The increase of the sterical demand of the bridge substituents results in a more efficient utilisation of the crystal volume and a gradual reduction of residual empty voids of the lattice. The size of the residual voids as well as the total potential solvent accessible volume is well correlated with the packing coefficients. The C-H^m π interactions change systematically with the increasing size of the lateral substituents contributing to the stability of the crystal structures. In this bridge disubstituted calixarene system both spatial and electrostatic forces are finely balanced. The mastering of the molecular packing arrangement via the secondary interactions could be understood as a kind of "synthon engineering".

Table 2The types of the packing arrangement 18,19 of the acetonitrile solvates of the
laterally disubstituted 5,11,17,23-tetra-*tert*-butyl-25,26,27,28-tetramethoxycalix[4] arenes. The
schematic representation of the system of intermolecular interactions is also given.

The calixarene molecule is represented by a square, giving indication of the four oxygen atoms from the methoxy groups only. Black circles represent *t*-butyl-groups pointing upward, white circles represent *t*-butyl-groups pointing downward. The included CH₃CN guests are highlighted with different colours depending on the functionality.

(Figures in raw 1, 2, 5 and 8 are reprinted with permission from [18]. Copyright 2012 American Chemical Society. Figures in raw 3 and 7 are reprinted with the kind permission from Springer Science and Business Media [19].)

No	R1, R2	Space	H : G	Motif
		Group	stoichio	
			metry	
1	$R1 = R2 = CH_3$	<i>P</i> -1	0.5 : 2	NCCH ³ CH ³
2, 6	$R1 = CH_2CH_3$ $R2 = CH_3$ $R1 = CH_2CH_3$ $R2 =$ $CH_2CH=CH_2$	<i>P</i> 2 ₁	1:2	NCCH3 H ₃ C NCCH3 H ₃ C

Conclusion

The fine tuning of crystal architecture, *e.g.* structural arrangement and intermolecular interactions is described on calix[4]arenes consisted substituents and guest molecules of different size, shape and chemical composition. The fine tuning requires the recognition, understanding and application of intermolecular interactions, crystallographic and in case of occurrence non-crystallographic symmetries. The morphotropy is the link between isostructurality and polymorphy, where structural motifs remain but they are related by non-crystallographic symmetries. Morphotropy can be induced by supramolecular effects. There are calixarene crystal structures where either the spatial or the electrostatic effects have the determining role in the self-assembly of the molecules. The lateral substitution of calix[4]arenes effects the packing arrangement. In case of bridge monosubstitution the serpentine like channels observed in the laterally unsubstituted calixarene structure are straightened to linear channels expanding the total space available for the guest molecules. With this transformation of the crystal packing arrangements a genuine crystal engineering effort comes true. The lateral disubstitution of the calix[4]arenes with gradual change of the size and functionality of the substituents resulted in a very sensitively spatially and electrostatically fine-tuned system. It shows that the

supramolecular synthon can be engineered. Therefore we suggest for the directed manipulation of the molecular packing architecture including the system of secondary interactions caused by the respectively tuned synthon the term "synthon engineering".

Acknowledgment

P.B. and A.K. acknowledges the support from the National Scientific Research Foundation (OTKA K-100801).

References

- [1] J.M. Lehn, Angewandte Chemie Int. Ed. Engl., 1988, 27, 89-112.
- [2] G. R. Desiraju, *Nature*, 2001, **412**, 397-400.
- [3] Kitaigorodskii, A. I. *Organic Chemical Crystallography*, pp. 106-110. Consultants Bureau, New York. 1961.
- [4] A. Kálmán, L. Párkányi and G. Argay, *ActaCryst.*, 1993, **B49**, 1039-1049.
- [5] A. Kálmán and L. Párkányi, Isostructurality of Organic Crystals in Advances in Molecular Structure Research, Vol.3, Hargittai M. &Hargittai I. (editors), JAI Press Inc. Greenwich, Conn. 189-226, 1997.
- [6] A. Kálmán, In Fundamental Principles of Molecular Modeling; Gans, W. (editor), Plenum Press. New York. 209. 1996.
- [7] C.F. Macrae, P.R. Edgington, P. McCabe, E. Pidcock, G.P. Shields, R. Taylor, M. Towler and J. van de Streek, *J. Appl. Cryst.*, 2006, **39**, 453-457.
- [8] L. Fábián and A. Kálmán, Acta Cryst., 1999, B55, 1099-1108.
- [9] T. Gelbrich and M.B. Hursthouse, *CrystEngComm*, 2005, 7, 324-336.
- [10] A. Kálmán, ActaCryst, 2005, B61, 536-547.
- [11] A. Kálmán and L. Fábián, Acta Cryst., 2007, B63, 411-417.
- [12] T. Gruber, E. Weber, W. Seichter, P. Bombicz and I. Csöregh, *Supramol Chem*, 2006, **18**, 537-547.
- [13] T. Gruber, M. Peukert, D. Schindler, W. Seichter, E. Weber and P. Bombicz, *J. Incl. Phen. Macr. Chem.*, 2008, **62**, 311-324.
- [14] T. Gruber, P. Bombicz, W. Seichter and Edwin Weber, J. Struct. Chem., 2009, 50, 522-531.
- [15] T. Gruber, M. Gruner, C. Fischer, W. Seichter, P. Bombicz and E. Weber, *New Journal of Chemistry*, 2010, **34**, 250-259.
- [16] T. Gruber, C. Fischer, W. Seichter, P. Bombicz and E. Weber, *CrystEngComm*, 2011, **13**, 1422-1431.
- [17] C. Fischer, G. Lin, P. Bombicz, W. Seichter and E. Weber, *Struct. Chem.* 2011, 22, 433–439.
- [18] C. Fischer, P. Bombicz, W. Seichter, F. Katzsch and E. Weber, *Cryst. Growth & Des.*, 2012, **12**, 2445-2454.
- [19] C. Fischer, P. Bombicz, W. Seichter and E. Weber, *Struct. Chem.* 2013, 24, 535-541.
- [20] G. R. Desiraju, AngewandteChemie Int. Ed. Engl., 1995, 34, 2311-2327.
- [21] F.H.Allen, Acta Cryst., 2002, **B58**, 380-388.
- [22] C. Fischer, T. Gruber, W. Seichter and E. Weber, ActaCryst., 2007, E63, 04572-4573.
- [23] M. Gruner, C. Fischer, T. Gruber and E. Weber, *Supramol Chem*, 2010, 22, 256-266.

Fine tuning of crystal architecture by intermolecular interactions: synthon engineering Petra Bombicz,* Tobias Gruber, Conrad Fischer, Edwin Weber, Alajos Kálmán

The term "synthon engineering" is introduced for the directed manipulation of the molecular packing architecture including the system of secondary interactions caused by the respectively fine tuned synthon.

