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Achieving single domain relaxor-PT crystals by high 
temperature poling 

Fei Lia, Linghang Wanga, Li Jina, Zhuo Xua, and Shujun Zhang*b 

Single domain relaxor-PT crystals are important from both fundamental and application 
viewpoints. Compared to domain engineered relaxor-PT crystals, however, single domain 
crystals are prone to crack during poling. In this paper, based on the analysis of the cracking 
phenomenon in [001] poled tetragonal 0.25Pb(In0.5Nb0.5)O3-0.37Pb(Mg1/3Nb2/3)O3-0.38PbTiO3 
(PIN-PMN-PT) crystals, the non-180° ferroelastic domain switching was thought to be the 
dominant factor for the cracks during poling process. A high temperature poling technique, by 
which the domain switching can be greatly avoided, was proposed to achieve the single domain 
relaxor-PT crystals. By this poling approach, a quasi-single domain crystal was obtained 
without cracks. In addition, compared to room temperature poling, the high temperature poled 
PIN-PMN-PT crystals showed improved electromechanical properties, i.e., low dielectric loss, 
low strain-electric field hysteresis and high mechanical quality factor, demonstrating a 
beneficial poling approach. 
 

1. Introduction 

Relaxor-PbTiO3 (Relaxor-PT) based ferroelectric single 
crystals, such as Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) and 
Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT), 
have attracted considerable interest, because of their ultrahigh 
piezoelectric activities, far outperforming the state-of-art 
polycrystalline Pb(Zr,Ti)O3 (PZT) ceramics.1-6 Over the last 
decade, extensive studies have been focused on the 
piezoelectric response of domain engineered crystals, especially 
for [001] poled rhombohedral relaxor-PT crystals, with 
longitudinal piezoelectric coefficient d33 and electromechanical 
coupling factor k33 being on the order of >1500 pC/N and > 0.9, 
respectively. Ferroelectric phase instability is thought to be 
responsible for the high piezoelectric activity in relaxor-PT 
crystals,7-8 which can be induced by the phase transition points 
(for example, morphotropic phase boundary and polymorphic 
phase transition) and relaxor component.2 In addition to the 
high piezoelectric response, hysteresis-free strain-electric field 
behavior is another important characteristic for relaxor-PT 
crystals, which inherently associated with the engineered domain 
 
a Electronic Materials Research Laboratory, Key Laboratory of the 

Ministry of Education and International Center for Dielectric Research, 

Xi’an Jiaotong University, Xi’an 710049, China 
b Materials Research Institute, Pennsylvania State University, University 

Park, Pennsylvania 16802, USA. Email: soz1@psu.edu. 

 
 

configuration. In rhombohedral (R) crystals, there are eight 
degenerate domain variants, with the polar vectors 
(spontaneous polarizations) along one of the <111> directions. 
As R crystal is poled along the non-polar [001] direction, four 
of the eight domain variants are energetically favored by the 
poling field, with polar vectors along [111], ]111[ , ]111[ , and 

]111[ directions. This domain structure is labelled as “4R”.9 
Because these four domain variants are equivalent to the poling 
[001] direction, the domain structure is stable as the electric 
field is applied along [001] direction, resulting in a hysteresis-
free strain-electric field response.1 Similarly, [001] poled 
orthorhombic and [111] poled tetragonal relaxor-PT crystals 
possess “4O” and “3T” domain engineered configurations 
respectively9, which exhibit hysteresis-free strain characteristics. 
Thus, domain engineered relaxor-PT crystals greatly benefit the 
piezoelectric transducer and actuator applications.10-12 

Compared to the domain engineered crystals, single 
domain relaxor-PT crystals, though not received much attention, 
are important in both aspects of science and application. In 
scientific aspect, the data of the single domain crystals is 
essential for studying domain engineered crystals and 
polycrystalline ceramics. Based on the single domain data, the 
intrinsic piezoelectric response of crystals (regardless of 
domain wall motion) and the anisotropy of the crystal 
properties can be derived.2,13-14 From application viewpoint, on 
the other hand, single domain crystals exhibit many advantages, 
such as high thickness shear piezoelectric and pyroelectric 
properties.15-21 As given in Table I,2, 15 the shear piezoelectric 
activities of single domain crystals are much higher than those 
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of domain engineered crystals, with d15 and k15 being on the 
order of ~2000 pC/N and >90%, respectively. In addition, 
compared with the longitudinal piezoelectric response of 
domain engineered crystals, shear piezoelectric response of 
single domain crystals can be used in the condition of high 
preload stress. Preload stress may induce phase transition and 
depoling in domain engineered crystals,22-25 while the thickness 
shear mode of single domain crystals was found to be stabilized 
upon the preload stress.26 Of particular significance is that the 
shear piezoelectric coefficient d24 of single domain 
orthorhombic crystals was found to maintain similar value at 
temperature of -50 °C~100 °C (the TOT phase transition 
temperature), with variation being around 6%,27 while the 
longitudinal piezoelectric coefficient d33 of [001] poled 
rhombohedral crystals generally exhibit 200-300% variation in 
the same temperature range. 2 These advantages make single 
domain relaxor-PT crystals good candidates for various shear 
mode applications, such as vector sensors, non-destructive 
evaluation (NDE) transducers and low frequency acoustic 
transducers. Nevertheless, single domain crystals subject to 
cracking from the electric-field-induced strain/stress during the 
poling process. Thus, it is desirable to investigate the poling 
procedure and understand the underlying crack mechanism. 

To obtain domain engineered configurations, the 
ferroelectric crystals are poled along specific non-polar 
directions, so various domains appear in the crystals. These 
domains can form various non-180° domain configurations, 
satisfying the mechanical compatibility to minimize the strain 
energy.28-29 For single domain crystals, however, the strain 
energy cannot be released by the non-180° domains. With the 
poling electric field applied along spontaneous polar direction 
(to achieve single domain state), the crystals will release the 
strain energy from alternative way, i.e., cracking. Therefore, 
practically it is hard to get a crack-free single domain relaxor-
PT ferroelectric crystal, which hinders the investigation and 
application of single domain crystals. In this paper, we 
compared the strain-electric field behaviors of domain 
engineered and single domain 0.25Pb(In0.5Nb0.5)O3-
0.37Pb(Mg1/3Nb2/3)O3-0.38PbTiO3 (PIN-PMN-PT) tetragonal 
crystals and analyzed the cracking phenomenon during the 
poling procedure. Then, we proposed a high temperature poling 
technique to get crack-free single domain crystals. Finally, we 

compared the electromechanical properties of room temperature 
poled and high temperature poled crystals. 
 

2. Samples preparation and measurements 

The PIN-PMN-PT crystals were grown using the modified 
Bridgman technique at XJTU.30 The composition of crystal was 
determined by electron probe X-ray microanalyzer (EPMA). 
The Curie temperature and coercive field were found to be 
215 °C and 10 kV/cm, respectively. The lattice parameter c/a 
ratio was measured by X-ray diffraction (XRD RIGAKU 
D/MAX-2400), being on the order of 1.015. The crystals were 
oriented by RO-XRD method 31-32 and cut to obtain the samples 
with various dimensions (thickness-mode plates, longitudinal 
rods, and thickness shear-mode plates) for measuring the 
electromechanical properties following IEEE standard.33 
Vacuum sputtered gold was applied to the polished surface as 
the electrodes for all the samples. The impedance-frequency 
behaviors were determined using an HP4294 impedance 
analyzer. Strain-electric field behaviors were determined using 
a linear variable differential transducer (LVDT) driven by a 
lock-in amplifier (Stanford Research system, Mode SR830). A 
polarizing light microscope (PLM) with a 0°/90° crossed 
polarizer/analyzer (P/A) pair (Olympus BX51) was used to 
observe the extinction behavior of the poled samples. 
 

3. Poling method  

To facilitate the domain switching process, ferroelectric 
ceramics, such as PZT ceramics, are poled at elevated 
temperature, which is higher than room temperature but much 
lower than the Curie temperature, being about 100-150 °C. On 
the contrary, the relaxor-PT crystals are generally poled at room 
temperature, because the coercive fields Ec of these crystals are 
very low, being 2-5 kV/cm (Ec of PZT ceramics is in the range 
of 10-40 kV/cm). In practice, to obtain domain engineered 
structure, relaxor-PT crystals are poled at room temperature by 
an electric field of two-fold of Ec along their nonpolar 
directions. However, the crystals are prone to crack and lots of 
domain walls yet exist when poled along polar direction at 
room temperature. 
 

Table I. Comparison of shear piezoelectricity and pyroelectric response among domain engineered crystals ([001] poled PMN-0.30PT crystal) and single 
domain crystals. Coefficients ε11

T/ε22
T, s55

E/s44
E, d15/d24, and p are dielectric, elastic, piezoelectric and pyroelectric coefficients respectively. 

Materials ε11
T/ε0 s55

E (pm2/N) d15 (pC/N) ε22
T/ε0 s44

E (pm2/N) d24(pC/N) p (10-4 C/m2K)

[001] poled PMN-0.30PT crystals 1600 14.0 150 1600 14.0 150 4-6 

Single domain rhombohedral Crystal 5000-8000 200-250 3000-5000 5000-8000 200-250 3000-5000 10-13 

Single domain tetragonal Crystal 12000-18000 40-60 1800-2200 12000-18000 45-60 1800-2200 7-10 

Single domain orthorhombic Crystal 5000-7000 200-320 3500-4500 12000-18000 45-60 1800-2200 / 
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Table II. Longitudinal electromechanical properties of [001] poled tetragonal 0.25PIN-0.37PMN-0.38PT crystals. Plate samples with dimension of 10 mm×
10 mm×1 mm (poling direction) were used for measuring the dielectric permittivity and loss. Longitudinal rods with dimension of 8 mm (poling direction)×
2 mm×2 mm were used for measuring the d33, k33 and mechanical quality factor. Mechanical quality factor Qm is the inverse of mechanical loss. 

Materials 
Dielectric permittivity 

ε33
T/ε0 

Piezoelectric coefficient  

d33 (pC/N) 

Coupling factor 

k33 

Dielectric loss  

tanδ 

Mechanical quality factor

Qm 

Room temperature poled crystal 1100-1400 450-480 83% 0.5-2% 300-700 

High temperature poled crystal 1000-1200 450-470 84% 0.1-0.3% 1500-2500 

The effects of incomplete poling and domain walls are 
more obvious in the strain-electric field and impedance-
frequency behaviors for the tetragonal PIN-PMN-PT crystals. 
As shown in Fig. 5(a1) and (b1), a nearly linear strain-electric 
field response was observed for high temperature poled crystals, 
while a large strain hysteresis (~40%) induced by the domain 
wall motion was shown in room-temperature poled counterpart. 
Figure 5(a2) and (b2) show the impedance and phase spectra 
for thickness shear vibration mode (15-mode). The clean shear-
mode resonance and antiresonance peaks were observed in high 
temperature poled crystal. For room-temperature poled crystal, 
however, some other vibrations (i.e., thickness vibration) might 
be coupled with the thickness shear-mode, because the domains 
along [100] or [010] directions yet exist. Meanwhile, the 
homogeneity of electromechanical properties may be affected 
by uneven distribution of domains and domain walls in the 
room-temperature poled crystal, as depicted in Fig. 4(a1). Due 
to the above two factors, noisy impedance-peaks were observed 
in the room-temperature poled samples. The large strain 
hysteresis and noisy peaks of the room temperature poled 
piezoelectric crystals can greatly restrict their 
electromechanical applications. 
 

5. Conclusions 

The [001] and [111] oriented 0.25PIN-0.37PMN-0.38PT 
tetragonal crystals poled at different conditions were 
investigated, the underlying mechanism of the cracks in single 
domain crystals was attributed to the large strain variation 
induced by ferroelastic domain switching. A feasible high 
temperature poling technique was proposed, by which, a quasi-
single domain tetragonal PIN-PMN-PT crystal was obtained 
without cracks. Compared to the room-temperature poled 
crystals, high temperature poled crystals exhibited a low 
density of domain walls, leading to greatly reduced dielectric 
loss, strain hysteresis and increased mechanical quality factor, 
without sacrificing the piezoelectric properties. The proposed 
method may also benefit other perovskite ferroelectric crystals 
for achieving single domain state, such as barium titanate and 
potassium-sodium niobate crystals. 
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