CrystEngComm

Accepted Manuscript

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Molecular tectonics: generation of grid and porous diamondoid coordination networks by combining metal halides with tetrathiacalix[4]arene and tetrathiatetramercaptothiacalix[4]arene pyridyl appended tectons

${ }_{5}$ A. Ovsyannikov, ${ }^{\text {a,b }}$ S. Ferlay, ${ }^{\text {ª }}$ S. E. Solovieva, ${ }^{\text {b }}$ I. S. Antipin, ${ }^{\text {b,c }}$ A. I. Konovalov ${ }^{\text {b }}$, N. Kyritsakas, ${ }^{\text {a }}$ M. W. Hosseini ${ }^{\text {*a }}$
Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

Abstract

Combinations of neutral tetrakis meta-pyridyl appended calix[4] arene derivatives in 1,3-A conformation as tectons 3 (Tetrakis-meta${ }_{10}$ pyridyl-tetrathiacalix[4]arene) and 4 (Tetrakis-meta-pyridyltetrathiatetramercaptocalix[4]arene) with MX_{2}, behaving as a neutral metallatecton, lead to the formation of 2- and 3-D neutral coordination networks. In all cases, the metal centre adopts a distorted octahedral geometry with the two anions occupying the two apical positions. For the compound $\mathbf{3}-\mathrm{CdX}_{2}(\mathrm{X}=\mathrm{Cl}$ or Br$), 4-\mathrm{CdBr}_{2}$ and 4 FeCl_{2} similar porous diamondoid 3D networks, resulting from tetrakis monodentate behaviour of the organic tectons, are formed. In marked contrast, for $4-\mathrm{CoX}_{2}(\mathrm{X}=\mathrm{Cl}$ or Br$)$, only two out of the four pyridyl units take part in the connectivity pattern leading thus to the ${ }_{15}$ formation of 2D grid type architectures.

Introduction

Crystal engineering ${ }^{1}$ is a research area bridging the gap between solid state and supramolecular chemistry. ${ }^{2}$ By 20 considering crystals, compact periodic assemblies, as supermolecules ${ }^{3}$ for which the components are held together by attractive intermolecular interactions, this approach is concerned with both the design of crystals and the description of the connectivity between components and packing processes.
25 Although at the early stage, crystal engineering was mainly concerned with organic molecular crystals, ${ }^{4,5,6,7}$ over the last two decades it has been generalized to other types of molecular crystals by the molecular tectonics approach. ${ }^{8,9,10}$ For the latter, crystals are seen as extended periodic molecular networks ${ }^{11,12,13}$
${ }_{30}$ resulting from specific association processes between self complementary or complementary tectons. ${ }^{14,15}$ Among the many possible intermolecular or ion-molecule interactions that can be considered for designing recognition patterns, the use of coordination bonds defines a specific class of crystals called ${ }_{35}$ coordination polymers, ${ }^{16}$ coordination networks ${ }^{17}$ or metal organic frameworks. ${ }^{18}$ The latter type of crystalline materials is attracting considerable interest. ${ }^{19}$ The generation of coordination networks requires combinations of organic tectons and metal centres or metal complexes behaving as bridging units.
${ }_{40}$ Calix[4]arene (CA) is a macrocyclic unit resulting from the interconnection of four phenolic moieties by four CH_{2} groups. ${ }^{20}$ This backbone, owing to possible rotations around the $\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}$ bonds, exists in four interconvertible conformations (cone, partial cone, 1,2 -alternate and 1,3-alternate). The replacement of the
${ }_{45}$ four CH_{2} moieties by four S atoms leads to tetrathiacalix[4]arene (TCA, 1, figure 1). ${ }^{21}$ The latter was transformed into its
tetrasulfone ${ }^{22}$ or tetrasulfinyl ${ }^{23}$ derivatives upon oxidation. Furthermore, for both CA and TCA backbones, the OH groups may be replaced by SH groups leading thus to ${ }_{50}$ tetramercaptocalix[4]arene ${ }^{24,25}$ and tetramercaptotetrathiacalix[4]arene ${ }^{26}$ (TMCA, 2, figure 1). ${ }^{27}$ CA derivatives in cone conformation offering four OH groups positioned on the same face of the macrocyclic backbone, have been used for the formation of discrete complexes ${ }^{28}$ and fused ${ }_{55}$ dimeric species with a variety of metal cations. ${ }^{29}$ For the generation of periodic extended architectures, the 1,3 -alternate (1,3-A) conformer of CA, TCA and TMCA bearing peripheral coordinating sites derivatives are of particular interest since they display four divergently oriented sites occupying the apices of a ${ }_{60}$ tetrahedron.
Using a calix[4]arene derivative blocked 1,3-alternate conformation and bearing four CN groups, a 1D coordination network was generated in the presence of Ag^{+}cations in the crystalline phase. ${ }^{30}$ The formation of extended assemblies ${ }_{65}$ resulting from combinations of CA based tectons bearing carboxylate groups with $\mathrm{Ag}(\mathrm{I})^{31}$ or $\mathrm{Cu}(\mathrm{II}), \mathrm{Zn}(\mathrm{II}), \mathrm{Co}(\mathrm{II})$ or $\mathrm{Cd}(\mathrm{II})$ cations has been described. ${ }^{32}$ The combination of a CA bearing pyridyl moieties with $\mathrm{Cu}(\mathrm{II})$ cation was found to lead to extended networks. ${ }^{33}$
${ }_{70}$ TCA has been also used for the formation of discrete polynuclear species. ${ }^{34,35,36}$ Furthermore, periodic infinite 1-, 2- and 3-D silver coordination networks based on thiacalix[4]arene derivatives in 1,3 -alternate conformation equipped with four nitrile groups, ${ }^{37}$ carboxylate units ${ }^{38}$ or benzonitrile groups ${ }^{39}$ have been described.
75 Another type of 1D silver network based on a TCA derivative, bearing ether junctions, has also been reported. ${ }^{40}$ The formation of coordination networks resulting from a combination of TCA and $\mathrm{Cu}(\mathrm{I})$ cation has been described. ${ }^{41}$ TCA derivatives bearing
carboxylate groups have been combined with metal cations and auxiliary ligands to generate infinite architectures. ${ }^{42}$
However, dealing with TMCA, only few examples of coordination networks, resulting from combinations of its pyridyl ${ }_{5}$ appended derivatives in 1,3-alternate conformation with $\mathrm{Hg}(\mathrm{II})^{43}$ or $\operatorname{Ag}(\mathrm{I})^{44}$ cations have been reported.

3

Figure 1: Tetrathia- and tetrathiatetramercapto- calix[4] arene precursors $\mathbf{1}$ and $\mathbf{2}$ and tetra meta-pyridyl appended tectons 3 and $\mathbf{4}$ in 1,3-A conformation.

As stated above, the majority of extended networks based on the use of TCA and TMCA derivatives in 1,3-alternate conformation reported to date concerns the use of Ag^{+}and Hg^{2+} cations as connecting metal centres. Surprisingly, only few 15 extended networks based on octahedral transition metals have been reported. Our aim was to explore several of this type of connecting centres (Fe, Co and Cd) with both calix[4]arene derivatives 3 and 4.

It is worth noting that tecton 3 or $\mathbf{4}$ (Fig. 1), owing to the ${ }_{20}$ presence of O, S and N atoms, might, in principle, behave as a dodecadentate unit displaying either a $(4 \mathrm{O}, 4 \mathrm{~S}, 4 \mathrm{~N})$ or a $(8 \mathrm{~S}, 4 \mathrm{~N})$ set of coordinating sites towards metal cations. Furthermore, owing to the nature of junctions (single bond) between the calix backbone and the coordinating pyridyl units (ether for 3 and ${ }_{25}$ thioether for 4) and the location of the N atom on the pyridyl ring (meta position), both tectons may display many different rotamers resulting from the orientation of the pyridyl moieties. With our present level of knowledge, the prediction of connectivity patterns resulting from combinations of tecton $\mathbf{3}$ or $\mathbf{4}$ 30 with transition metal cations is impossible. However, the formation of extended architectures may be investigated experimentally by imposing the nature of the metal centre, the solvent, the temperature and the concentration the organic tectons and metallic salts.
${ }_{35}$ Here, we report on combinations of tectons 3 and 4 (Fig. 1), two different meta-pyridyl appended TCA and TMTCA neutral derivatives in 1,3-A imposed conformation, with octahedral MX_{2} ($\mathrm{M}=\mathrm{Cd}$, Co or Fe and $\mathrm{X}=\mathrm{Cl}$ or Br) salts behaving as metallatectons. Owing to the strong coordinating propensity of
40 used halides $\left(\mathrm{Cl}^{-}\right.$or $\left.\mathrm{Br}^{-}\right), \mathrm{MX}_{2}$ centres should behave as 4 connecting nodes. Indeed, the chosen metal cations in the oxidation state II should adopt an octahedral coordination geometry with the two apical positions occupied by the two
halides leading thus to four free coordination sites located in the ${ }_{45}$ corners of the square base of the octahedron for the bridging of coordinating tectons $\mathbf{3}$ or 4 .

Experimental section

General: All reagents were purchased from commercial sources and used without further purification. The synthesis of $3^{43 \mathrm{~b}}$ ${ }_{50}$ (25,26,27,28-tetra[(3-pyridylmethyl)oxy]-5,11,17,23-tetra-tert-butyl-2,8,14,20-tetrathiacalix[4]arene) and $4^{43 a}(25,26,27,28-$ tetra[(3-pyridylmethyl)thio]-5,11,17,23-tetra-tert-butyl-2,8,14,20tetrathiacalix[4]arene (in 1,3-A conformation) has already been reported.

${ }_{55}$ Characterization techniques

Microanalyses were performed by the Service de Microanalyses de la Fédération de Recherche Chimie, Université de Strasbourg, Strasbourg, France.

Single-Crystal Studies

${ }_{60}$ Data were collected at $173(2) \mathrm{K}$ on a Bruker APEX8 CCD Diffractometer equipped with an Oxford Cryosystem liquid N_{2} device, using graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha(\lambda=0.71073 \AA)$ radiation. For all structures, diffraction data were corrected for absorption. Structures were solved using SHELXS-97 and refined
${ }_{65}$ by full matrix least-squares on F^{2} using SHELXL-97. The hydrogen atoms were introduced at calculated positions and not refined (riding model). ${ }^{45}$ They can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/datarequest/cif. CCDC: 970400-970403.

${ }_{70}$ Powder X-ray Diffraction

Powder diffraction studies (PXRD) diagrams were collected on a Bruker D8 diffractometer using monochromatic $\mathrm{Cu}-\mathrm{K} \alpha$ radiation with a scanning range between 3.8 and 40° using a scan step size of $2 \% \mathrm{mn}$.
75 As already demonstrated and currently admitted, for all the compounds, discrepancies in intensity between the observed and simulated patterns are due to preferential orientations of the microcrystalline powders.

Crystallisation conditions

${ }_{80} 3-\mathrm{CdBr}_{2}$: In a crystallization tube (4 mm diameter, 15 cm height), a solution of compound $\mathbf{3}(5 \mathrm{mg}, 4.6 \square \mathrm{~mol})$ in $\mathrm{CHCl}_{3}(1 \mathrm{~mL})$ was layered with a $\mathrm{CHCl}_{3} /$ iso $-\mathrm{PrOH}(1 / 1)$ mixture $(1 \mathrm{~mL})$. A solution of $\mathrm{CdBr}_{2} 4 \mathrm{H}_{2} \mathrm{O}(3.2 \mathrm{mg}, 9.3 \square \mathrm{~mol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was carefully added. Slow diffusion at room temperature produced ${ }_{85}$ after several days colourless crystals suitable for X-ray diffraction studies. Formula: $\mathrm{Cd}\left(\mathrm{C}_{64} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{4}\right) \mathrm{Br}_{2} \cdot 4 \mathrm{CHCl}_{3}$. Anal. Calcd.: C, 44.50%; H, 3.75%; N, 3.05%; Found: C, 45.57%; H, 4.28%; N, 2.87\%.

3- CdCl_{2} : The same procedure as described for $3-\mathrm{CdBr}_{2}$ was ${ }_{90}$ applied using $\mathrm{CdCl}_{2} 4 \mathrm{H}_{2} \mathrm{O}$ ($3.2 \mathrm{mg}, 12.5 \square \mathrm{~mol}$).

Formula: $\quad \mathrm{Cd}\left(\mathrm{C}_{64} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{4}\right) \mathrm{Cl}_{2} 3 \mathrm{CHCl}_{3}$. Anal. Calcd.: C, 49.46\%; H, 4.40\%; N, 3.44\%; Found: C, 49.57\%; H, 4.34\%; N, 3.34\%.

4- CdBr_{2} : A solution of compound $4(5 \mathrm{mg}, 4.35 \square \mathrm{~mol})$ in CHCl_{3} ${ }_{95}(1 \mathrm{~mL})$ was mixed with a solution of $\mathrm{CdBr}_{2} 4 \mathrm{H}_{2} \mathrm{O}(3 \mathrm{mg}, 8.7$ $\square \mathrm{mol}$) in $\mathrm{MeOH}(1 \mathrm{~mL})$. Slow evaporation at room temperature produced after several days colourless crystals suitable for X-ray diffraction studies.

Formula: $\mathrm{Cd}\left(\mathrm{C}_{64} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{~S}_{8}\right) \mathrm{Br}_{2} 2 \mathrm{CHCl}_{3}$. Anal. Calcd.: C, 47.73%; H, 4.25\%; N, 3.37\%; Found: C, 47.91\%; H, 4.29\%; N, 3.35\%.
4- FeCl_{2} : Under argon, a solution of compound $4(3 \mathrm{mg}, 2.61$ $\square \mathrm{mol})$ in degassed $\mathrm{CHCl}_{3}(1 \mathrm{~mL})$ was mixed with a solution of $5 \mathrm{FeCl}_{2}(0.7 \mathrm{mg}, 5.5 \square \mathrm{~mol})$ in degassed $\mathrm{MeOH}(1 \mathrm{~mL})$. After 2 days, the solution was placed in ether chamber. Slow vapour diffusion of ether into the solution produced after several days yellow crystals suitable for X-ray diffraction studies.
Formula: $\mathrm{Fe}_{2}\left(\mathrm{C}_{64} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{~S}_{8}\right)_{2} \mathrm{Cl}_{2} \cdot 4 \mathrm{CH}_{3} \mathrm{OH}$. Anal. Calcd.: C, ${ }_{10} 60.74 \%$; H, 5.86%; N, 4.29%; Found: C, 60.25%; H, 5.56%; N, 4.29\%.

4-CoBr 2 : A solution of compound $4(3 \mathrm{mg}, 2.61 \square \mathrm{~mol})$ in CHCl_{3} $(1 \mathrm{~mL})$ was mixed with a solution of $\mathrm{CoBr}_{2} 6 \mathrm{H}_{2} \mathrm{O}(1.2 \mathrm{mg}, 5.1$ $\square \mathrm{mol}$) in $\mathrm{MeOH}(1 \mathrm{~mL})$ and was first left for 2 days. Then, slow 15 vapour diffusion of ether produced after several days blue crystals suitable for X-ray diffraction studies.
Formula: $\mathrm{Co}\left(\mathrm{C}_{64} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{~S}_{8}\right)_{2} \mathrm{Br}_{2}$. Anal. Calcd.: C, 61.05%; H , 5.44%; N, 4.45%; Found: C, 62.12%; H, 5.48%; N, 4.39%.
$4-\mathrm{CoCl}_{2}$: The same procedure as described for $4-\mathrm{CoBr}_{2}$ was 20 applied using $\mathrm{CoCl}_{2}{ }^{2} 6 \mathrm{H}_{2} \mathrm{O}(1.1 \mathrm{mg}, 4.6 \square \mathrm{~mol})$.

Formula: $\mathrm{Co}\left(\mathrm{C}_{64} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{~S}_{8}\right)_{2} \mathrm{Cl}_{2} 2 \mathrm{H}_{2} \mathrm{O} \cdot 1 \mathrm{MeOH}$. Anal. Calcd.: C, 62.04\%; H, 5.81%; N, 4.49%; Found: C, 61.78%; H, 5.70%; N, 4.41\%.

Results

${ }_{25} 3-\mathrm{CdBr}_{2}$

The combination of $\mathbf{3}$ with CdBr_{2} leads to the formation of a neutral 3D coordination network of formula $\mathrm{CdBr}_{2}\left(\mathrm{C}_{64} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{4}\right) \cdot 4 \mathrm{CHCl}_{3}$. Crystals (monoclinic, C2/c), in addition to the organic tecton 3 and CdBr_{2} salt, contain four ${ }_{30} \mathrm{CHCl}_{3}$ solvent molecules (see table 1). The $\mathbf{3} / \mathrm{CdBr}_{2}$ ratio is $1 / 1$. The coordination geometry around Cd^{2+} cation is a slightly deformed octahedron. Owing to the presence of the two halide anions occupying the two apical position ($\mathrm{d}_{\mathrm{Cd}-\mathrm{Br}}=2.7067(6) \AA$), the Cd^{2+} cation acts as a square 4 -connecting node and thus ${ }_{35}$ bridges four adjacent tectons 3 through four Cd-N bonds ($\mathrm{d}_{\mathrm{Cd}-\mathrm{N}}$ of $2.395(5)$ and $2.414(5) \AA$). The NCdN and NCdBr angles vary between 84.46(16) and $179.996(1)^{\circ}, 88.98(12)$ and 91.02(12) respectively whereas the BrCdBr angle is 180°. On the other hand, the organic tecton $\mathbf{3}$ behaves as a tetrakis monodentate unit 40 with the four N atoms of the pyridyl moieties outwardly oriented and occupying the apices of a deformed tetrahedron (Fig. 2a). The overall connectivity pattern leads to the formation of a diamond network (figure 2b). It is worth noting that the S atoms of the thiacalix moiety $\mathbf{3}$ are not engaged in any type of 45 coordination scheme with $\mathrm{Cd}(\mathrm{II})$ metal centres.

Figure 2: For 3-CdBr ${ }_{2}$: a) a portion of the X-ray structure showing the binding of four CdBr_{2} centres by the four pyridyl moieties of $\mathbf{3}$ and the localization of the N atoms on the apices of a tetrahedron and b) a portion of the 3D crystal structure, viewed along the b axis showing the octahedral coordination geometry of Cd (II) cation. H atoms and CHCl_{3} solvent molecules are omitted for clarity. For bond distances and angles see text.

The chloroform molecules are located in the cavities of the ${ }_{55}$ diamondoid network without specific interactions with the network.
The purity of the $3-\mathrm{CdBr}_{2}$ phase was established by PXRD on microcrystalline powder which revealed a good match between the observed (Fig. 3a) and simulated patterns from the XRD data
${ }_{60}$ (Fig. 3b).
Interestingly, when replacing CdBr_{2} by CdCl_{2}, an isostructural microcrystalline phase $3-\mathrm{CdCl}_{2}$ is obtained. The latter phase was characterised by PXRD on microcrystalline powder (Fig. 3c) which revealed a similar pattern as those observed and simulated ${ }_{65}$ for $3-\mathrm{CdBr}_{2}$ phase.

Figure 3: Comparison of the simulated (a) and recorded (b) PXRD patterns for $3-\mathrm{CdBr}_{2}$ and for $3-\mathrm{CdCl}_{2}$ (c). Discrepancies in intensity between the observed and simulated patterns are due to preferential orientations of the microcrystalline powders.

$4-\mathrm{CdBr}_{2}$

In order to investigate the role played by the substitution of the O atoms in the tetrathiacalix[4]arene derivative 3 by S atoms in tetramercaptotetrathiaxalix[4] arene based tecton 4, the latter was ${ }_{5}$ also combined with CdBr_{2}. The structural study revealed again the formation of a neutral 3D coordination network of formula $\mathrm{CdBr}_{2}\left(\mathrm{C}_{64} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{~S}_{8}\right) \cdot 2 \mathrm{CHCl}_{3}$ (figure 4). The crystal (triclinic, $P-1$), in addition to tecton 4 and CdBr_{2} contains two CHCl_{3} solvent molecules (see table 1). Again, the $4 / \mathrm{Cd}^{2+}$ ratio is $1 / 1$. For the 80 organic tecton $\mathbf{4}$, as in the case of $\mathbf{3}-\mathrm{CdBr}_{2}$, all four pyridyl units are outwardly oriented. Consequently, compound 4 behaves as a tetrakis monodentate tecton and bridges four consecutive CdBr_{2} centres. Two types of crystallographically independent Cd^{2+}
cations, adopting both a slightly distorted octahedral coordination geometry, are found. The metal centres, behaving as a square 4connecting node, are surrounded by four N atoms belonging to four pyridyl moieties of four different tectons 4 occupying the 5 corners of the square base of the octahedron with Cd-N distances varying between $2.382(3)$ and $2.473(3) \AA$ and two Br atoms in axial positions with $\mathrm{Cd}-\mathrm{Br}$ distances of 2.6986(3) and 2.7198(3) \AA. The NCdN and NCdBr angles are varying between $85.03(9)^{\circ}$ and 180.0°, and $88.22(6)$ and $91.78(6)^{\circ}$ respectively and the ${ }_{10} \mathrm{BrCdBr}$ angle is equal to $179.999(15)^{\circ}$.
The 3D diamond type network displays channels along the c axis. They are filled with CHCl_{3} molecules without any specific interaction with the coordination network. Again, it is worth noting that, as in the case of $\mathbf{3}$, none of the eight S atoms of the ${ }_{15}$ organic tecton $\mathbf{4}$ participate in the binding of the metal cation.

Figure 4: The view along the c axis of a portion of the structure of the diamondoid network formed by $4-\mathrm{CdBr}_{2}$. H atoms and chloroform molecules are omitted for clarity. For bond distances and angles see text.
${ }_{20}$ The purity of the $4-\mathrm{CdBr}_{2}$ phase was established by PXRD on microcrystalline powder which revealed a rather good match between the observed and simulated patterns from the XRD data of $4-\mathrm{CdBr}_{2}$ (figure 5).

25
Figure 5: Comparison of the simulated (a) and recorded (b) PXRD patterns for $4-\mathrm{CdBr}_{2}$. Discrepancies in intensity between the observed and simulated patterns are due to preferential orientations of the microcrystalline powders.

The combination of tecton 4 with FeCl_{2} again leads to the formation of a neutral 3D coordination network of formula ($\left.\mathrm{FeCl}_{2} \mathrm{C}_{64} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{~S}_{8}\right)_{2} \mathrm{CH}_{3} \mathrm{OH}$ (Fig. 6). Crystals (triclinic, $P-1$) (see table 1) contain the organic tecton $4, \mathrm{FeCl}_{2}$, and one $\mathrm{CH}_{3} \mathrm{OH}$ ${ }_{35}$ solvent molecule. The $4 / \mathrm{FeCl}_{2}$ ratio is again $1 / 1$. The coordination pattern is similar to the one found for $3-\mathrm{CdBr}_{2}$ presented above. Again, for the tecton 4, all four pyridyl units are outwardly oriented leading thus to a tetrakis monodentate connecting unit. Within the crystal, two types of 40 crystallographically independent Fe^{2+} cations, adopting both a slightly distorted octahedral coordination geometry, are present. The coordination sphere around $\mathrm{Fe}(\mathrm{II})$ is composed of four N atoms in the equatorial plane with $\mathrm{Fe}-\mathrm{N}$ distances varying between $2.225(2)$ and $2.3179(19) ~ \AA$ and two Cl atoms in axial ${ }_{45}$ positions with $\mathrm{Fe}-\mathrm{Cl}$ distances of $2.6986(3)$ and $2.4056(6) \AA$. The NFeN and NFeCl angles are varying between 88.89(7) and $180,0^{\circ}$, and $88.64(6)$ and $91.36(6)^{\circ}$ respectively and the ClFeCl angle is equal to $180.00(3)^{\circ}$. As in the case of $3-\mathrm{CdBr}_{2}, \mathrm{FeCl}_{2}$ acts as a square four connecting node and bridges four consecutive ${ }_{50}$ tectons 4. The 3D diamond type network displays channels along the a axis. The latter are filled with MeOH molecules as shown in figure 6. The methanol molecules form dimers through hydrogen bonds with O-O distance of $1.738 \AA$.

55 Figure 4: A view along the a axis of a portion of the 3D crystal structure of $4-\mathrm{FeCl}_{2}$. H atoms and MeOH solvent molecules are omitted for clarity. For bond distances and angles see text.

Again, the rather high purity of $4-\mathrm{FeCl}_{2}$ was established by PXRD on microcrystalline powder which revealed a good match ${ }_{60}$ between the observed and simulated patterns from the XRD data (figure 7).

${ }_{30} \mathbf{4}-\mathrm{FeCl}_{2}$

Figure 5: Comparison of the simulated (a) and recorded (b) PXRD patterns for $4-\mathrm{FeCl}_{2}$. Discrepancies in intensity between the observed and simulated patterns are due to preferential orientations of the microcrystalline powders.

$4-\mathrm{CoBr}_{2}$

In contrast to the case of CdBr_{2} and FeCl_{2}, the combination of the tecton 4 with CoBr_{2} leads to the formation of a neutral 2D coordination network of formula
${ }_{10} \mathrm{CoBr}_{2}\left(\mathrm{C}_{64} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{~S}_{8}\right)_{2} \cdot 2 \mathrm{CH}_{3} \mathrm{OH} \cdot \mathrm{H}_{2} \mathrm{O}$ (see table 1). The crystal (monoclinic, $C 2$) is composed of the organic tecton $4, \mathrm{CoCl}_{2}$, MeOH and $\mathrm{H}_{2} \mathrm{O}$ solvent molecules. In marked contrast with the above mentioned three cases ($3-\mathrm{CdBr}_{2}, 4-\mathrm{CdBr}_{2} \mathbf{3}-\mathrm{FeCl}_{2}$), the $4 / \mathrm{Co}^{2+}$ ratio is $2 / 1$ leading to a different connectivity pattern.
${ }_{15}$ For the present case, compound $\mathbf{4}$ behaves as a bis mondentate tecton. Indeed, among its four pyridyl units, only two take part in the binding of $\mathrm{Co}(\mathrm{II})$ centre (Fig. 8a) leading thus to the formation of a 2 D grid type coordination network. Co^{2+} cation, adopting a distorted octahedral coordination geometry, is
20 surrounded by four N atoms and two Br^{-}anions. The square base of the octahedron is occupied by four N atoms of four pyridyl moieties belonging to four different tectons 4 with Co-N distances of $2.145(4)$ and $2.210(4) \AA$. The two apical positions are occupied by two Br atoms with a $\mathrm{Cd}-\mathrm{Br}$ distance of 2.6673(5)
${ }_{25} \AA$. The, NCoN and NCoBr angles vary between $90.51(14)$ and $172.63(14)^{\circ}, 86.05(10)$ and $94.96(10)^{\circ}$ respectively and the BrCoBr angle is equal to $170.87(4)^{\circ}$.
Again, the S atoms of the tecton 4 do not participate in the connectivity pattern of the 2 D network.

Figure 6: Portions of the structure of 4-CoBr ${ }_{2}$: forming a 2D grid type 35 architecture (a) and of the packing of consecutive 2D networks along c axis (b). H atoms and solvent molecules are omitted for clarity. For bond distances and angles see text.

In the crystal, 2D network are stacked in a parallel fashion along c axis (figure 8 b). Two different MeOH molecules are present in ${ }_{40}$ the crystal. One type is H -bound to the N atom of the free pyridyl unit $\left(\mathrm{d}_{\mathrm{N}-\mathrm{O}}=2.802 \AA\right)$, whereas the second type lies in the interstices without any specific interaction with framework. The same holds for the water molecule.
The purity of the $4-\mathrm{CoBr}_{2}$ phases was established by PXRD on ${ }_{45}$ microcrystalline powder which revealed a good match between the simulated from the XRD data of $4-\mathrm{CoBr}_{2}$ (Fig. 9a) and the observed patterns (Fig. 9b).
Interestingly, as in the case of $\mathbf{3}-\mathrm{CdBr}_{2}$, an isostructural phase is obtained upon using $\mathrm{CoCl}_{2} 6 \mathrm{H}_{2} \mathrm{O}$ instead of $\mathrm{CoBr}_{2} 6 \mathrm{H}_{2} \mathrm{O} .4-\mathrm{CoCl}_{2}$
${ }_{50}$ was characterized by PXRD on microcrystalline powder which revealed a good match between the observed (Fig. 9c) and simulated (Fig. 9a) and observed (Fig. 9b) patterns for 4-CoBr 2 .

Figure 7: Comparison of PXRD data of the simulated (a) and recorded (b) patterns for $4-\mathrm{CoBr}_{2}$ and for $4-\mathrm{CoCl}_{2}(\mathrm{c})$. Discrepancies in intensity

5 between the observed and simulated patterns are due to preferential orientations of the microcrystalline powders.

Conclusion

Tectons $\mathbf{3}$ and $\mathbf{4}$ are organic neutral tetrakis meta-pyridyl appended p-tert-butyltetrathiacalix[4]arene and p-tert${ }^{10}$ butyltetrathiatetramercaptoclaix[4]arene derivatives in 1,3-A conformation respectively. Their combinations with MX_{2}, behaving as a neutral octahedral metallatecton, lead to the formation of unprecedented 2- and 3-D neutral coordination networks (Fig. 10). For all studied metal halide salts ($\mathrm{Cd}^{2+}, \mathrm{Fe}^{2+}$ ${ }_{15}$ and $\mathrm{Co}^{2+}, \mathrm{X}=\mathrm{Cl}^{-}$or Br$)$, the metal centre adopts a distorted octahedral geometry with the two anions occupying the two apical positions. In none of the investigated cases, the four S atoms of $\mathbf{3}$ or the eight S atoms of $\mathbf{4}$ take part in the binding of the metal centre. For compound 3, behaving as a tetrakis 20 monodentate tecton, isostructural porous diamondoid 3D networks are formed in the presence of both CdCl_{2} and CdBr_{2}. Interestingly, for tecton 4, the same type of porous 3D architecture is obtained with CdBr_{2} and FeCl_{2}. In all cases, crystals are solvates and the solvent molecules are located within ${ }_{25}$ the cavities of the porous 3D networks. Whereas the 3D networks $3-\mathrm{CdX}_{2}(\mathrm{X}=\mathrm{Cl}$ or Br$)$ and $4-\mathrm{FeCl}_{2}$ display similar metrics, for 4CdBr_{2} a deformation is observed. The latter results from the different orientation of the pyridyl moieties. However, in marked contrast, combinations of $\mathrm{CoX}_{2}(\mathrm{X}=\mathrm{Cl}$ or Br$)$ with compound 4 , ${ }_{30}$ behaving as a bis monodentate tecton since among its four pyridyl units only two take part in the connectivity pattern, lead to the formation of 2D grid type architectures. The reason why in the case of CoX_{2} a different connectivity pattern is observed remains unexplained.
${ }_{35}$ Using other metal salts and complexes, the propensity of tectons 3 and 4 to form extended periodic coordination networks is currently under investigation.

40 Figure 8: Polyhedral representations of 2D grid type and 3D diamondoid porous networks obtained upon combining tectons 3 and 4 with metal halide salts.

Acknowledgements

We thank the University of Strasbourg, the Institut Universitaire ${ }_{45}$ de France (IUF), the International centre for Frontier Research in Chemistry (icFRC), the CNRS and RFBR-CNRS grant N° 12-0391061, the ARCUS Programme and the Region Alsace (PhD. fellowship to A. O.) for financial support.

Notes and references

$50^{\text {a }}$ Molecular Tectonic Laboratory, UMR UDS-CNRS 7140, icFRC,
University of Strasbourg, Institut Le Bel, 4, rue Blaise Pascal, F-67000 Strasbourg, France
${ }^{b}$ A. E. Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Science, Arbuzov str. 8, Kazan 420088, Russian Federation $55{ }^{c}$ Kazan State Federal University, Kremlevskaya str. 18, Kazan 420008, Russian Federation
[1] G. D. Desiraju, Crystal Engineering: The Design of Organic Solids, Elsevier, New York, 1989.
[2] Lehn, J.-M. Supramolecular Chemistry, Concepts and Perspectives, VCH, Weinheim, 1995.
[3] (a) J. D. Dunitz, Pure and Appl. Chem. 1991, 63, 177; (b) J. D. Dunitz, Chem. Commun., 2003, 545.
[4] G. M. Schmidt, J. Pure Appl. Chem. 1971, 27, 647
[5] G. D. Desiraju, Angew. Chem. Int. Ed. Engl., 1995, 34, 2311.
[6] O. Ermer, J. Am. Chem. Soc., 1988, 110, 3747.
[7] M. C. Etter, Acc. Chem. Res., 1990, 23, 120.
[8] S. Mann, Nature, 1993, 365, 499.
[9] M. Simard, D. Su, J. D. Wuest, J. Am. Chem. Soc., 1991, 113, 4696.
[10] M. W. Hosseini, Acc. Chem. Res., 2005, 38, 313.
[11] A. F. Wells, Three-dimensional Nets and Polyhedra, WileyInterscience, New York, 1977; Further Studies of Three-dimensional Nets, ACA Monograph No. 8, American Crystallographic Association, 1979.
[12] F. W. Fowler, J. W. Lauher, J. Am. Chem. Soc., 1993, 115, 5991.
[13] M. W. Hosseini, CrystEngComm., 2004, 6, 318.
[14] J. D. Wuest, Chem. Commиn., 2005, 5830.
[15] M. W. Hosseini, Chem. Commun., 2005, 5825.
[16] (a) B. F. Abrahams, B. F. Hoskins, R. Robson, J. Am. Chem. Soc., 1991, 113, 3606; (b) S. R. Batten, R. Robson, Angew. Chem. Int. Ed., 1998, 37, 1460.
[17] a) C. Kaes, M. W. Hosseini, NATO ASI Series, Ed. J. Viciana, 1998, C518, 53; b) M. W. Hosseini, NATO ASI Series, Ed. G. Tsoucaris, 1998, C519, 209; c) M. W. Hosseini, NATO ASI Series, Eds. D. Braga, G. Orpen, Serie c, 1999, C538, 181.
[18] (a) O. M. Yaghi, H. Li, C. Davis, D. Richardson, T. L. Groy, Acc. Chem. Res., 1998, 31, 474; (b) M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T.M. Reineke, M. O'Keeffe, O. M. Yaghi, Acc. Chem. Res., 2001, 34, 319.
[19] (a) A. J. Blake, N. R. Champness, P. Hubberstey, W.-S. Li, M. A. Withersby, M. Schröder, Coord. Chem. Rev.,1999, 193, 117; (b) B. Moulton, M. J. Zaworotko, Chem. Rev., 2001, 101, 1629; (c) C. Janiak, Dalton Trans., 2003, 2781; (d) L. Carlucci, G. Ciani, D. M. Proserpio, Coord. Chem. Rev., 2003, 246, 247; (e) S. Kitagawa, R. Kitaura,, S. Noro, Angew. Chem. Int. Ed., 2004, 43, 2334; (f) G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, Acc. Chem. Res., 2005, 38, 218; (g) D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior, M. J. Rosseinsky, Acc. Chem. Res., 2005, 38, 273; (h) S. Kitagawa, K. Uemura, Chem. Soc. Rev. 2005, 34, 109; (i) D. Maspoch, D. Ruiz-Molina, J. Veciana, Chem. Soc. Rev. 2007, 36, 770; (j) J. R. Long, O. M. Yaghi, Chem. Soc. Rev., 2009, 38, 1213; (k) C. Janiak, J. L. Vieth, New J. Chem., 2010, 34, 2366; (1) Chem. Soc. Rev., 2009, 38, themed issue on metal-organic frameworks; (m) W. L. Leong, J. J. Vittal, Chem. Rev. 2011, 111, 688; (n) Chem. Rev., 2012, 112, Metal-Organic Frameworks special issue.
[20] (a) C.D. Gutsche in Calixarenes Revised: Monographs in Supramolecular Chemistry Vol. 6, The Royal Society of Chemistry, Cambridge, 1998; (b) Z. Asfari, V. Böhmer, J. Harrowfield, J. Vicens in Calixarenes 2001, (Eds. Z. Asfari, V. Böhmer, J. Harrowfield, J. Vicens) Kluwer Academic, Dordrecht, 2001.
[21] (a) H. Kumagai, M. Hasegawa, S. Miyanari, Y. Sugawa, Y. Sato, T. Hori, S. Ueda, H. Kamiyama, S. Miyano, Tetrahedron Lett., 1997, 38, 3971; (b) H. Akdas, L. Bringel, E. Graf, M. W. Hosseini, G. Mislin, J. Pansanel, A. De Cian, J. Fischer, Tetrahedron Lett., 1998, 39, 2311.
[22] G. Mislin, E. Graf, M. W. Hosseini, A. De Cian, J. Fischer, Chem. Coттии., 1998, 1345.
[23] G. Mislin, E. Graf, M. W. Hosseini, A. De Cian, J. Fischer, Tetrahedron Lett., 1999, 40, 1129.
[24] (a) C. G. Gibbs, C. D. Gutsche, J. Am. Chem. Soc., 1993, 115, 5338; (b) C. G. Gibbs, P. K. Sujeeth, J. S. Rogers, G. G. Stanley, M. Krawiec, W. H. Watson, C. D. Gutsche, J Org. Chem., 1995, 60, 8394.
[25 X. Delaigue, J. McB. Harrowfield, M. W. Hosseini, A. De Cian, J. Fischer, N. Kyritsakas, Chem. Commun., 1994, 1579.
[26] P. Rao, M. W. Hosseini, A. De Cian, J. Fischer, Chem. Commun., 1999, 2169.
[27] M. W. Hosseini in Calixarenes 2001, (Eds. Z. Asfari, V. Böhmer, J. Harrowfield, J. Vicens) Kluwer Academic, Dordrecht, 2001, pp. 110.
[28] (a) G. Dyker, M. Mastalerz, K. Merz, Eur. J. Org. Chem. 2003, 4355; (b) M. Mastalerz, H. Jesus Estevez Rivera, W. Hüggenberg, K. Merz, I. M. Oppel, G. Dyker, CrystEngComm, 2008, 10, 1120.
[29] (a) X. Delaigue, M. W. Hosseini, A. De Cian, J. Fischer, E. Leize, S. Kieffer, A. van Dorsselaer, A. Tetrahedron Lett. 1993, 34, 3285; (b) M. M. Olmstead, G. Sigel, H. Hope, X. Xu, P. P. Power, J. Am. Chem. Soc. 1985, 107, 8087; (c) X. Delaigue, M. W. Hosseini, Tetrahedron Lett. 1993, 34, 7561; (d) J. L. Atwood, S. G. Bott, C. Jones, C. L. Raston, J. Chem. Soc., Chem. Commun. 1992, 1349; (e) J. L. Atwood, P. C. Junk, S. M. Lawrence, C. L. Raston, Supramol. Chem. 1996, 7, 15; (f) A. Bilyk, J. M. Harrowfield, B. W. Skelton, A. H. White, J. Chem. Soc., Dalton Trans. 1997, 4251; (g) F. Corazza, C. Floriani, A. Chiesi-Villa, C. Guastini, C. Chem. Commun. 1990, 1083.
[30] G. Mislin, E. Graf, M. W. Hosseini, A. De Cian, N. Kyritsakas, J. Fischer, Chem Commun., 1998, 2545.
[31] K-M. Park, E. Lee, C. S. Park, S. S. Lee Inorg. Chem., 2011, 50, 12085.
[32] (a) Y-J. Liu, J-S. Huang, S. S-Y. Chui, C-H. Li, J-L. Zuo, N. Zhu, CM. Che, Inorg. Chem. 2008, 47, 11514; (a) S. P. Bew, A. D. Burrows, T. Düren, M. F. Mahon, P. Z. Moghadam, V. M. Sebestyen and S. Thurston, Chem. Commun., 2012, 4824; (c) Y-Y. Liu, C. Chen, J-F. Ma, J. Yang, CrystEngComm, 2012, 14, 6201.
[33] (a) J. Olguín, V. Gómez-Vidales, E. Muñoz, R.A. Toscano and I. Castillo, Inorg. Chem. Comm., 2006, 9, 1096-1098; (b) J. Olguín, V. Gómez-Vidales, S. Hernández-Ortega, R.A. Toscano, E. Muñoz, and I. Castillo, Supramol. Chem., 2009, 21, 502.
[34] (a) G. Mislin, E. Graf, M. W. Hosseini, A. Bilyk, A. K. Hall, J. M. Harrowfield, B. W. Skelton, A. H. White, Chem. Commun., 1999, 373; (b) H. Akdas, E. Graf, M. W. Hosseini, A. De Cian, A. Bilyk, B. W. Skelton, G. A. Koutsantonis, I. Murray, J. M. Harrowfield, A. H. White, Chem. Commun., 2002, 1042; (c) A. Bilyk, J. W. Dunlop, R. O. Fuller, A. K. Hall, J. M. Harrowfield, M. W. Hosseini, G. A. Koutsantonis, I. W. Murray, B. W. Skelton, A. N. Sobolev, R. L. Stamps, A. H. White, Eur. J. Inorg. Chem. 2010, 2127; (d) A. Bilyk, J. W. Dunlop, R. O. Fuller, A. K. Hall, J. M. Harrowfield, M. W. Hosseini, G. A. Koutsantonis, I. W. Murray, B. W. Skelton, R. L. Stamps, A. H. White, Eur. J. Inorg. Chem. 2010, 2106; (e) A. Bilyk, J. W. Dunlop, R. O. Fuller, A. K. Hall, J. M. Harrowfield, M. W. Hosseini, G. A. Koutsantonis, I. W. Murray, B. W. Skelton, A. N. Sobolev, R. L. Stamps, A. H. White Eur. J. Inorg. Chem. 2010, 2106; (f) A. Gehin, S. Ferlay, J. M. Harrowfield, D. Fenske, N. Kyritsakas and M. W. Hosseini, Inorg. Chem., 2012, 51, 5481.
[35] (a) T. Kajiwara, N. Kon, S. Yokozawa, T. Ito, N. Iki, S. Miyano, J. Am. Chem. Soc. 2002, 124, 11274; (b) C. Desroches, G. Pilet, S. A. Borshch, S. Parola, D. Luneau, Inorg. Chem. 2005, 44, 9112; (c) Y. F. Bi, X. T. Wang, W. P. Liao, X. W. Wang, R. P. Deng, H. J. Zhang, S. Gao, Inorg. Chem. 2009, 48, 11743 ; (d) Y. Bi, X-T. Wang, W. Liao, X. Wang, X. Wang, H. Zhang, S. Gao, J. Am. Chem. Soc. 2009, 131, 11650.
[36] T. Kajiwara, N. Iki and M.Yamashita, Coord. Chem. Rev. 2007, 251, 1734.
[37] M. N. Kozlova, S. Ferlay, S. E. Solovieva, I. S. Antipin, A. I. Konovalov, N. Kyritsakas, M. W. Hosseini, Dalton Trans., 2007, 5126.
[38] H. Akdas, E. Graf, M. W. Hosseini, A. De Cian, J. M. Harrowfield, Chem. Comтии., 2000, 2219.
[39] M. N. K Kozlova, S. Ferlay, N. Kyritsakas, M. W. Hosseini, S. E. Solovieva, I. S. Antipin, A. I. Konovalov, Chem. Commun., 2009, 2514.
[40] J. Sykora, M. Himl, I. Stobor, I. Cisarova, P. Lhotak, Tetrahedron, 2007, 63, 2244.
[41] Y. Bi, W. Liao, X. Wang, R. Deng and H. Zhang Eur. J. Inorg. Chem., 2009, 4989.
[42] (a) K. Kim, S. Park, K-M. Park and S. S. Lee, Cryst. Growth Des., 2011, 11, 4059; (b) M. Liu and W. Liao, Chem. Commun., 2012, 5727.
[43] a) A. Ovsyannikov, S. Ferlay, S. E. Solovieva, I. S. Antipin, A. I. Konovalov, N. Kyritsakas, M. W. Hosseini Inorg. Chem., 2013, 52, 6776 ; b) A. Ovsyannikov, S. Ferlay, S. E. Solovieva, I. S. Antipin, A. I. Konovalov, N. Kyritsakas, M. W. Hosseini Dalton., 2013, 42, 9946.
[44] a) A. Ovsyannikov, M. N. Lang, S. Ferlay, S. E. Solovieva, I. S. Antipin, A. I. Konovalov, N. Kyritsakas, M. W. Hosseini, Dalton Trans., 2013, 42, 116 ; b) A. Ovsyannikov, S. Ferlay, S. E. Solovieva, I. S. Antipin, A. I. Konovalov, N. Kyritsakas, M. W. Hosseini Dalton., 2013, DOI: 10.1039/c3dt52654b.
[45] Sheldrick, G. M.: Program for Crystal Structure Solution; University of Göttingen: Göttingen, Germany, 1997.

Cite this: DOI: 10.1039/c0xx00000x
www.rsc.org/xxxxxx
ARTICLE TYPE

Table 1 : Crystallographic Parameters for $\mathbf{3}-\mathrm{CdBr}_{2}, 4-\mathrm{CdBr}_{2}, 4-\mathrm{FeCl}_{2}, 4-\mathrm{CoBr}_{2} \mathbf{4}$ and recorded at 173 K .

Formula	$\begin{gathered} \text { 3-CdBr } \mathrm{Cd}_{2} \\ \left(\mathrm{C}_{64} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{4}\right) \mathrm{Cd} \\ \mathrm{Br}_{2}\left(\mathrm{CHCl}_{3}\right)_{4} \end{gathered}$	$\begin{gathered} 4-\mathrm{CdBr}_{2} \\ \left(\mathrm{C}_{64} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{~S}_{8}\right) \\ \mathrm{CdBr}_{2}\left(\mathrm{CHCl}_{3}\right)_{2} \end{gathered}$	$\begin{gathered} \text { 4- }-\mathrm{FeCl}_{2} \\ \left(\mathrm{C}_{64} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{~S}_{8}\right)_{2} \\ \left(\mathrm{FeCl}_{2}\right)_{2} \mathrm{CH}_{3} \mathrm{OH} \end{gathered}$	$\begin{gathered} \text { 4-CoBr } \mathrm{CoBr}_{2} \\ \left(\mathrm{C}_{64} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{~S}_{8}\right)_{2} \mathrm{CoB} \\ \mathrm{r}_{2},\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2} \mathrm{H}_{2} \mathrm{O} \end{gathered}$
Molecular weight	1835.16	1660.66	2584.95	2600.26
Crystal system	Monoclinic	Triclinic	Triclinic	Monoclinic
Space group	C2/c	P-1	P-1	C2
$\mathrm{a}(\AA)$	27.1683(11)	13.9112(2)	11.4791(4)	28.1970(8)
$\mathrm{b}(\AA)$	15.3846(5)	14.4800(3)	14.2338(4)	15.6401(4)
$\mathrm{c}(\AA)$	19.2713(9)	20.8500(4)	21.6211(5)	15.4989(4)
α (deg)	90	74.7320(10)	87.8170(10)	90
β (deg)	98.162(2)	82.4040(10)	81.1830(10)	100.242(2)
$\gamma(\mathrm{deg})$	90	66.7770(10)	66.3810(10)	90
$\mathrm{V}\left(\AA^{3}\right)$	7973.3(6)	3721.48(12)	3197.45(16)	6726.2(3)
Z	4	2	1	2
Colour	colourless	colourless	yellow	colourless
Crystal dim (mm3)	$0.08 \times 0.06 \times 0.04$	$0.07 \times 0.05 \times 0.05$	$0.08 \times 0.07 \times 0.05$	$0.14 \times 0.11 \times 0.10$
Dcalc (gcm-3)	1.529	1.482	1.342	1.284
$\mathrm{F}(000)$	3704	1684	1354	2718
$\mu\left(\mathrm{mm}^{-1}\right)$	1.830	1.848	0.624	1.022
Wavelength (\AA)	0.71073	0.71073	0.71073	0.71073
Number of data meas.	65819	101938	60060	102470
Number of data with $\mathrm{I}>2 \sigma(\mathrm{I})$	$\begin{gathered} 11034[\mathrm{R}(\text { int })= \\ 0.0455] \end{gathered}$	$\begin{gathered} 19836[\mathrm{R}(\mathrm{int})= \\ 0.0598] \end{gathered}$	$\begin{gathered} 16744[\mathrm{R}(\mathrm{int})= \\ 0.0235] \end{gathered}$	$\begin{gathered} 19261[\mathrm{R}(\text { int })= \\ 0.0632] \end{gathered}$
R	$\begin{aligned} \mathrm{R} 1 & =0.0811, \text { wR2 } \\ & =0.2313 \end{aligned}$	$\begin{aligned} \mathrm{R} 1 & =0.0432, \text { wR2 } \\ & =0.1015 \end{aligned}$	$\begin{aligned} \mathrm{R} 1 & =0.0486, \text { wR2 } \\ & =0.1368 \end{aligned}$	$\begin{aligned} \mathrm{R} 1 & =0.0603, \text { wR2 } \\ & =0.1503 \end{aligned}$
Rw	$\begin{aligned} \mathrm{R} 1 & =0.1103, \mathrm{wR} 2 \\ & =0.2548 \end{aligned}$	$\begin{aligned} \mathrm{R} 1 & =0.0847, \text { wR2 } \\ & =0.1181 \end{aligned}$	$\begin{aligned} \mathrm{R} 1 & =0.0607, \text { wR2 } \\ & =0.1480 \end{aligned}$	$\begin{aligned} \mathrm{R} 1 & =0.1022, \text { wR2 } \\ & =0.1734 \end{aligned}$
GOF	1.051	1.004	1.033	1.032
Largest peak in final difference (eÅ-3)	1.661 and -1.099	0.545 and -0.839	2.092 and -1.060	2.447 and -0.713

Graphical abstract

Combinations of tetrakis meta-pyridyl appended tetrathia- or tetrathiamercapto-calix[4]arene derivatives in 1,3-A conformation with $\mathrm{MX}_{2}(\mathrm{M}=\mathrm{Cd}$, Co or $\mathrm{Fe}, \mathrm{X}=\mathrm{Cl}$ or Br$)$ behaving as a neutral metallatecton, lead to the formation of 2D grid type and 3D porous diamondoid coordination networks.

