This is an Accepted Manuscript, which has been through the RSC Publishing peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This Accepted Manuscript will be replaced by the edited and formatted Advance Article as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication.

More information about Accepted Manuscripts can be found in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard Terms & Conditions and the ethical guidelines that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these Accepted Manuscript manuscripts or any consequences arising from the use of any information contained in them.
Syntheses, Structures, and Properties of A Series of 2D and 3D Coordination Polymers Based on Trifunctional Pyridine-dicarboxylate and Different (Bi)imidazole Bridging Ligands

Liming Fan,* Xiutang Zhang, *a b Wei Zhang, b Yuanshuai Ding, b Weiliu Fan, a Liming Sun, a Xian Zhao a

ABSTRACT: A series of 2D and 3D transition coordination polymers (CPs), \{[M(bcpb)(1,4-bmib)0.5]·xH2O\}n (M = Co (1), Cu (2), Ni (3), x = 1 for 1, 0 for 2 and 3), \{[Co(bcpb)(4,4′-bibmp)3(H2O)1.5]·1.5H2O\}n (4), \{[Cu(bcpb)(4,4′-bibmp)3(H2O)2]·2.5H2O\}n (6), \{[Co(bcpb)(4,4′-bibmp)]n (7), \{[Ni(pip)(MeOH)(H2O)]n (8), \{[Ni(pip)(4,4′-bibmp)]3(H2O)2]·2H2O\}n (9), \{[Cu(pip)(4,4′-bibmp)]·4H2O\}n (10), were synthesized under hydrothermal conditions in the presence of two trifunctional pyridine-dicarboxylate and different (bis)imidazole bridging linkers (H2bapb = 3,5-bis(4-carboxyphenyl)pyridine, H2pip = 5-(4-pyridyl)-isophthalic acid, 1,4-bmib = 1,4-bis(2-methylimidazol-1-ylmethyl)benzene). Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectra, powder X-ray diffraction (PXRD), and thermogravimetric (TG) analyses. Single crystal X-ray diffraction analyses reveal that complexes 1-3 are isomorphic and show complicated 3D (3,5)-coordinated and (3,4)-coordinated networks, which could be viewed as two interpenetrated subnets. Complex 4 is a binodal (3,4)-connected 3D framework with the Schlӓfli symbol of (4·72)(4·7·84). Complex 5 exhibits an intriguing 3D 2-fold interpenetrated network with the (3,4)-connected dmc net. Complex 6 is a 2D (3,5)-connected gek1 network with right- and left-handed \{Ni(4,4′-bibmp)\}n helix chains arranged alternately. The 3D framework of 7 is defined as a 2-fold interpenetrated (3,5)-connected gra topology. Complex 8 displays a 2D 3-connected 6-hcb network. Complex 9 can be regarded as a (3,4)-coordinated crs-d network with point symbol of (62·8)(6·8·102), which contains two interpenetrated 3-coordinated 103 srs-d subnets linked by 2-coordinated 4,4′-bibmp. Complex 10 is a binodal (3,5)-connected 3D framework with point Schlӓfli symbol of (4·6·8)(4·64·85). To the best of our knowledge, the 3D CPs with (3,4)-connected (4·72)(4·7·84) for 4, and (3,5)-connected (4·6·8)(4·64·85) for 10 have never been documented up to now. Moreover, the magnetic property of 4 has been investigated.

Introduction

The design and synthesis of coordination polymers (CPs) have attracted upsurging research interest not only because of their diverse structures and interesting topologies but also owing to their tremendous potential applications in gas storage, microelectronics, ion exchange, chemical separations, nonlinear optics, drug delivery, molecular magnetism, photoluminescence and heterogeneous catalysis. Generally, the structural diversity of such materials are always dependent on many factors, such as metal ion, templating agents, metal-ligand ratio, pH value, counteranion, and number of coordination sites provided by organic ligands. In the strategies, the rational selection of organic ligands or coligands according to their length, rigidity, coordination modes, functional groups is one of the most important strategies for the assembly of structural controllable CPs, and a great deal of significant work have been done by using the strategy. Usually, the polycarboxylate ligands with bent backbones, such as V-shaped, triangular, quadrangular, and so on, are excellent candidates for building highly connected, interpenetrating, or helical coordination frameworks due to their bent backbones and versatile bridging fashions. Among which, trifunctional pyridine-dicarboxylic acids are paid much attention due to their rich donor atoms including N and O atoms. 3,5-bis(4-carboxyphenyl)pyridine (H2bapb) and 5-(4-pyridyl)-isophthalic acid (H2pip) have been used in the assembly of functional coordination polymers, which revealed diverse structures and excellent properties. Apart from the polycarboxylate linkers, (bi)imidazole bridging linkers are frequently used in the assembly process of coordination...
polymers act as bridging pillars, guest molecules, or charge balance roles. Moreover, the (bis)imidazole bridging linkers also play important role on altering the coordination modes of polyoxocarbonate ligands. The particular behaviors allow them to be promising candidates for designing frameworks with diverse topologies.

On the basis of above-mentioned considerations and followed our recent research, we consider the simultaneous employment of two trifunctional pyridine-dicarboxylate (H$_2$pip, H$_2$bcpb) and three (bis)imidazole bridging linkers (1,4-bmib, 4,4′-bibp, and 4,4′-bimbp) (Scheme 1) with different length (l_p) and width (l_c) will contribute to the formation of various architectures and help chemists understand the process of self-assembly. Herein, we successfully apply this strategy and obtain ten 2D and 3D CPs, namely, ([M(bcpb)(1,4-bmib)$_{0.5}$]xH$_2$O)$_n$ (M = Co (1), Cu (2), Ni (3), x = 1 for 1, 0 for 2 and 3), ([Co(bcpb)(4,4′-bibp)$_{0.5}$]xH$_2$O)$_n$ (4), [Cu(bcpb)(4,4′-bibp)$_{0.5}$]xH$_2$O)$_n$ (5), ([Ni(bcpb)(4,4′-bimbp)]xH$_2$O)$_n$ (6), [Co(bcpb)(4,4′-bimbp)]x (7), [Ni(pip)(MeOH)H$_2$O)$_n$ (8), [Ni(pip)(4,4′-bimbp)$_{0.5}$]xH$_2$O)$_n$ (9), and [Cu(pip)(4,4′-bimbp)]xH$_2$O)$_n$ (10), which exhibit a systematic variation of structural characteristics of two trifunctional pyridine-dicarboxylate ligands but also the (bis)imidazole bridging linkers have great effect on the final packing structures.

Experimental Section

Materials and Physical Measurements. The syntheses of 1–10 were performed in Teflon-lined stainless steel autoclaves under autogenous pressure. The chemicals of 5-(4-pyridyl)-isophthalic acid, 3,5-bis(4-carboxyphenyl)pyridine, 1,4-bis(2-methylimidazol-1-ylmethyl)benzene, 4,4′-bis(1-imidazolyl)biphenyl, and 4,4′-bis(imidazol-1-ylmethyl)biphenyl were purchased from Jinan Henghua Sci. & Tec. Co. Ltd. without further purification. IR spectra were measured on a Nicolet 740 FTIR Spectrometer at the range of 400–4000 cm$^{-1}$. Elemental analyses were carried out on a CE instruments EA 1110 elemental analyzer. TGA was measured from 25 to 800 °C on a SDT Q600 instrument at a heating rate 5 °C/min under the N$_2$ atmosphere (100 mL/min). X-ray powder diffractions were measured on a Panalytical X-Pert pro diffractometer with Cu-Kα radiation. The variable-temperature magnetic susceptibility measurements was performed on the Quantum Design SQUID MPMS XL-7 instruments in the temperature range of 2–300 K under a field of 1000 Oe.

General Synthesis Procedure for Complexes 1–10. The synthesis for the target ten complexes were performed in 25 mL Teflon-lined stainless steel vessels by utilizing the hydrothermal method with the same stoichiometric ratio for the starting materials in the presence of NaOH. The one-pot mixture was heated to 170 °C for 72 h, and then cooled to room temperature at a descent rate of 10 °C/h. Finally, the crystals suitable for the single-crystal X-ray diffraction analysis were obtained.

Synthesis of [Co(bcpb)(1,4-bmib)$_{0.5}$]xH$_2$O)$_n$ (1). A mixture of H$_2$bcpb (0.20 mmol, 0.064 g), H$_2$bcpb (0.20 mmol, 0.054 g), cobalt(II) dichloride hexahydrate (0.20 mmol, 0.048 g), NaOH (0.30 mmol, 0.012 g), and 12 mL H$_2$O was placed in a Teflon-lined stainless steel vessel, heated to 170 °C for 3 days, followed by slow cooling (a descent rate of 10 °C/h) to room temperature. Purple block crystals of 1 were obtained. Yield of 59% (based on Co). Anal. (%) calcd. for C$_{54}$H$_{42}$Co$_2$N$_6$O$_9$: C, 62.56; H, 4.08; N, 8.25. Found: C, 64.01; H, 3.67; N, 8.36. IR (KBr pellet, cm$^{-1}$): 3453 (s), 3083 (m), 2369 (m), 1597 (vs), 1543 (vs), 1398 (s), 1230 (m), 851 (m), 767 (m), 521 (w).

Synthesis of [Cu(bcpb)(1,4-bmib)$_{0.5}$]xH$_2$O)$_n$ (2). A mixture of H$_2$bcpb (0.20 mmol, 0.064 g), H$_2$bcpb (0.40 mmol, 0.108 g), copper(II) sulfate pentahydrate (0.40 mmol, 0.100 g), NaOH (0.30 mmol, 0.012 g), and 12 mL H$_2$O was placed in a Teflon-lined stainless steel vessel, heated to 170 °C for 3 days, followed by slow cooling (a descent rate of 10 °C/h) to room temperature. Blue block crystals of 2 were obtained. Yield of 43% (based on Cu). Anal. (%) calcd. for C$_{27}$H$_{20}$CuN$_3$O$_4$: C, 63.09; H, 3.92; N, 8.18. Found: C, 62.73; H, 4.21; N, 7.98. IR (KBr pellet, cm$^{-1}$): 3461 (s), 3083 (m), 2369 (m), 1597 (vs), 1543 (vs), 1407 (s), 1220 (m), 847 (s), 763 (s), 517 (w).

Synthesis of [Ni(bcpb)(1,4-bmib)$_{0.5}$]xH$_2$O)$_n$ (3). A mixture of H$_2$bcpb (0.20 mmol, 0.064 g), H$_2$bcpb (0.20 mmol, 0.054 g), nickel(II) sulfate hexahydrate (0.50 mmol, 0.141 g), NaOH (0.30 mmol, 0.012 g), and 12 mL H$_2$O was placed in a Teflon-lined stainless steel vessel, heated to 170 °C for 3 days, followed by slow cooling (a descent rate of 10 °C/h) to room temperature. Green block crystals of 3 were obtained. Yield of 67% (based on Ni). Anal. (%) calcd. for C$_{27}$H$_{20}$NiN$_3$O$_4$: C, 63.69; H, 3.92; N, 8.18. Found: C, 62.73; H, 3.97; N, 8.67. IR (KBr pellet, cm$^{-1}$): 3461 (s), 3083 (m), 2369 (m), 1597 (vs), 1543 (vs), 1398 (s), 1230 (m), 851 (m), 767 (m), 521 (w).

Synthesis of [Ni(bcpb)(4,4′-bibp)$_{0.5}$]xH$_2$O)$_n$ (4). A mixture of H$_2$bcpb (0.20 mmol, 0.064 g), H$_2$bcpb (0.20 mmol, 0.054 g), NaOH (0.50 mmol, 0.141 g), and 12 mL H$_2$O was placed in a Teflon-lined stainless steel vessel, heated to 170 °C for 3 days, followed by slow cooling (a descent rate of 10 °C/h) to room temperature. Pink block crystals of 4 were obtained. Yield of 49% (based on Co). Anal. (%) calcd. for C$_{59}$H$_{51}$Co$_2$N$_{12}$O$_{27}$: C, 58.91; H, 4.23; N, 7.17. IR
(KBr pellet, cm\(^{-1}\)): 3434 (s), 3087 (m), 2371 (m), 1607 (vs), 1567 (m), 1397 (vs), 1290 (m), 1102 (m), 799 (m), 753 (s), 522 (w).

Synthesis of [{Co(bcbp)(4,4'-bimbp)}\(n\)H\(_2\)O\] \(n\) (6). A mixture of H\(_2\)bcp (0.20 mmol, 0.064 g), 4,4'-bimbp (0.20 mmol, 0.057 g), cobalt(II) nitrate hexahydrate (0.20 mmol, 0.058 g), NaOH (0.30 mmol, 0.012 g), and 12 mL H\(_2\)O was placed in a Teflon-lined stainless steel vessel, heated to 170 °C for 3 days, followed by slow cooling (a descent rate of 10 °C/h) to room temperature. Blue block crystals of 6 were obtained. Yield of 54% (based on Co). Anal. (%) calcd. for C\(_{39}\)H\(_{35}\)NiN\(_5\)O\(_7\): C, 62.92; H, 4.74; N, 10.13. Found: C, 62.73; H, 4.90; N, 10.02. IR (KBr pellet, cm\(^{-1}\)): 3426 (s), 2373 (m), 1605 (vs), 1567 (s), 1398 (vs), 1241 (m), 1075 (s), 837 (s), 776 (s), 542 (w).

Synthesis of [{Co(bcbp)(4,4'-bimbp)}\(n\)H\(_2\)O\] \(n\) (6). A mixture of H\(_2\)bcp (0.20 mmol, 0.064 g), 4,4'-bimbp (0.20 mmol, 0.057 g), nickel(II) nitrate hexahydrate (0.20 mmol, 0.057 g), NaOH (0.30 mmol, 0.012 g), and 12 mL H\(_2\)O was placed in a Teflon-lined stainless steel vessel, heated to 170 °C for 3 days, followed by slow cooling (a descent rate of 10 °C/h) to room temperature. Blue block crystals of 6 were obtained. Yield of 54% (based on Co). Anal. (%) calcd. for C\(_{39}\)H\(_{35}\)NiN\(_5\)O\(_7\): C, 62.92; H, 4.74; N, 10.13. Found: C, 62.73; H, 4.90; N, 10.02. IR (KBr pellet, cm\(^{-1}\)): 3445 (vs), 3118 (m), 2373 (m), 1605 (vs), 1567 (s), 1398 (vs), 1241 (m), 1075 (s), 837 (s), 776 (s), 542 (w).

Synthesis of [{Co(bcbp)(4,4'-bimbp)}\(n\)H\(_2\)O\] \(n\) (6). A mixture of H\(_2\)bcp (0.20 mmol, 0.064 g), 4,4'-bimbp (0.20 mmol, 0.057 g), nickel(II) nitrate hexahydrate (0.20 mmol, 0.057 g), NaOH (0.30 mmol, 0.012 g), and 12 mL H\(_2\)O was placed in a Teflon-lined stainless steel vessel, heated to 170 °C for 3 days, followed by slow cooling (a descent rate of 10 °C/h) to room temperature. Blue block crystals of 6 were obtained. Yield of 54% (based on Co). Anal. (%) calcd. for C\(_{39}\)H\(_{35}\)NiN\(_5\)O\(_7\): C, 62.92; H, 4.74; N, 10.13. Found: C, 62.73; H, 4.90; N, 10.02. IR (KBr pellet, cm\(^{-1}\)): 3445 (vs), 3118 (m), 2373 (m), 1605 (vs), 1567 (s), 1398 (vs), 1241 (m), 1075 (s), 837 (s), 776 (s), 542 (w).

Synthesis of [{Co(bcbp)(4,4'-bimbp)}\(n\)H\(_2\)O\] \(n\) (6). A mixture of H\(_2\)bcp (0.20 mmol, 0.064 g), 4,4'-bimbp (0.20 mmol, 0.057 g), nickel(II) nitrate hexahydrate (0.20 mmol, 0.057 g), NaOH (0.30 mmol, 0.012 g), and 12 mL H\(_2\)O was placed in a Teflon-lined stainless steel vessel, heated to 170 °C for 3 days, followed by slow cooling (a descent rate of 10 °C/h) to room temperature. Blue block crystals of 6 were obtained. Yield of 54% (based on Co). Anal. (%) calcd. for C\(_{39}\)H\(_{35}\)NiN\(_5\)O\(_7\): C, 62.92; H, 4.74; N, 10.13. Found: C, 62.73; H, 4.90; N, 10.02. IR (KBr pellet, cm\(^{-1}\)): 3445 (vs), 3118 (m), 2373 (m), 1605 (vs), 1567 (s), 1398 (vs), 1241 (m), 1075 (s), 837 (s), 776 (s), 542 (w).

Synthesis of [{Co(bcbp)(4,4'-bimbp)}\(n\)H\(_2\)O\] \(n\) (6). A mixture of H\(_2\)bcp (0.20 mmol, 0.064 g), 4,4'-bimbp (0.20 mmol, 0.057 g), nickel(II) nitrate hexahydrate (0.20 mmol, 0.057 g), NaOH (0.30 mmol, 0.012 g), and 12 mL H\(_2\)O was placed in a Teflon-lined stainless steel vessel, heated to 170 °C for 3 days, followed by slow cooling (a descent rate of 10 °C/h) to room temperature. Blue block crystals of 6 were obtained. Yield of 54% (based on Co). Anal. (%) calcd. for C\(_{39}\)H\(_{35}\)NiN\(_5\)O\(_7\): C, 62.92; H, 4.74; N, 10.13. Found: C, 62.73; H, 4.90; N, 10.02. IR (KBr pellet, cm\(^{-1}\)): 3445 (vs), 3118 (m), 2373 (m), 1605 (vs), 1567 (s), 1398 (vs), 1241 (m), 1075 (s), 837 (s), 776 (s), 542 (w).
mainly attributed to the “synergistic reaction” of the length (l_p) and width (l_c) from the organic skeletons including the trisfunctional pyridine-dicarboxylate (H_2pip, H_2bapb) and (bis)imidazole bridging linkers (1,4-bmib, 4,4’-bimbp, and 4,4’-bimbp). For example, for compounds 1, 4, and 7, although the similar environments are employed except for three different (bis)imidazole bridging linkers (1,4-bmib, 4,4’-bibp, 4,4’-bimbp), their related architectures exhibit (3,5)-connected (6,8·8·10), (3,4)-connected (4·7·8·4), and 2-fold (3,5)-connected (6,8·6·8) 3D topologies, respectively. The different topologies could be attributed to the distances ($trans$- or cis-) and distorted angles between two coordinated nitrogen atoms in (bis)imidazole bridging linkers.

In a word, not only the length (l_p) and width (l_c) of the trisfunctional pyridine-dicarboxylate ligands but also the flexible and length of the (bis)imidazole bridging linkers have great effect on the final packing structures.

Table 1 Crystal data for 1–10

<table>
<thead>
<tr>
<th>Compound</th>
<th>Empirical formula</th>
<th>Formula weight</th>
<th>Crystal system</th>
<th>Space group</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>α (°)</th>
<th>β (°)</th>
<th>γ (°)</th>
<th>V (Å3)</th>
<th>Z</th>
<th>Dcalcd (Mg/m3)</th>
<th>μ (mm$^{-1}$)</th>
<th>θ range (°)</th>
<th>Reflections collected</th>
<th>Crystallographic data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$C_5H_4Co_2N_6O_9$</td>
<td>1036.80</td>
<td>Monoclinic</td>
<td>C2/c</td>
<td>20.201(1)</td>
<td>20.307(9)</td>
<td>21.796(2)</td>
<td>90.00</td>
<td>91.23(4)</td>
<td>90.00</td>
<td>4399(5)</td>
<td>4</td>
<td>1.566</td>
<td>0.825</td>
<td>1.78–25.00</td>
<td>10535</td>
<td>3867/326</td>
</tr>
<tr>
<td>2</td>
<td>$C_27H_20CoN_3O_4$</td>
<td>514.00</td>
<td>Monoclinic</td>
<td>C2/c</td>
<td>20.201(1)</td>
<td>20.307(9)</td>
<td>21.796(2)</td>
<td>90.00</td>
<td>91.23(4)</td>
<td>90.00</td>
<td>4399(5)</td>
<td>8</td>
<td>1.506</td>
<td>0.805</td>
<td>1.78–25.00</td>
<td>11447</td>
<td>3991/317</td>
</tr>
<tr>
<td>3</td>
<td>$C_27H_20N_3NiO_4$</td>
<td>509.17</td>
<td>Monoclinic</td>
<td>C2/c</td>
<td>20.201(1)</td>
<td>20.307(9)</td>
<td>21.796(2)</td>
<td>90.00</td>
<td>91.23(4)</td>
<td>90.00</td>
<td>4399(5)</td>
<td>8</td>
<td>1.536</td>
<td>0.805</td>
<td>1.78–25.00</td>
<td>11447</td>
<td>3991/317</td>
</tr>
<tr>
<td>4</td>
<td>$C_56H_48Co_2N_6O_{14}$</td>
<td>1146.86</td>
<td>Monoclinic</td>
<td>C2/c</td>
<td>20.201(1)</td>
<td>20.307(9)</td>
<td>21.796(2)</td>
<td>90.00</td>
<td>91.23(4)</td>
<td>90.00</td>
<td>4399(5)</td>
<td>8</td>
<td>1.513</td>
<td>0.805</td>
<td>1.78–25.00</td>
<td>11447</td>
<td>3991/317</td>
</tr>
<tr>
<td>5</td>
<td>$C_28H_20CuN_3O_5$</td>
<td>542.01</td>
<td>Monoclinic</td>
<td>C2/c</td>
<td>20.201(1)</td>
<td>20.307(9)</td>
<td>21.796(2)</td>
<td>90.00</td>
<td>91.23(4)</td>
<td>90.00</td>
<td>4399(5)</td>
<td>8</td>
<td>1.513</td>
<td>0.805</td>
<td>1.78–25.00</td>
<td>11447</td>
<td>3991/317</td>
</tr>
</tbody>
</table>

Scheme 2. The coordination modes of pip2-, bcp2- in complexes 1-10.
Figure 1. (a) Coordination environment of CoII ion in 1 (Symmetry codes: A: 0.5+x, -0.5-y, 0.5+z; B: 2-x, y, 1.5-z; C: 0.5+x, 0.5+y, z). (b) Two penetrated chiral ths networks. (c) The 3D frameworks with 3-connected nets. (d) Schematic view of a (3,4)-connected amd topology with the Schlafli symbol of (6^2·8)(6^3·8·10^2) of 1 (green spheres: CoII atoms; violet spheres: bcpb²⁻ ligands; blue bonds: 1,4-bmib ligands).

Figure 2. (a) Coordination environment of CoII ion in 4 (Symmetry codes: A: -0.5-x, 1.5-y, -1-z; B: 0.5-x, 1.5-y, 1-z; C: 0.5-x, 0.5+y, 0.5-z). (b) View of the 3-connected 2D network. (c) The (3,5)-connected 3D frameworks of 4. (d) Schematic view of the (3,5)-connected (4·7^3)(4·7^5·8^4) network of 4 (dark blue spheres: CoII atoms; yellow spheres: bcpb²⁻ ligands; dark blue bonds: 4,4′-bibp ligands).
Structural Description of $\{[M(bcpb)(1,4-bmib)]_n \cdot xH_2O\}_m$ (M = Co (1), Cu (2), Ni (3), x = 1 for 1, 0 for 2 and 3). Single-crystal X-ray diffraction analysis revealed that complexes 1-3 are isomorphic and crystallize in the monoclinic space group $C2/c$. Herein only the structure of 1 will be discussed as a representation. As shown in Figure 1a, there is one crystallographically independent CoII atom, one bcp$^{2-}$ ligand, half a 1,4-bmib ligand, and one lattice water molecule in the asymmetric unit. Each CoII centre is hexa-coordinated by: two N atoms from one 1,4-bmib ligand and one bcp$^{2-}$ ligand $[\text{Co(1)}–\text{O(1)} = 1.970(8), \text{25 Co(1)}–\text{O(2)} = 2.589(5), \text{Co(1)}–\text{O(3)} = 2.110(2), \text{Co(1)}–\text{O(4)} = 2.158(7) \text{Å}, showing a distorted octahedral coordination geometry. Both Co–N and Co–O bond lengths are well-matched to the similar complexes.[16]

The ligand of H$_2$bcp$^{2-}$ is completely deprotonated and acts as one μ$_1$ node to coordinate with three CoII ions via three dentate atoms including one N and two O atoms, in which both of two carboxylic groups adopt similar η1-η2 coordination mode (named as Mode 1, Scheme 2). The dihedral angles between the two phenyl rings and the pyridine ring in bcp$^{2-}$ are 33.22(2) and 54.24(2)\textdegree, respectively. And the one between the two phenyl rings in bcp$^{2-}$ is 44.92(1)\textdegree. It is worth noting that the dihedral angles are much larger for compounds 2 and 3: 34.20(1), 54.33(1), and 44.18(1)\textdegree for 2; 33.22(1), 55.75(1), and 46.77(1)\textdegree for 3. The divalent CoII ions are linked by 3-connected bcp$^{2-}$ ligands to form two interpenetrated double-layers with the alternately arranged left- and right-handed helical chains, which are further linked by the 1,4-bmib ligands to generate a polymeric thers 3D $[\text{Co(bcpb)}]_n$ network with the 11.621(6) × 11.268(5) Å2 opening 1D channels (Figure 1b). The two kinds of chiral 3D networks are further bridged by 1,4-bmib ligands to result in an achiral self-catentation frameworks (Figure 1c).

The topological analysis method was accessed to simplify the structure. The overall framework can be defined as a (3,4)-connected 3D and network, with the Point Schläfli symbol of (62·86·106) by denoting the CoII and bcp$^{2-}$ as four-connected and three-connected nodes, respectively (Figure 1d).

Structural Description of $\{[\text{Co(bcpb)}(4,4’-bimbp)]_n \cdot 1.5H_2O\}_m$ (4). Although the compounds 4 and 5 are constructed from the same organic ligands in the similar reaction environments, they exhibit different 3D architectures due to completely different coordination geometry: (3,5)-connected (3,5)-connected (4 72)(4 75·88) topology for 4 and 2-fold (3,4)-connected (4 83)(4 83) dmc for 5. Complex 4 crystallizes in the monoclinic space group $C2/c$. The asymmetric unit contains one crystallographically independent CoII atoms, one bcp$^{2-}$ ligands, a half of 4,4’-bimbp ligand, and one half associated water molecules, and one and a half of lattice water molecules (Figure 2a). The CoII cation is coordinated with four oxygen atoms from two different bcp$^{2-}$ ligands, one μ$_1$- and one μ$_2$-coordinated water molecules, and two nitrogen atoms from two 4,4’-bimbp ligands, leaving a distorted octahedral geometry with [Co(N$_2$O$_4$)] coordination environments. The bond lengths of Co–O are in the range of 2.066(7)-2.149(5) Å, and the Co–N are 2.089(7), 2.145(8) Å, respectively.

Slightly different from that in 1-3, two carboxyl groups of bcp$^{2-}$ in 4-6 adopts η1 coordination mode (Mode II). The dihedral angle between two phenyl rings and central pyridine ring in bcp$^{2-}$ are 16.08(1)/20.16(1) and 40.05(1)/40.49(1)\textdegree, respectively. And the one between two phenyl rings in one bcp$^{2-}$ is 49.97(1)/54.52(1)\textdegree. CoII cations are linked by bcp$^{2-}$ to form 2D 3-connected $[\text{Co(bcpb)}]_n$ networks with the right- and left-handed helix alternating (Figure 2b), which are bridged by μ$_2$-H$_2$O to generate a 3D framework with 1D channels. Furthermore, metal ions are linked by 4,4’-bimbp ligands along the channels to exhibit an unprecedented (3,5)-connected networks with the Schläfli symbol of (4 72)(4 75·88) by denoting the CoII atoms to five-connected nodes and bcp$^{2-}$ ligands to three-connected nodes, respectively (Figure 2c and Figure 2d).

Structural Description of $\{[\text{Cu(bcpb)}(4,4’-bimbp)]_n \cdot (H_2O)_6\}_m$ (5). Single-crystal X-ray diffraction analysis reveals that complex 5 crystallizes in the monoclinic system, space group $C2/c$. As shown in Figure 3a, there are one crystallographically independent CuII atom, one bcp$^{2-}$ ligand, a half of 4,4’-bimbp ligand, and one associated water molecule in the asymmetric unit. Each CuII centre is penta-coordinated by two N atoms from one 4,4’-bimbp ligand and one bcp$^{2-}$ ligand $[\text{Cu(1)}–\text{N(1)} = 2.320(1) \text{Å}, \text{Cu(1)}–\text{N(2)} = 1.988(5) \text{Å} \text{Å}, and three O atoms from another two bcp$^{2-}$ ligands and one coordinated water molecule $[\text{Cu(1)}–\text{O(1)} = 1.938(2), \text{Cu(1)}–\text{O(4)} = 1.975(4), \text{and Cu(1)}–\text{O(5)} = 1.968(1) \text{Å}, showing a distorted tetragonal pyramid coordination geometry.

The ligand of bcp$^{2-}$ acts as one μ$_1$ node to coordinate with three CuII ions via the deprotonated carboxylate oxygen atom and the N atom (Mode II). The dihedral angle between two phenyl rings and central pyridine ring in bcp$^{2-}$ are 22.38(1) and 39.66(1)\textdegree, respectively. And the one between two phenyl rings in one bcp$^{2-}$ is 55.49(1)\textdegree. The 3-connected bcp$^{2-}$ ligands connect CoIII cations to form 2D double-layer networks with right- and left-helix chains alternately arrange (Figure 3b). Furthermore, the 4,4’-bimbp ligands act as pillars to link the neutral layers into a 3D framework (Figure 3c). The Co–Co distance separated by the 4,4’-bimbp ligand is 17.768(7) Å.

At the sight of topology, the whole structure of complex 5 can be defined as a 2-fold (3,4)-connected dmc network with the Schläfli symbol of (4 83)(4 83) by denoting the CuII atoms to four-connected nodes and bcp$^{2-}$ ligands to three-connected nodes, respectively (Figure 3d).

Structural Description of $\{[$Ni(bcpb)(4,4’-bimbp)](H_2O)_2·2.5H_2O\}_m$ (6). X-ray crystallography analysis reveals that complex 6 crystallizes in the monoclinic C2/c space group. As shown in Figure 4a, there are one crystallographically independent NiIII atom, one bcp$^{2-}$ ligand, one 4,4’-bimbp ligand, and one coordinated water molecule, and two and a half of lattice water molecules in the asymmetric unit. Each NiIII centre is penta-coordinated by three N atoms from two different 4,4’-bimbp ligands and one bcp$^{2-}$ ligand $[\text{Ni(1)}–\text{N(1)} = 2.091(3), \text{Ni(1)}–\text{N(2)} = 2.063(6), \text{Ni(1)}–\text{N(5)} = 2.114(5) \text{Å}, and three O atoms from another two bcp$^{2-}$ ligands and one associated water molecule $[\text{Ni(1)}–\text{O(1)} = 2.068(8), \text{Ni(1)}–\text{O(2)} = 2.088(5), \text{and Ni(1)}–\text{O(1W)} = 2.078(9) \text{Å}, showing a distorted tetragonal pyramid coordination geometry.
Figure 3. (a) Coordination environment of Cu II ion in 5 (Symmetry codes: A: -0.5–x, 1.5–y, -z; B: 0.5–x, -0.5–y, 1.5–z; C: x, 2–y, 0.5–z). (b) The 2D [Cu(bcpb)], net constructed by bcpb 2- ligands linked with Cu II cations. (c) View of the (3,4)-connected 3D frameworks of 5 (purple spheres: Cu II atoms; yellow spheres: bcpb 2- ligands; blue spheres: 4,4'-bibp ligands). (d) Schematic view of the 2-fold (3,4)-connected dmc network of 5 (dark blue spheres: Cu II atoms; pink spheres: bcpb 2- ligands).

Figure 4. (a) Coordination environment of Ni II ion in 6 (Symmetry codes: A: 0.5–x, -0.5–y, 0.5–z; B: -0.5–x, 1.5–y, -0.5–z; C: 1–x, 1–y, -2–z). (b) The 2D 3-connected net constructed by the bcpb 2- ligands linked Ni II ions. (c) View of the right- and left-handed helix chains modified 2D [Ni(bcpb)], networks. (d) Schematic view of the (3,5)-connected gek1 networks of 6 (green spheres: Ni II atoms; violet spheres: bcpb 2- ligands; blue bonds: 4,4'-bimbp ligands).
The dihedral angle between two phenyl rings and central pyridine ring in bcpb2 are 27.56(1) and 27.80(1)$^\circ$, respectively. And the one between two phenyl rings in one bcpb2 is 53.86(1)$^\circ$. The 3-connected bcpb2 ligands connect NiII cations to form 2D [Ni(bcpb)]$_n$ networks (Figure 4b), which are further intra-linked by 4,4'-bibp ligands along b direction. It is noteworthy that the [Ni(4,4'-bibp)]$_n$ chains show right- and left-handed helices with the Ni···Ni distance separated by the 4,4'-bimbp ligand being 12.136(6) Å (Figure 4c).

Topological analysis shows the whole structure of complex 6 can be defined as a (3,5)-connected 2D gek1 network with the Schlafli symbol of (4·82)(4·85) by denoting the NiII atoms to five-connected nodes and bcpb2 ligands to three-connected nodes, respectively (Figure 4d).

Structural Description of [Co(bcpb)(4,4'-bimbp)]$_n$ (7). Complex 4 was obtained as a 2-fold interpenetrated 3,5-coordinated 3D network with a gra topology. It crystallized in triclinic P-1 space group. As shown in Figure 5a, there are one crystallographically independent CoII atom, one bcpb2 ligand, and one 4,4'-bimbp ligand in the asymmetric unit. Each CoII centre is hexa-coordinated by three N atoms from two 4,4'-bibp ligands and one bcpb2 ligand, and three O atoms from two bcpb2 ligands, showing a distorted octahedral coordination geometry. The Co–N/O bond distances are range from 2.018(6) to 2.267(5) Å, similar with the reported ones. The two carboxylate groups of bcpb2, different from the ones in 1-6, adopt η^1-η^1 and η^1 coordination modes (Mode III). The dihedral angles between two phenyl rings and central pyridine ring in bcpb2 are 24.25(1) and 30.11(1)$^\circ$, respectively. And the one between two phenyl rings is in bcpb2 is 17.60$^\circ$. It is worth noting that the dihedral angles are much smaller than the ones in 1-6, which may be attributed to the interpenetrating of the whole structure. The CoII ions are bridged by bcpb2 ligands to result in a 2D networks (Figure 5b), which are further extended via the bridge of 4,4'-bimbp to form a corrugated 3D framework with 1D channels, leaving the 11.691(6) × 18.696(2) Å pores along b axis (Figure 5c). Moreover, adjacent nets are further interpenetrated with each other to result in a 2-fold 3D interpenetrating frameworks.

The topology analysis shows the overall framework of complex 7 can be rationalized to a (3,5)-connected gra topology with the Schlafli symbol of (62)(63·8) by denoting the CoII atoms to five-connected nodes and bcpb2 ligands to three-connected nodes, respectively (Figure 5d).

Structural Description of [Mn(pip)(MeOH)(H2O)]$_n$ (8). Structural analysis indicates that complex 8 crystallizes in the monoclinic C2/c space group. The asymmetric unit of 8 is composed of one crystallographically independent MnII atom, one pip2 ligand, one methanol molecule, and one free water molecule. The coordination environment around the MnII atom is exhibited in Figure 6a. Each MnII ion is located in a slightly distorted pentagonal bipyramidal geometry, completed by one N atom belonging to one pip2 ligand and six O atoms from another two pip2 ligands and one coordination water molecule. The Mn–N/O bond lengths span in the range of 2.186(3)–2.629(1) Å.

![Figure 5](image-url)

Figure 5. (a) Coordination environment of CoII ion in 7 (Symmetry codes: A: 2–x, 2–y, z; B: 1–x, 1–y, 2–z; C: 1+x, y, z; D: x, 1+y, z). (b) The 2D 62·heb net constructed from the bcpb2 ligands connected the CoII ions. (c) The 3D frameworks constructed with the 4,4'-bibp linked the 2D 62·heb nets. (d) Schematic view of the (3,5)-connected gra network of 7 (green spheres: CoII atoms; pink spheres: bcpb2 ligands).
The ligand of H₂pip is completely deprotonated and acts as one μ₃ node to coordinate with three MnII ions, in which two carboxyl groups adopt η¹ and η₂η₃ coordination modes (Mode IV). The dihedral angles between phenyl ring and central pyridine ring in pip²- ligand is 5.161(8)°, and all non-hydrogen atoms of pip²- are nearly located in one plane. MeOH and associated H₂O molecules occupied the axial sites of the pentagonal bipyramid coordination geometry. Thus, this acts as an imetus to generate a 2D polymeric [Mn(pip)]ₙ layer rather than a 3D framework, shown in Figure 6b. The closest through-ligand Mn···Mn distances along a and b axes are 10.017 and 11.528 Å, respectively.

From the viewpoint of structural topology, the overall framework of 8 can be defined as a 3-connected 6₃-hcb topology by denoting both MnII and bcpb²- as three-connected nodes, respectively (Figure 6c).

Structural Description of [Ni(pip)(4,4'-bimbp)]·2H₂Oₙ (9). Single-crystal X-ray diffraction analysis reveals that complex 9 crystallizes in the monoclinic system, space group P2₁/c. As shown in Figure 7a, there are one crystallographically independent NiII atom, one pip²- ligand, a half of 4,4'-bimbp ligand, and one associated and two water molecules in the asymmetric unit. Each NiII center is hexacoordinated by two N atoms from one 4,4'-bimbp ligand and one pip²- ligand [Ni(1)–N(2) = 2.073(8), and Ni(1)–N(1) = 2.070(3) Å], and four O atoms from two pip²- ligands and one associated water molecule [Ni(1)–O(1) = 2.016(4), Ni(1)–O(5) = 2.087(0), Ni(1)–O(3) = 2.100(8) and Ni(1)–O(4) = 2.190(8) Å].

The ligand of H₂pip is completely deprotonated and acts as one μ₃ node to coordinate with three NiII ions, in which two carboxyl groups adopt η¹ and η¹ coordination mode (Mode V). The dihedral angle between the phenyl ring and pyridine ring in pip²- is 5.87(1). The NiII ions were connected by the pip²- ligands to form two 3D porous frameworks with the effective sizes of the channels being 11.74 × 11.74 Å² (Figure 7b). The two kinds of 3D networks are further bridged by 4,4'-bimbp ancillary ligands to result in an interpenetrated unusual framework (Figure 7c).

To better insight of the complicated 3D architecture, topology analysis was introduced. This 3D net exhibits an interesting self-catenaation phenomenon, but most important is that it can be easily decomposed to two interpenetrating 3D nets by breaking just the two Ni-N2 bonds. Each of the decomposed nets can be described as 3-coordinated 10³-srs net. The overall structure of 9 can be regard as a (3,4)-connected 3D framework with point Schläfli symbol of (6²·8)₁₀·(6·8)₁²·(4·6·10)₂ (Figure 7d).

Structural Description of [Cu(pip)(4,4'-bimbp)]·4H₂Oₙ (10). X-ray diffraction analysis reveals that complex 10 is an unprecedented (3,5)-connected 3D framework. It crystallizes in the orthorhombic with space group of Pbcn. The asymmetric unit consists of one CuII atom, one pip²-, one 4,4'-bimbp, and four free water molecules. As depicted in Figure 8a, each CuII center is coordinated by three N atoms from one pip²- and two 4,4'-bimbp [Cu(1)–N(1) = 1.988(7), Cu(1)–N(4) = 1.997(4), and Cu(1)–N(5) = 2.139(9) Å], and two carboxylic O atoms from two another bcpb²- ligands [Cu(1)–O(4) = 1.961(0), and Cu(1)–O(1) = 1.968(3) Å], displaying a distorted tetragonal pyramid coordination geometry.

The ligand of H₂pip is completely deprotonated and acts as one μ₃ node to coordinate with three CuII cations, in which two carboxyl groups adopt η¹ coordination mode (Mode VI). The dihedral angle between the phenyl ring and pyridine ring in pip²- is 22.83(1). The CuII ions were connected by the pip²- ligands to form 2D [Cu(pip)]ₙ layers, between which the unprecedented [(H₂O)ₙ(Ocarboxyl)ₙ] water clusters are observed (Figure 8b). Those 2D [Cu(pip)]ₙ layers are further bridged 4,4'-bimbp ligands to result in a 3D framework (Figure 8c). The interactions between the host frameworks and lattice water molecules are O–H···O hydrogen bonds (O6-H4W···O2 i = 2.869 Å, O7-H5W···O3 i = 2.806 Å, Symmetry codes: (i) -x+1, y+1/2, z+3/2). The characteristic spectra of carboxylate groups. The peaks of those IR spectra of complexes 1–10, the similar peaks in the range 1200-1700 cm⁻¹ indicated the (bis)imidazolate bridging linkers have little effect on the IR characteristic spectra of carboxylate groups. The peaks of those complexes in the range of 1485–1682 cm⁻¹ indicated the (bis)imidazolate bridging linkers have little effect on the IR characteristic spectra of carboxylate groups. The peaks of those complexes in the range of 1485–1682 cm⁻¹ indicated the (bis)imidazolate bridging linkers have little effect on the IR characteristic spectra of carboxylate groups.
Figure 7. (a) Coordination environment of NiII ions in 9. Symmetry codes: (A) $-x$, 1-y, 1-z; (D) x, 1-y, -0.5+z; (E) -0.5+x, 0.5-y, -0.5+z. (b) The space-filling drawing showing the two [Ni(pip)]$_n$ nets with large channels. (c) View of the 3D frameworks bridged by the 4,4'-bimbp ligands (grass green spheres: NiII atoms). (d) Schematic view of the unprecedented (3,5)-connected network of 9 (green spheres: NiII atoms; dark blue spheres: bcbp2 ligands; brown bonds: 4,4'-bimbp ligands).

Figure 8. (a) Coordination environment of CuII ions in 10. Symmetry codes: (A) 1-+x, -+y, 1-z; (B) 1-x, 0.5+y, 1.5-z; (C) -0.5+x, 0.5-y, 2-z. (b) The 2D [Cu(pip)$_n$, networks fulfilled by the unprecedented water cluster [(H$_2$O)$_8$(O$_{carboxyl}$)$_4$]. (c) View of the 3D frameworks constructed by the 4,4'-bimbp ligands bridged the [Cu(pip)$_n$, networks. (d) Schematic view of the (3,5)-connected (4·6·8)(4·6·85) network of 10 (blue spheres: CuII atoms; pink spheres: pip2 ligands; yellow bonds: 4,4'-bimbp ligands).
X-ray Power Diffraction Analyses and Thermal Analyses.

Powder X-ray diffraction (XRD) has been used to check the phase purity of the bulk samples in the solid state. For complex 1–10, the simulated patterns generated from the results of single-crystal diffraction data with the help of Mercury program,\(^1\) indicative of pure products (Figure S2, Supporting Information).

The thermogravimetric (TG) analysis was performed in N\(_2\) atmosphere on polycrystalline samples of complex 1–10 and the TG curves are shown in Figure S3. For complex 1, the first loss at about 113 °C is consistent with the removal of lattice water (obsd. 4.1%; calcld. 3.5%). The water-free network does not decompose until 230 °C, and then the collapse of the network of 1 occurs. For complexes 2 and 3, the isomorphous structure of complex 1, the networks begin to collapse at about 210 °C (for 2), and 190 °C (for 3), finally given a result of thermal decomposition. For complex 4, the weight loss below 170 °C can be attributed to the release of free and coordinated water molecules (obsd: 10.9%; calcld: 11.1%). The abrupt weight loss corresponding to the release of organic ligands starts at around 270 °C. For Complex 5, the whole structure began to collapse over 315 °C after the release of coordinated water molecules (obsd: 3.7%; calcld: 3.3%) in the temperature range of 75–115 °C. For complex 6, the weight loss from 90 to 135 °C is attributed to the release of water molecules (obsd: 7.9%; calcld: 8.3%). Above 270 °C, it starts to lose its ligands a result of thermal decomposition. For complex 7, two stages of weight occurred at 180 and 310 °C, the organic ligands are gradually lost with a result of thermal decomposition. For complex 8, the first two weight loss at 105 and 165 °C are attributed to the release of lattice water molecules (obsd: 4.9%; calcld. 5.2%) and methanol molecules (obsd: 9.6%; calcld. 9.3%). Then the collapse of the network of complex 8 occurs. For complex 9, the weight loss below 150 °C can be attributed to the release of free and coordinated water molecules (obsd. 11.2%; calcld. 10.5%). The weight loss corresponding to the release of organic ligands starts at 225 °C. The water molecules in compound complex 10 released at about 115 °C (obsd. 11.2%; calcld. 10.5%), and then it starts to gradually lose its ligands with a result of thermal decomposition.

Magnetic Properties. Temperature dependence of \(\chi_M T\) for complex 4 is displayed in Figure S4. The \(\chi_M T\) values for 4 at room temperature are 2.86 cm\(^3\) K mol\(^{-1}\), which are larger than an uncoupled (1.87 cm\(^3\) K mol\(^{-1}\)) but smaller than that for two isolated Co\(^{II}\) cations (3.75 cm\(^3\) K mol\(^{-1}\)), which can be attributed to the contribution to the susceptibility from orbital angular momentum at higher temperatures. In complex 4, the Co–Co distance through the 4,4’–bibp bridge is 17.92 Å, and the bcob\(^2\) ligand separated distances are 12.30 Å and 11.97 Å, respectively. The long Co–Co distances exclude an efficient direct exchange between the Co(II) ions. Thus, complex 4 can be regarded as a dinuclear model from the magnetic viewpoint. The susceptibility data were fit with anisotropic dimeric model of the S = 3/2 spin, and the leastsquares analysis gives \(J = -2.8\) cm\(^{-1}\). The fitting result of a negative value for \(J\) indicates that complex 4 has weak antiferromagnetic interaction between the nearest Co(II) ions. The fitting result is comparable with those reported Co(II) dinuclear coordination polymers.\(^9\)

Conclusions

In summary, a series of 2D and 3D coordination polymers (CPs) were synthesized based on two trifunctional pyridine-dicarboxylate (H\(_2\)bcob and H\(_2\)pip) and three (bis)imidazole bridging ligands (1,4–bmi, 4,4’–bibp, and 4,4’–bimbp) under hydrothermal conditions. Compounds 1–10 displayed diverse structural features from 2D layers to 3D frameworks, such as (3,4)-connected (4 \(^7\)\(^3\)-(4 \(^7\)\(^3\)-8\(^4\)) for 4 and (3,5)-connected (4 \(^6\)\(^8\)-(4 \(^6\)\(^8\)-8\(^4\)) for 10, which have never been documented to date. Structural comparison of these networks reveals that not only the length (\(l_6\)) and width (\(l_3\)) of the trifunctional pyridine-dicarboxylate but also the flexible and length of the (bis)imidazole bridging ligands have great effect on the final packing structures. With the length of the (bis)imidazole bridging ligands increasing, the longer separation of neighboring cations makes the trifunctional pyridine-dicarboxylate adopt more “open” coordination modes, and the overall structure owns a higher degree of interpenetration. Moreover, the more flexibility of (bis)imidazole bridging ligands could make the trifunctional pyridine-dicarboxylate more twisted and the final structure more complicated.

Acknowledgements

The work was supported by financial support from the Natural Science Foundation of China (Grant Nos. 21101097, 91022034, and 51171277), Natural Science Foundation of Shandong Province (ZR2010BQ023), and Qilu Normal University is acknowledged.

Notes

The authors declare no competing financial interest.

References

Syntheses, Structures, and Properties of A Series of 2D and 3D Coordination Polymers Based on Trifunctional Pyridine-dicarboxylate and Different (Bis)imidazole Bridging Ligands

Liming Fan, Xiutang Zhang, Wei Zhang, Yuanshuai Ding, Weiliu Fan, Liming Sun, Xian Zhao

Hydrothermal reactions based on two trifunctional pyridine-dicarboxylate carboxylates (H₂bcpb, H₂pip) and transitional metal cations in the presence of three (bis)imidazole bridging ligands (1,4-bmib, 4,4'-bibp, 4,4'-bimbp) afford ten 2D and 3D coordination polymers. Compounds 1-10 displayed diverse structural features from 2D layers to 3D frameworks, such as the binodal (4,4)-connected 3D framework of 7, and trinodal (4,4,5)-connected 3D framework of 9.