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Strengthening N···X halogen bonding via nitrogen 
substitution in the aromatic framework of halogen-
substituted arylpyrazinamides 

Hamid Reza Khavasi,* Mahdieh Hosseini, Alireza Azhdari Tehrani and Soheila 
Naderi 

The importance of N···X halogen bonding in a series of N-(5-halo-2-pyridinyl)pyrazine-2-carboxamides 
has been investigated by different methods. The results show that when nitrogen is substituted for carbon 
in the aryl backbone of the parent compound, it can affect the electron accepting ability of bromine and 
iodine substituents. Thus, a stronger halogen bond can be formed.  

 

 

 

Introduction 

Weak non-covalent interactions play an important role in the 
self-assembly of molecules into supramolecular architectures. 
Among the non-covalent interactions, halogen bonding (XB) 
has attracted significant attention due to its potential 
applications in designinig new solids with specific physical and 
chemical properties.1 The term halogen bonding describes any 
non-covalent interaction involving halogens as electrophilic 
species. The interaction can be schematically described as 
D···X-Y, where X is the electrophilic halogen atom (XB 
donor), D is a donor of electron density (XB acceptor), and Y is 
a carbon, nitrogen or halogen atom.2 It is well-known that the 
electron density is anisotropically distributed around the 
covalently bound halogen atom. As a result a region of the 
positive electrostatic potential (the so-called σ-hole) is formed 
on the outermost portion of the halogen’s surface along the 
direction of the R−X bond, which concomitantly produces a 
perpendicular belt of negative electrostatic potential around the 
halogen. The positive character of the σ-hole increases down 
the group as the size and polarizability of the halogen increases,  
with a corresponding tendency for a halogen bond to become 
stronger.3 

Many attempts have been made to enhance the electrophilicity of 
halogen atoms by substituting electron withdrawing groups, mostly 
fluorine4 atoms and rarely a nitro group,5 in the vicinity of the 
halogens. The attachment of halogen atom to a charged aromatic 
ring such as pyridinium6a,b and pyrimidinium moiety,6c also has been 
proposed as an alternative approach to polarize the halogen atom, 
thereby making it a better halogen bond donor. As part of our 
research interest in the study of weak intermolecular interactions7 
and also halogen bonded systems,8 we became interested in 
exploring how the substituting of nitrogen for carbon in the aryl 
backbone of halogen-substituted phenylpyrazinamides could change 
the strength of halogen bonding and therefore affect the 
supramolecular structure. Thus in the 
  

N

N

O

N
H

N

X

N

N

O

N
H

XX X

N

NN (a)                                                 (b)
 

Scheme 1. N-(4-halophenyl)pyrazine-2-carboxamide, X-phen structures (a) 
and N-(5-halo-2-pyridinyl)pyrazine-2-carboxamide, X–py structures (b) the 
halogen bond donor and halogen bond acceptors are shown in purple and 
blue circles, respectively. 

following, we present the crystal structures of N-(5-halo-2-
pyridinyl)pyrazine-2- carboxamide, carrying different halogen atoms 
in the pyridine para-position to amide group. Compounds 
synthesized here can be schematically shown as X–py, where X 
shows the halogen atom, Scheme 1.   
 
Results and Discussion 
Synthesis. These compounds were prepared by modification of 
a method described previously.8b Crystals suitable for X-ray 
analysis were obtained by slow evaporation of methanolic 
solution at room temperature.  For comparing the halogen 
bonding geometrical parameters of   X-phen and X–py, crystal 
structures of X-phen have been re-determined, at 298K, here, 
Table 1, Figure S1.8b 

 
Structural analysis of X-py compounds. X-ray 
crystallographic analyses reveal that F-py, Br-py and I-py 
crystallize in monoclinic P21/n space group, while Cl-py 
crystallizes in the centrosymmetric triclinic space group Pī. 
ORTEP diagrams of compounds X–py drawn with 30% 
ellipsoid probability have been shown in Figure 1. The 
asymmetric unit of F-py consists of one crystallographically 
independent molecule, Zʹ=1.  In F-py, discrete molecules are 
held together by head-to-tail Cpyz-H···Npy hydrogen bonds for 
the generation of a dimeric unit, Figure 2(a), Table 2. Adjacent 
dimeric units are further linked to each other by Cpy-F···H-Cpyz 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1. The ORTEP diagram of F-py, (a), Cl-py, (b), Br-py, (c) and I-py, 
(d), compounds. Ellipsoids are drawn at 30% probability level.  

 

 
(a) 

                                                           
(b) 

Figure 2. (a) A side view representation of N-(5-fluoro-2-yl)pyrazine-2-
carboxamide, F-py, in bc-plane, showing the association of the adjacent 
molecules through  head-to-tail Cpyz-H···Npy hydrogen bonds for the 
generation of a  dimeric unit. Adjacent dimeric units are further linked to 
each other by   Cpy-F···Cpyz and Cpy-H···O=C intermolecular interactions in 
bc-plane. (b) A side view representation of F-py, showing how extensive π-π 
stacking interactions, in a-direction, occur when the corresponding molecules 
are in parallel orientation with respect to one another to form an infinite one-
dimensional tape. 

and Cpy-H···O=C intermolecular interactions in bc-plane. As 
Figure 2(b) shows, extensive π-π stacking interactions, in a-
direction, also occur when the corresponding molecules are in 
parallel orientation with respect to one another to form an 
infinite one-dimensional tape, Table 3. Thus in F-py, the 
overall supramolecular structure is constructed by cooperation 
of π···π stacking, hydrogen bonds and Cpyz-F…H-Cpyz 

intermolecular interactions.  
In Cl-py crystal packing, the most noticeable intermolecular 
features are C=O···H-Cpyz, Cpyz-H···Npy and Cpy-H···Cl 
hydrogen bonds, Table 2, that are cooperated with π-π stacking 
interactions between pyridine and pyrazine rings in a-direction, 
Figure 3, Table 3. Unlike in Cl-phen, the chlorine atom in Cl-
py is not involved in any contacts that can be categorized as 
halogen bonds.  The crystal structure of Br-py in the bc-plane 
is built up mainly by two kinds of N···X halogen bonds having 
different nitrogen atoms as halogen bond acceptors, (C9-

Br1···N6 and C19-Br2…N1) and N-H···Br and C-H···O=C 
hydrogen bonds.  A view of the crystal structure along the 
crystallographic a-axis reveals that πpy···πpyz stacking 
interactions plays an important role in stabilizing the crystal 
structure, Figure 4, Tables 2 and 3. Based on the binding 
energies obtained from DFT calculations with correction for 
basis set superposition error (BSSE), of two N···Br halogen 
bonds, the stronger halogen bond is formed when the pyrazine 
nitrogen atom anti to the carbonyl is a halogen bond acceptor, 
for which the C-Br···N angle is farther from 180° but the C-
Br···N distance is shorter, Table 4. In crystal packing of I-py, 
dimeric units are formed alternatively by head-to-tail Cpyz–
H···Npy and C=O···H-Cpy hydrogen bonds, in a-direction. 
Adjacent dimeric units are further linked to each other by head-
to-tail N···X halogen bonds to generate a wave-like chain, 
Figure 5(a). Extensive πpy···πpyz stacking interactions also 
stabilize the molecular packing in c-direction, Fig 5(b), Table 3.  
 
Strengthening N···X halogen bonding via nitrogen 
substitution in the aromatic framework. A comparison 
between significant intermolecular interactions controlling the 
packing of X-phen and X-py is illustrated in Scheme 2. A way 
to understand the strength of XB is considering and analyzing 
the crystal packing of isomolecular structures. This approach 
enables systematic investigation of crystal packing changes that 
arise as a consequence of tuning the relative strength of XB to 
the other interactions. Here, we report the crystallographic 
study of an isostructural X-py compounds, to provide new 
insights into the understanding of the effect of substituting the 
nitrogen for the CH group in the  
 

 

Figure 3.  A side view representation of N-(5-chloro-2-yl)pyrazine-2-
carboxamide, Cl-py,  in bc-plane, showing the association of the adjacent 
molecules through  C=O···H-Cpyz , Cpyz-H···Npy and Cpy-H···Cl hydrogen 
bonds that are cooperated with π-π stacking interactions between pyridine 
and pyrazine rings in a-direction. 
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Figure 4. (a) A side view representation of N-(5-bromo-2-
pyridinyl)pyrazine-2-carboxamide, Br-py, in bc-plane, showing the 
formation of a 2D sheet through N···X halogen bonds, and N-H···Br and C-
H···O=C  hydrogen bonds. (b) A view of the Br-py crystal structure along 
the crystallographic a-axis, the πpy···πpyz stacking interactions in an 
antiparallel fashion. Halogen bonds are highlighted in red. 

 

(a) 

 
(b) 

Figure 5. (a) A side view representation of N-(5-iodo-2-pyridinyl)pyrazine-
2-carboxamide, I-py, in ab-plane, showing the formation of wave-like 1D 
chains through  head-to-tail N···I halogen bonds. (b) Generation of a dimeric 
unit in I-py,  by  head-to-tail Cpyz–H···Npy and C=O···H-Cpy hydrogen bonds, 
in a-direction. Extensive πpy⋯πpyz stacking interactions also stabilize the 
molecular packing in c-direction. Head-to-tail N···I halogen bonds are 
highlighted in red. 
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Table 5.  Dihedral angles between plane A, plane B and amide plane in X-
phen and X-py compounds (plane A = pyrazine ring, plane B = phenyl or 
pyridyl ring). 

 

at ambient temperature. The mixture was added to 200 ml distilled 
water. Precipitation of a white solid resulted with a yield of 60%, 
which was filtered off and dried under reduced pressure. Upon slow 
evaporation of the filtrate at room temperature, suitable crystals of 
F-py for X-ray analysis were obtained after 6 days (melting point = 
161 °C). Anal. calcd for C10H7FN4O: C, 55.05; H, 3.23; N, 25.68. 
Found: C, 54.85; H, 3.14; N, 25.48. FT-IR (KBr pellet, cm-1): 3339, 
1944,1844,  1696, 1577, 1543, 1398, 1229, 1102, 1014, 841, 769, 
674, 534, 423. 1H NMR (CDCl3, δ from TMS): 10.21 (1H-pyrazine), 
9.50 (amidic H), 8.83 (1H-pyrazine), 8.62 (1H-pyrazine), 8.42-8.46 
(1H-pyridine), 8.22 (1H-pyridine) and 7.49-7.55 (1H-pyridine). 

Synthesis of N-(5-chloro-2-yl)pyrazine-2-carboxamide, Cl-py. 
The procedure was similar to the synthesis of F-py except that 2-
Amino-5-chloropyridine was used instead of 2-Amino-5-
fluoropyridine. Precipitation of a white solid resulted with a yield of 
70%, which was filtered off and dried under reduced pressure. Upon 
slow evaporation of the filtrate at room temperature, suitable crystals 
of Cl-py for X-ray analysis were obtained after 7 days (melting point 
= 165 °C). Anal. calcd for C10H7ClN4O: C, 51.19; H, 3.01; N, 23.88. 
Found: C, 51.15; H, 2.95; N, 23.76. FT-IR (KBr pellet, cm-1): 3352, 
1957, 1698, 1572, 1523, 1462, 1380, 1301, 1100, 1016, 842, 
736,680, 438, 302. 1H NMR (CDCl3, δ from TMS): 10.23 (1H-
pyrazine), 9.51 (amidic H), 8.84 (1H-pyrazine), 8.63 (1H-pyrazine), 
840-8.43 (1H-pyridine), 8.33 (1H-pyridine), 7.74-7.78 (1H-
pyridine). 

Synthesis of N-(5-bromo-2-yl)pyrazine-2-carboxamide, Br-py. 
The procedure was similar to the synthesis of F-py except that 2-
Amino-5-bromopyridine was used instead of 2-Amino-5-
fluoropyridine. Precipitation of a white solid resulted with a yield of  
55%, which was filtered off and dried under reduced pressure. Upon 
slow evaporation of the filtrate at room temperature, suitable crystals 
of Br-py for X-ray analysis were obtained after 8 days (melting 
point = 166 °C). Anal. calcd for C10H7BrN4O: C, 43.03; H, 2.53; N, 
20.07. Found: C, 42.97; H, 2.45; N, 19.72. FT-IR (KBr pellet, cm-1): 
3339,1900,1823, 1700, 1570, 1525, 1356, 1283, 1087,1035, 829, 
776, 663, 502, 438. 1H NMR (CDCl3, δ from TMS): 10.22 (1H-
pyrazine), 9.51 (amidic H), 8.84 (1H-pyrazine), 8.63 (1H-pyrazine), 
8.50-8.53 (1H-pyridine), 8.35-8.42 (1H-pyridine) and 7.87-7.9 (1H-
pyridine). 

Synthesis of N-(5-iodo-2-yl)pyrazine-2-carboxamide, I-py. The 
procedure was similar to the synthesis of F-py except that 2-Amino-
5-iodopyridine was used instead of 2-Amino-5-fluoropyridine. 
Precipitation of a white solid resulted with a yield of 70%, which 
was filtered off and dried under reduced pressure. Upon slow 
evaporation of the filtrate at room temperature, suitable crystals of I-
py for X-ray analysis were obtained after 8 days  (melting point = 
170 °C). Anal. calcd for C10H7IN4O: C, 36.83; H, 2.16; N, 17.18. 
Found: C, 36.80; H, 2.14; N, 17.13. FT-IR (KBr pellet, cm-1): 3352, 
1690, 1563, 1530, 1356, 1290, 989, 842, 660, 522, 441, 275. 1H 
NMR (CDCl3, δ from TMS): 10.18 (1H-pyrazine), 9.49 (amidic H), 
8.83 (1H-pyrazine), 8.62 (1H-pyrazine), 8.55 (1H-pyridine), 8.24-
8.27 (1H-pyridine) and 8.02-8.05 (1H-pyridine). 

 Single crystal diffraction studies. For all compounds apart from F-
phen the intensity data data were collected on a STOE IPDS-II or 
STOE-IPDS-2T diffractometers with graphite monochromated Mo-
Kα radiation, 0.71073 Å. Data were collected at a temperature of 
298(2) K in an a series of ω scans in 1° oscillations and integrated 
using the Stoe X-AREA11 software package. A numerical absorption 
correction was applied using X-RED12 and X-SHAPE13 software’s. 
The X-ray data for compound F-phen was collected using a Bruker 
SMART APEX-II CCD diffractometer equipped with fine focus 
1.75 kW sealed tube Mo-Ka radiation, 0.71073 (Å). The total 
number of images was based on the results from the program 
COSMO.14 Cell parameters were retrieved using the APEX II 
software15 and refined using SAINT on all observed reflections. Data 
reduction was performed using the SAINT software,16 which 
corrects for Lorentz and Polarizing effects. Scaling and absorption 
corrections were applied using the SADABS17 multi-scan technique, 
supplied by George Sheldrick. All the structures were solved by 
direct methods using SHELXS-97 and refined with full-matrix least-
squares on F2 using the SHELXL-97 program package18 All non-
hydrogen atoms were refined anisotropically. Hydrogen atoms were 
added at ideal positions and constrained to ride on their parent 
atoms, with Uiso(H) = 1.2Ueq. All the refinements were performed 
using the X-STEP32 crystallographic software package.19 Structural 
illustrations have been drawn with MERCURY20 windows. ORTEP 
diagrams of these complexes are shown in Figures 1 and S1. 
Crystallographic details including crystal data and structure 
refinement are listed in Table S1. 

 

Computational Details. DFT calculations were performed using the 
ORCA quantum chemistry suite.21 The local spin density 
approximation (LSD) exchange correlation potential was used with 
the local density approximation of the correlation energy.22 Gradient-
corrected geometry optimizations23 were performed by using the 
generalized gradient approximation (Perdew–Wang non-local 
exchange and correlation corrections–PW91).24 The selected two 
fragments were cut out directly from the CIF data without 
optimization. Large atom basis sets TZP are used to ascribe all the 
atoms here. A frozen core approximation was used to treat the core 
electrons: (1s) for C and N, (4p) for I, (3p) for Br, (2p) for Cl, (1s) 
for O and F. Scalar relativistic effects were taken into account by 
using the zeroth-order regular approximation (ZORA).25 

 

Computational details for generating molecular Electrostatic 
potential surface. Electrostatic potential surfaces were generated for 
F-phen, F-py, Cl-phen, Cl-py, Br-phen, Br-py, I-phen and I-py 
from DFT calculations performed at the B3LYP/6-311G (d,p)  basis 
set for all atoms except iodine, and the LANL2DZdp-ECP (with 
polarization functions of d symmetry and diffuse functions of p 
symmetry) basis set for iodine. Potential surfaces were mapped by 

Compound  amide plane 
and palne A (°) 

 amide plane 
and palne B (°) 

 plane A and plane 
A (°) 

F-py 3.45 2.13 1.24 
Cl-py 2.62, 6.53 3.97, 2.93 3.26, 3.62 
Br-py 5.60, 2.31 3.35, 1.70 3.52, 3.95 
I-py 8.15 12.44 4.34 
F-phen 4.17, 5.11 12.030, 14.16 7.89, 9.05 
Cl-phen 0.52 11.38 11.34 
Br-phen 0.96 12.00 11.05 
I-phen 3.08 11.00 8.15 
 
 
 
Definition of 
geometrical 
parameters 
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conventional molecular electron density (0.001 electron/ Bohr3) and 
color-coding.  
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