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Applications of biocatalytic arene ipso,ortho cis-
dihydroxylation in synthesis 

Simon E. Lewis*a  

The dearomatising dihydroxylation of aromatic molecules mediated by arene dioxygenase 
enzymes can provide cyclohexadiene-diols that are versatile starting materials for organic 
synthesis. Whereas oxidation of a substituted arene to give its ortho,meta-dihydrodiol has 
been demonstrated for numerous substrates and dioxygenases, formation of ipso,ortho-
dihydrodiols has historically been underutilised in comparison. This feature article presents 
a chronological account of reported uses of such diols. 
 

Introduction 

The first example of the dearomatising dihydroxylation of an 
aromatic ring by a microorganism was reported by Gibson in 
1968.1 Some two decades later, it was recognised that the 
cyclohexadiene diols formed in this manner were useful starting 
materials for synthesis by virtue of their densely-packed, 
differentiated functionality. Large-scale production and use of 
these arene-derived diols has become established methodology 
and many are now commercially available; the field at large has 
been the subject of several excellent reviews.2 

 If the aromatic substrate is substituted (i.e. all cases other 
than benzene), multiple isomeric diol products can be 
envisaged. In fact, however, such bio-oxidations are highly 
selective and a widely-applicable predictive model has been 
developed by Boyd and co-workers.3 As shown in Scheme 1, 
the diol 2 derived from oxidation at the ortho- and meta-
positions of substrate 1 is the sole product. Furthermore, in 
most cases, 2 is formed as a single enantiomer.4  

 
Scheme 1. Boyd’s model for regio‐ and enantioselectivity of dihydroxylation. 

The selectivity shown above is conserved across a large number 
of substrates and dioxygenases, for example toluene 
dioxygenase (TDO), naphthalene dioxygenase (NDO) and 
biphenyl dioxygenase (BPDO). However, exceptions to this 
predictive model are known. Organisms expressing benzoate 
dioxygenase (BZDO) enzymes dihydroxylate benzoic acids in a 
process that proceeds not only with different regioselectivity 
but also the opposite absolute sense of enantioinduction to that 
shown in Scheme 1. In these cases, the diol 4 derived from 
oxidation at the ipso- and ortho-positions of substrate 3 is 
isolated. 

 
Scheme 2. Alternative selectivity of benzoate dioxygenase. 

Diols of type 4 are potentially highly versatile chiral pool 
starting materials and many transformations of these building 
blocks can be proposed (Figure 1). Although diols of type 4 
have been known since 1971, reports on their production and 
use have been very scarce until recently. There has been an 
upsurge of interest in the last three to four years and it is 
therefore appropriate that this rapidly expanding field be 
reviewed. Many (but not all) of the reactions depicted in Figure 
1 have in fact been reported and the purpose of the current 
review is to present a comprehensive treatment of the use of 
diols of type 4 in synthesis to date. 

 
Figure 1. Possible transformations of diols of type 4. 

Initial isolation and substrate scope 

The parent ipso,ortho benzoate dihydrodiol (4, R = H) was first 
reported in 1971 by Reiner and Hegeman.5 The prokaryote 
Alcaligenes eutrophus (now known as Ralstonia eutropha) was 
known to be able to metabolise benzoate via catechol and the β-
ketoadipate pathway. Benzoate dihydrodiol 4 is the first 
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intermediate in this pathway,6 but in the wild-type organism it 
is only a fleeting metabolic intermediate and never accumulates 
to a synthetically useful concentration. The B9 mutant strain of 
R. eutropha expresses BZDO able to mediate the formation of 
4, but it possesses a lesion which renders the second enzyme in 
the pathway (DHB dehydrogenase) inactive.7 Accordingly, 4 
was prepared by fermentation of benzoate with the B9 strain. 
Isotopic labelling studies demonstrated that both hydroxyl 
oxygens in 4 are incorporated from the same oxygen molecule 
(Scheme 3). 
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Scheme 3.  The  β‐ketoadipate  pathway  (also  known  as  the  ortho pathway)  for 

metabolism of benzoate. 

Reiner and Hegeman characterised 4 spectroscopically and 
inferred the cis relationship of the vicinal diol by means of 
chemical correlation, although the absolute configuration 
remained undetermined. They also deduced the positions of 
hydroxylation to be ipso and ortho by considering the products 
formed when 4 undergoes decomposition by rearomatisation at 
45 °C or above, i.e. phenol and salicylic acid. 

Early uses in synthesis – cycloadditions and other 
diene functionalisations. 

In 1986, Ribbons et al. demonstrated that Pseudomonas putida 
U103 was capable of accumulating cis diol 4 (R = H) in the 
same fashion as R. eutropha B9.8 It was not until 1995, 
however, that cis diol 4 produced in this way was exploited for 
synthetic ends, by Widdowson and co-workers in collaboration 
with Ribbons.9 Comparison of [α]D values showed that the 
material produced by the two organisms was the same 
enantiomer, but the absolute configuration remained 
undetermined. Widdowson and Ribbons addressed this through 
the synthesis of a derivative 14 containing a heavy atom and its 
crystallographic analysis, establishing the (1S,2R) configuration 
for the first time (Figure 3). 

   
Figure 3. Confirmation of absolute stereochemistry of a derivative of 4. 

Widdowson’s report further described a variety of [4+2] 
cycloadditions employing derivatives of 4 as the dienes. For the 
more common arene ortho,meta diols of type 2, many such 
reactions had already been reported and a trend in the 
regioselectivity had been discerned: substrates with an 
unprotected diol undergo cycloaddition at the diene face syn to 
the diol, whereas when the diol is protected as a ketal, 
cycloaddition occurs at the anti face. In such dienes of type 2, 
the substituent R is in the plane of the diene and would not be 
expected to influence the regioselectivity of cycloaddition. In 
contrast, dienes derived from 4 possess a substituent at the C1 
quaternary centre which is oriented over the diene face anti to 
the diol. The effect of this on the regioselectivity of various 
cycloadditions was determined (Scheme 4). 

 
Scheme 4. Cycloadditions reported by Widdowson et al. 

With acetonide protected substrates 15, singlet oxygen 
cycloaddition was found to proceed at the face anti to the 
acetonide, giving 16 as the sole product, even when the 
quaternary centre bears a bulky –CH2OTBDPS group. 
Similarly, treatment of acetonide 17 with N-phenylurazole 18 
gave adduct 19 only. In contrast, free diol 20 gave adduct 21 (in 
which dienophile and diol are syn) as the major product. 
Treatment of acetonide 17 with a non-symmetrical 
heterodienophile, nitrosobenzene, gave addition exclusively 
anti to the acetonide, but a mixture of regioisomers 23 and 24 
was obtained; the adduct 23 in which the N-phenyl substituent 
is distal to the ester was the major product. Reaction of free diol 
20 with nitrosobenzene gave all four possible regioisomers (not 
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shown). Interestingly, when an acetonide with a reduced side 
chain, 25, was used in place of 17 in the nitrosobenzene 
cycloaddition, regioselectivity was reversed, with the major 
product 27 being the one in which the N-phenyl substituent and 
the ester are proximal. 
 In 2001, Myers and co-workers reported the synthesis of a 
library of derivatives of 4, demonstrating that each position on 
the ring may be functionalised selectively (Figure 4).10 While 
selective protection of the secondary alcohol in 4 is 
straightforward (e.g. 28 and 29) protection of the tertiary 
alcohol necessitated an indirect route via 30, which upon 
desilylation gave 31. This in turn underwent oxidation to 
cyclohexadienone 32 (a transformation which is low-yielding 
for the unprotected diol 20). Selective epoxidations to 33 and 
34 were demonstrated, along with ring openings to 
diastereomeric trans diols 35 and 36; cis diols were accessible 
by OsO4 catalysed dihydroxylation, e.g. 37. Intramolecular 
epoxide opening was shown to afford lactone 38 and 
acetalisation of the diol in 33 (a highly acid-sensitive substrate) 
was achieved under neutral conditions to give 39 (R/S 2:3). 
Bromolactonisation of 20 gave β-lactone 40, which underwent 
attack by methoxide to give 41. Attempts to access enones such 
as 42 through rearrangement of C3,C4 epoxides such as 33 
were unsuccessful. Instead, an unexpected vinylogous Payne 
rearrangement was discovered: methylation of 33 followed by 
treatment with tert-butyldimethylsilyl triflate led to formation 
of trisubstituted epoxide 43 in good yield. 

 
Figure 4. Chirons derived from 4 by Myers et al. 

The Myers group also reported a modified protocol for the 
fermentation of benzoate to produce 4 which was amenable to 
large-scale application. By this method, 270g of 4 was 
produced in a single batch. The authors speculated that the 
novelty of the building blocks shown above in conjunction with 
large-scale access to the starting material would enhance 
interest in the use of 4. Indeed, in 2004, Parker and co-workers 
at Johnson & Johnson reported using 37 to access carbocyclic 
analogues of the anticonvulsant agent topiramate 46, as well as 

carba-β-L-fructopyranose 47 and a C-substituted conduritol 48 
(Scheme 5.)11 

 
Scheme 5. Johnson & Johnson synthesis of topriamate analogues.  

Also in 2004, Mihovilovic and co-workers reported on 
intramolecular cycloadditions of derivatives of 4 bearing a 
tethered dienophile (Scheme 6).12 Cyclisation of 49 to 50 was 
high yielding, but introduction of an sp2 centre in the tether 
retarded reaction: 51 gave 52 only under forcing conditions of 
microwave acceleration and 53 did not undergo intramolecular 
cyclisation at all. Interestingly, disubstituted dienophile 54 gave 
a mixture of diastereomeric products 55 and 56. Finally, in 
contrast to ester 53, amide 57 was able to cyclise to 58, albeit 
only under forcing conditions and in low yield; the structure of 
the cycloadduct 58 was secured by x-ray crystallography. This 
work demonstrated the possibility of rapidly accessing complex 
polycyclic architectures from 4. 

 
Scheme 6. IMDA reactions of derivatives of 4. 

First total synthesis 

In 2005, Myers and co-workers reported the first use of 4 in 
complex natural product total synthesis.13 From their previously 
reported building block 43, tricyclic diketone 59 was accessible 
in a further 7 steps (10% overall yield from benzoate, Scheme 
7). Diketone 59 serves as a common precursor to the 
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tetracycline AB-ring system and may be coupled with D-ring 
precursors such as 60 by a Michael–Dieckmann cascade 
cyclisation that forms the C-ring. Thus, after deprotection, the 
natural product (–)-6-deoxytetracycline 61 is accessible in 14 
steps and 7.0% overall yield from benzoate. Several points 
about the synthesis are noteworthy. The yield represents an 
improvement of orders of magnitude over the yields for all 
previously reported total syntheses of tetracyclines. Thus, for 
the first time, novel tetracycline analogues became accessible in 
useful quantities; union of 62 with 59 to access 63 is a 
representative example. Secondly, previous total syntheses of 
tetracyclines had been bedevilled by the difficulty of installing 
the C12a tertiary alcohol at a late stage.14c The Myers approach 
is conceptually distinct in that the C12a hydroxyl group is 
installed in the very first step, i.e. it is the hydroxyl group 
deriving from the microbial ipso hydroxylation. Finally, apart 
from the C12a stereocentre, all other stereocentres in the final 
tetracyclines are set under substrate control. Thus, all the 
stereochemical information in the final products may be 
considered ultimately to be of enzymatic origin. 

 
Scheme 7. Myers’ synthesis of tetracycline antibiotics. 

In the years following the Myers group’s initial disclosure, the 
methodology has been extended and improved to allow for the 
preparation of a greater diversity of novel tetracycline 
analogues.14 This has culminated in the development of 
eravacycline 65 (accessed from 59 and 64) by Tetraphase 
pharmaceuticals.15 Eravacycline is indicated for treatment of 
multidrug-resistant infections and is currently in phase III trials. 
 Also in 2005, Banwell and co-workers reported the 
production of 68, a substituted variant of 4 (R = 3-ethyl).16 This 
was produced not from meta-ethylbenzoic acid 67, but instead 
from meta-ethyltoluene 66, using Pseudomonas putida 
BGXM1. This organism expresses enzymes capable of 
oxidising toluene to benzoic acid, as well as toluate 
dioxygenase which catalyses the production of 68. Thus, 67 is 
metabolically generated in situ and 68 accumulates since the 
organism does not express a functioning toluate diol 

dehydrogenase (c.f. Scheme 3). Simple transformations of 68 
were demonstrated (Scheme 8), e.g. formation of acetonide 69 
and β-lactone 70 (c.f. formation of 40, Figure 4) and the 
absolute configuration of 68 was confirmed through formation 
of a heavy atom derivative, analogous with 14. The relevance 
of 68 to total synthesis lies in its potential utility as a building 
block for the synthesis of vinblastine 71.  

 
Scheme 8. An alkyl‐substituted benzoate ipso,ortho diol. 

Production with a recombinant organism 

In 2008, Chen and co-workers reported the production of a 
recombinant strain of Pseudomonas putida, KTSY01 
(pSYM01) expressing benzoate dioxygenase and able to effect 
formation of 4 on a 59g scale.17 This organism is engineered to 
overexpress the benABC genes from Pseudomonas putida 
KT2442 that encode benzoate dioxygenase, but lacks the benD 
gene that encodes the DHB dehydrogenase responsible for the 
further metabolism of 4 (c.f. Scheme 3). A potential advantage 
of using this organism for production of 4 is that it is not 
susceptible to the unwanted formation of revertants. In contrast, 
use of organisms such as Ralstonia eutropha B9 where 
inactivation of DHB dehydrogenase was achieved through 
random mutagenesis entails a risk of spontaneous reactivation, 
and hence consumption of 4 in the fermentation medium. 

Organometallic chemistry 

The formation of tricarbonyliron(0) complexes of arene 
ortho,meta diols of type 2 was known methodology18 and in 
2010 we extended this to an arene ipso,ortho diol for the first 
time (Scheme 9). Formation of these [η4] complexes from 
dienes of type 2 was known to be selective for the isomers in 
which the metal is endo with respect to the diol, i.e. 72 and 74. 
This had been rationalised in terms of an incoming 16 valence-
electron Fe(CO)4 fragment coordinating to the Lewis basic 
oxygen functionality before migrating to the diene. By this 
argument, it was not clear at the outset which face of diene 20 
would be favoured in the complexation, since due to the 
quaternary centre 20 presents Lewis basic functionality on both 
sides of the ring. In the event, the isomer 75 with the metal 
endo to the diol was formed exclusively and the structure was 
secured by crystallography. The impetus for introducing the 
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Scheme 13. Synthesis of “Inosaminoacids” 

Another example in 2011 of the synthesis of a highly 
oxygenated material from 4 was the total synthesis of (–)-
idesolide 112 reported by Hudlický et al.29 This is another 
dimeric natural product, formed from a ketone, but in this 
instance the diene motif was reduced beforehand (Scheme 14). 
Reduction of one of the two olefins in 20 was effected with 
potassium azodicarboxylate, giving a 2:1 ratio favouring the 
desired isomer 109. This in turn was oxidised to ketone 111, 
which underwent base-mediated dimerisation to (–)-idesolide 
112. Another noteworthy transformation reported by the group 
was the direct isomerisation of 20 to enone 113 using Grubbs’ 
1st generation Ru metathesis catalyst. 

 
Scheme 14. Total synthesis of (–)‐idesolide by Hudlický and co‐workers 

In 2012, we returned to the polyoxygenated cyclohexene family 
of natural products, of which there are numerous monomeric 
members in both enantiomeric series in addition to the dimer 
grandifloracin 94. The key transformation to access both the 
zeylenol and zeylenone families of natural product was singlet 
oxygen cycloaddition, which transformed diene 114 into 
endoperoxide 115. From this key intermediate many members 
of these families were accessed.30 A representative example is 
shown in Scheme 15, whereby reductive O–O bond cleavage 
with thiourea gave diol 116. Straightforward benzoylation and 
global deprotection gave uvaribonol A 118 as well as the parent 
(+)-zeylenol 119 by benzoyl migration. 

 
Scheme 15. Total synthesis of zeylenols 

Whereas access to the zeylenols required a reductive 
transformation of endoperoxide 115, access to the more highly 
oxygenated zeylenones ought to be possible from 115 by a 
redox-neutral process. The γ-hydroxy-α,β-unsaturated ketone 
motif in the zeylenones could conceivably be accessed from the 
endoperoxide by a Kornblum–DeLaMare rearrangement.31 A 
variety of endoperoxides of general structure 16 underwent 
regioselective Kornblum–DeLaMare fragmentation with 
Hünig’s base to give the corresponding γ-hydroxy enones 120 

(Scheme 16a). This regioselectivity is rationalised in terms of 
the base abstracting the less sterically hindered of the 
bridgehead protons in endoperoxide 16. Unfortunately the 
desired zeylenone skeleton has the opposite regiochemistry, 
exemplified by 121 (Scheme 16b). Such a γ-hydroxy enone 
isomer did eventually prove to be accessible by means of an 
intramolecular deprotonation: treatment of endoperoxide 115 
with TBAF gave γ-hydroxy enone 123 with the correct 
zeylenone skeleton (Scheme 16c). We propose that the alkoxide 
122 formed in situ by desilylation is able to effect the desired 
deprotonation leading to 123. 

O
O

O
O

R

Me
Me

O
O

R

Me
Me

O

OH

H
iPr2NEt

O
O

O
O

R

Me
Me

iPr2NEt

H

observed

desired

O
O

R

Me
Me

HO

O

O
O

O
O

Me
Me

H

directed

O
O

Me
Me

HO

O

O OH
O

O

O
O

Me
Me

H

OTBDMS

+ Bu4N F

(a)

(b)

(c)

16 120

16 121

115 122 123  
Scheme 16. Directed Kornblum‐DeLaMare fragmentation of a derivative of 4. 

In 2012 we also reported further organoiron chemistry which 
exploits the oxygenation in complex 75 to access a range of 
cyclohexadienes bearing diverse substituents and with different 
substitution patterns.32 A tricarbonyliron [η4] diene complex 
bearing a leaving group adjacent to the diene is able to extrude 
this leaving group to form the corresponding [η5]+ complex (c.f. 
Scheme 10). In the case of 75, either of the two hydroxyl 
functionalities is capable of acting as the leaving group upon 
protonation with a Brønsted acid comprising a non-nucleophilic 
anion (Scheme 17a). This reaction was found to work best in 
acetic anhydride as solvent and proceeds with comcomitant 
hydroxyl acetylation. Thus, if the tertiary hydroxyl in 75 is the 
leaving group, [η5]+ complex 124 may be formed, whereas if 
the secondary hydroxyl in 75 is the leaving group, [η5]+ 
complex 125 would form instead. Realtime NMR monitoring of 
this reaction revealed that in fact both cations are formed, with 
125 being the major product (≈3:1 ratio). Once formed, both of 
these cations are susceptible to nucleophilic attack at their diene 
termini. For [η5]+ complex 124, attack ω- or ipso- to the ester 
would afford regioisomeric products 126 or 127 respectively. 
As discussed above, regioselectivity in such nucleophilic 
additions is precedented21 and only products of type 126 are 
formed (Scheme 17b). For [η5]+ complex 125, loss of the 
secondary hydroxyl in fact introduces a plane of symmetry, i.e. 
125 is achiral. Thus, the two diene termini are enantiotopic and 
addition of any achiral nucleophile to 124 will give a product 
(±)-128 as a racemic mixture. 
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removal by methanolysis gives the free hemiacetal whose open-
chain form is able to undergo cyclic imine formation to give 
157. After hydrogenolysis and removal of the ketal, the final 
product is isolated as its hydrochloride salt, 158. 
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Scheme 19. Hudlický’s synthesis of a polyhydroxylated pyrrolidine from 4. 

Future directions 

The chemistry reviewed above underscores the broad range of 
applications in synthesis for arene ipso,ortho diols such as 4. 
Nevertheless, there is undoubtedly great scope for further novel 
applications of 4 – for example, not all the transformations 
outlined in Figure 1 have yet been realised. In addition to 
transformations of the parent unsubstituted 4, the metabolism of 
substituted benzoates to their ipso,ortho diols and their 
subsequent synthetic use is an obvious area ripe for 
exploitation, given the comparative dearth of examples (see 
Schemes 8 and 11). Reiner & Hegeman’s initial report5 on 
Ralstonia eutropha B9 in fact also examined the susceptibility 
of substituted benzoates to dihydroxylation and in the ensuing 
decade, Knackmuss and co-workers studied this in more 
detail.38 It was determined that the meta- position was the most 
tolerant of substitution, followed by the para- position. The 
ortho- position was the least tolerant of substitution, with only 
2-fluorobenzoate being turned over (Scheme 20). The first 
study to quantify product formation from meta-substituted 
benzoates stated that 5-substituted diols were formed more 
rapidly than the corresponding 3-substituted regioisomers.38a 
However, later studies determined this statement to be incorrect 
for meta-methyl38c and meta-bromo23 benzoates, with the 3-
substitited products in fact predominating. (Note that a large 
number of aromatic substrates which are not substrates for 
BZDO from Ralstonia eutropha B9 have been identified39). 

 
Scheme 20. Substituted benzoates as substrates (substrates in parentheses give 

especially slow turnover). 

Formation of ipso,ortho diols from multiply fluorinated 
benzoates has been described using Pseudomonas putida 
JT103.40 Furthermore, 2-trifluoromethylbenzoate is metabolised 
to its ipso,ortho diol by Pseudomonas aeruginosa 14241 and 
metabolism of both 1-naphthoate and 2-naphthoate to their 
ipso,ortho diols is also known.42 Dihydroxylation of 
terephthalic acid and isolation of the ipso,ortho diol has been 
disclosed in a patent.43 Save for simple derivatisations to aid in 
their structural elucidation, or their deliberate dehydrative 
rearomatisation, no synthetic uses of these diols (Figure 7) have 
been reported. When the possibility of expanding the substrate 
scope of BZDO and other dioxygenases by directed evolution is 
considered, it is clear that there is great potential for arene 
ipso,ortho diols to continue to provide rapid access to uncharted 
chemical space. 

 
Figure 7. Arene ipso,ortho diols that have not been exploited synthetically. 
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