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Flow profoundly influences the crystallisation kinetics and morphology of polymeric materials. By distorting the configuration
of polymer chains, flow breaks down the kinetic barriers to crystallisation and directs the resulting crystallisation. This flow-
induced crystallisation (FIC) in polymers is a fascinating, externally driven, non-equilibrium phase transition, which is controlled
by kinetics. Furthermore, the effect is of central importance to the polymer industry as crystallisation determines virtually all
of the useful properties of semi-crystalline polymer products. However, simulating flow-induced crystallisation in polymers
is notoriously difficult due to the very wide spread of length and timescales, especially as the most pronounced flow-induced
effects occur for long chains at low undercooling. In this article I will discuss multiscale modelling techniques for polymer FIC.
In particular, I will review recent attempts to connect modelling approaches across different levels of coarse-graining. This has
the ultimate aim of passing insight from the most detailed simulation techniques to more tractable approaches intended to model
polymer processing. I will discuss the exciting prospects for future work in this area.

1 Introduction

Flow-induced crystallisation (FIC) is one of the outstanding
unsolved problems in polymer science. The problem contains
significant fundamental science, having at its heart the dynam-
ics of a non-equilibrium phase transition. Simultaneously, un-
derstanding polymer FIC is of great practical importance due
to its potentially transformative impact on the polymer indus-
try. However, the field presents some formidable theoretical
difficulties due to the wide separation of length and timescales.
Nevertheless, recent theoretical work has begun to illuminate a
pathway to a quantitative understanding of polymer FIC from
molecular principles.

The basic experimental phenomena for FIC in polymers
were observed nearly 50 years ago1. It is now well-established
that polymer crystallisation is profoundly influenced by flow2.
Flow drastically enhances the rate at which polymers crys-
tallise and has a profound effect on their morphology. Flow
distorts the configuration of polymer chains and, it is believed,
this distortion breaks down the kinetic barriers to crystallisa-
tion and directs the resulting morphology.

Polymer crystallisation is very susceptible to flow for the
following reasons. Firstly, polymer crystallisation begins with
nucleation, which is extremely rare on a molecular scale.
Small crystallites are unstable due to the free energy cost of
their interface with the liquid. This creates a free energy bar-
rier to nucleation, which the system must diffuse over via a
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thermally activated process. The nucleation rate depends ex-
ponentially on the barrier height. Thus any change in the nu-
cleation barrier will drastically alter the nucleation rate and
nucleus density. Secondly, due to their long chain nature,
polymer crystallise into a composite structure of ordered crys-
talline regions interspersed with amorphous regions, in which
the chains are randomly arranged. These structures do not cor-
respond to the equilibrium state, meaning that the crystallisa-
tion is incomplete and is kinetically selected. Hence, the flow
conditions experienced by a polymer fluid, prior to and during
crystallisation, can determine its morphology.

FIC is ubiquitous in industrial polymer processing Fig 1
shows polymer crystallisation during a prototype industrial
flow3,4. The darker regions are developed crystals and these
grow preferentially in regions where the flow field is most
intense. Thus control of flow conditions offers the tantalis-
ing potential to control the crystallisation and morphology of
semi-crystalline polymeric materials. This is of great interest
to the polymer industry as the crystal properties strongly influ-
ence strength, toughness, permeability, surface texture, trans-
parency, capacity to be recycled and almost any other property
of practical interest. This offers the possibility of molecular
design of polymer products. However, achieving this requires
a molecular understanding of polymer FIC.

Accurate modelling of polymer FIC involves some of the
most challenging problems in polymer science. Strong chem-
ical bonds force connected atoms to move co-operatively,
whereas unbonded atoms interact through weak van der Waals
forces. This leads to a huge separation of both time and length-
scales. Under flow polymers crystallise into elaborate hierar-
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Fig. 1 Bright field observation of polymer crystallisation during
complex flow of a high-density polyethylene resin. The flow
direction is top to bottom, t indicates the time since inception of
flow, the flow rate is 1cm3/sec and the cross sectional area at the
entrance is 1cm2. Reprinted with permission from Scelsi et al.3.
Copyright 2009, The Society of Rheology.

chical structures (see for example the sketch in fig 2). In these
structures the monomer repeat units of length ∼ 0.1 nm self
assemble into crystal structures that can be � 100nm. Even
more problematic is the separation of timescales. Monomer
relaxation times are ∼ 10−9sec whereas the time to nucle-
ate and self-order into a fully developed structure be several
hours (∼ 104sec). These issues are particularly prominent as
the regimes of high molecular weight chains and low under-
cooling, which are the most challenging region to simulate,
are precisely where the most pronounced flow-induced effects
occur. Indeed, recent experiments show that insight into low
undercooling is essential to both a fundamental and practical
understanding of polymer FIC5–7. There are two fundamen-
tally different contributions to these computational difficulties.
Firstly, nucleation is a rare event. That is, nucleation is char-
acterised by very frequent attempts to form a stable nucleus,
with very occasional successes. A successful nucleation event
is, itself, fast, but requires long simulation times because it oc-
curs so rarely. Secondly, because of their length, long polymer
chains carry significant monomer drag. Thus their diffusion
dynamics are extremely sluggish. For example, for concen-
trated long chains8, the terminal relaxation time scales with
molecular weight as M3.4

w . Therefore, any process that relies
on global relaxation of the polymer chains will be slow, not
due to its rareness, but the sluggish dynamics that underlie it.
These two types of slow process present very different com-
putational challenges and require tailored solutions.

Despite the great variation in the chemistry between crys-
tallisable polymers, there is a high-degree of universality in
their crystallisation dynamics, suggesting the possibility a
powerful universal model, applicable to many systems. Such
progress requires several levels of modelling techniques to ad-
dress the length and timescale difficulties. The individual lev-
els of modelling need to be tightly integrated to enable insight
gained from the most detailed approaches to be inherited by
the more tractable models. Such modelling would improve
our fundamental understanding of polymer FIC and produce

tractable computational tools for practical applications.
In this review I describe recent experimental and theoreti-

cal progress in sections 2 and 3, respectively. I discuss po-
tential future directions in section 5, while also highlighting
important open questions and outstanding modelling issues.
Section 6 contains summary and conclusions.

2 Experiments

2.1 Enhanced nucleation

Well-controlled flow experiments, mostly under shear, con-
firm the strong effect of flow on crystallisation2. Crystallisa-
tion during or following flow has been monitored with a range
of time resolved techniques, such as small angle x-ray scat-
tering9, birefringence10,11 and linear oscillatory shear12,13.
These measurements show that the crystallisation rate pro-
gressively increases with deformation rate14 and that the num-
ber of nuclei increases increasing flow time, t f

15. The com-
bined effect of flow rate and time can be summarised by the
macroscopically applied work, w,

w =
� t f

0
σσσ(t) : D(t)dt, (1)

where σσσ and D are the stress and deformation rate tensors, re-
spectively. The nucleation density, for a given material and
temperature, is a universal function of w, covering both shear
and extensional flow16. There are some exceptions to this em-
pirical rule. For example, the influence of t f on the crystallisa-
tion kinetics saturates for long shearing times10. Furthermore,
there is a critical shear rate below which the crystallisation
kinetics are identical to quiescent conditions12. This critical
shear rate can be correlated the material’s relaxation time.

In many of the above experiments, the increased nucleation
was indirectly inferred through a decrease in the crystallisa-
tion half time. However, optical observations allow a direct
determination of the nucleation rate or density essentially by
counting nuclei. For example, Stadlbauer et al16 quantified
the total nucleation resulting from a wide range of flow pulses
and Pantani and co workers directly measured the nucleation
rate during steady continuous shear flow,17,18. These experi-
ments separate the influence of nucleation and crystal growth
and the resulting nucleation data provide a fundamental quan-
tity, against which models can be quantitatively tested.

A consistent picture of the influence of temperature,
emerges from many of the above studies: the sensitivity of
the crystallisation kinetics to flow increases with increased
temperature. At low-undercooling the nucleation is extremely
tenuous and it is the rareness of the nucleation process makes
it more susceptible to flow. I will describe in section 4.1.3 a
molecular explanation for this effect.
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2.2 Shish kebab formation

Fig. 2 A schematic diagram of the shish kebab morphology, as
observed experimentally1,5,11,19.

At moderate shear rates the flow-induced nuclei are point-
like and grow into a spherical crystal structure. However, at
higher flow rates a striking transition to elongated row-like
nuclei occurs1,5,6,19. Around these long slender nuclei, sub-
sequently grow plate-like lamellae of folded chains. This dis-
tinctive morphology, known as the shish-kebab (fig 2), im-
proves mechanical properties20 and reduces permeability21.

Flow enhanced nucleation and particularly shish kebab for-
mation are strongly influenced by the high molecular weight
tail of a melt’s molecular weight distribution6,9,11. This high
molecular weight tail contains the longest chains in the melt
and, due to their long relaxation times, these chains are most
readily stretched under flow. Indeed the composition of the
high molecular weight tail can be varied by blending a small
amount of long chains into a shorter matrix polymer. FIC
experiments on such blends have shown that the long chain
concentration controls the number density and thickness of
shish nuclei10,11. Furthermore, several studies have reported
drastic changes in shish formation when the concentration ex-
ceeds the overlap concentration for the long chains9,11. Care-
fully controlled neutron scattering experiments have revealed
the relative concentration of long chains in the shish struc-
ture5. These experiments show that, despite being more read-
ily stretched, long chains are not more abundant in shish than
in the melt as a whole. This suggests that the long chains
catalyse the shish formation and are able to recruit chains of
all lengths into the shish. Li and coworkers22–24 have stud-
ied the effect of extensional flow on the crystal morphology.
By examining different extensional strains23, they found a
correlation between the morphology and the material’s stress
response to the imposed strain. Further measurements also
demonstrated that, not only do long chains promote nucleation
by changing the melt free energy, they also prevent rupture
through their influence on the macroscopic stress, which en-
ables larger strains to be achieved24.

Similarly to enhanced nucleation, the macroscopic work,
(equation (1)), also strongly influences the formation of shish
kebabs. Mykhaylyk et al.6 demonstrated that a single critical
value of the applied work determines the onset conditions for
oriented crystallisation over a wide range of flow conditions.
Further common effects with enhanced nucleation are seen in

the temperature dependence of shish kebab formation. Here
the anisotropy increases with increasing temperature25.

There is a growing consensus that shish kebabs nucleate
via precursors that comprise of metastable, elongated domains
with an intermediate degree of order. By studying a specially
synthesised linear high density polyethylene with a bimodal
molecular weight distribution, Balzano et al.26,27 have shown
that four different structure can be formed: non-crystalline
precursors, shish, kebabs and quiescent crystals. These struc-
tures have remarkably widely separated formation tempera-
tures given by 142◦C, 139◦C, 132◦C and 124◦C, respectively.
Furthermore, their experiments on isotactic polypropylene28

indicate that only the non-crystalline precursors can form dur-
ing flow itself, with the crystalline structures appearing rapidly
but only after flow has ceased. This is a very different scenario
to enhanced point-like nucleation under flow, where Pantani
and co-workers17,18 observed spherulite growth during steady
shear. Work by Azzurri, Alfonso and coworkers29–31 has es-
tablished the dependence of the precursor lifetime on tem-
perature, molecular weight and shear conditions. They have
studied polydisperse iPP31 and isotactic poly(1-butene)29and
monodisperse isotactic polystyrene (iPS)30. They demon-
strated that the dissolution timescale depends upon shear
rate, suggesting that shear changes the precursor morphol-
ogy, while the activation energy is independent of flow rate
and molecular weight, indicating that the rate-limiting step
of the dissolution involves relatively short segments of chain
and is independent of shear history. Studies by Kanaya and
co workers7,32–35, have provided further details of the shish
processor. Their measurements on iPP, confirm that an ori-
ented precursor can be formed above the melting tempera-
ture for folded chain crystals and that this precursor is denser
than the melt but not necessarily crystalline35. Their measure-
ments on iPS have revealed significant new details about the
nature of the precursor. Large string-like precursors precede
the formation of shish crystals. These structures can be im-
aged directly by polarised optical microscopy (POM) and are
on the µm scale32. The precursors form and persist signif-
icantly above the melting temperature for folded chain crys-
tals32,33 and, when cooled, are able to nucleate shish kebabs.
The structure of the precursor is not fully established. It may
be an oriented gel-like structure, stabilised by extended chain
crystals or may have a liquid-crystal structure, in which rigid
chain segments in a helix configuration function as mesogens.
Very recent measurements7 investigating the inner structure
of the precursor, show it has very low crystallinity (∼ .15%)
with a small fraction of extended crystals, of similar length
to shish crystals. Hashimoto and co workers36,37 have stud-
ied the effect of flow-induced liquid-liquid phase-separation
in a polymer solution, on the very early stages of shish for-
mation. They proposed a sequence of steps by which phase-
separated domains that are rich in stretched chains ultimately
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lead to shish kebab formation. The authors also argue that this
phase separation will occur in bimodal and polydisperse melts
whenever there is a sufficiently wide separation of timescales.
The full nature and formation mechanisms of the shish kebab
structure remains under considerable debate.

2.3 Polydispersity and model materials

The overwhelming majority of FIC experiments are per-
formed on polydisperse polymers. That is, melts with a
broad distribution of chain lengths. For such melts, dilute
long chains that are deep into high-molecular weight tail will
contribute strongly to FIC, as these chains deform the most
under flow. Thus measurements from polydisperse materi-
als contain simultaneous contributions from many different
molecular lengths, each executing widely differing dynam-
ics. This makes direct interpretation of the results very prob-
lematic. Unfortunately, it is extremely difficult to synthe-
sise monodisperse crystallisable polymers, even on the small
scale required for well-controlled lab experiments9 (of or-
der a few grammes). A small number of studies have in-
volved blends whose fractions are individually narrowly dis-
tributed6,9,30,38,39. Such model materials enable a much more
precise definition of key molecular quantities such as the long
concentration, overlap concentration and molecular relaxation
times. For example, one such study6 established that shish ke-
bab formation can only occur if the deformation rate exceeds
the molecular relaxation time associated with chain stretching.

3 Modelling

As described in section 1, polymer FIC inherently involves
a very large separation of length and timescales. Multiscale
modelling is an essential tool in addressing these issues and
modelling techniques have been developed at a range of lev-
els. Fig 3 summarises the currently employed techniques, in
order of detail and computational cost. However, when trading
a less detailed description for improved computational speed,
ambiguous coarse-graining decisions and new undetermined
model parameters are virtually inevitable. Thus, a key ongo-
ing challenge is to interface modelling approaches on different
levels. This would allow detailed models to motivate and jus-
tify assumptions made in more tractable approaches.

Of the two computational challenges discussed in section 1,
coarse-graining is most effective at tackling the issue of slow
diffusion. This is because, coarse-graining essentially in-
tegrates out the faster degrees of freedom, allowing longer
timesteps to be taken. This still leaves the difficulties of simu-
lating rare events. However, when working with more coarse-
grained models it is often easier to apply algorithmic tools that
deal with rare events, as I will demonstrate below.

3.1 Classical nucleation theory

Classical nucleation theory provides an analytic framework
to describe basic nucleation phenomena41,42. The nucleation
problem comprises of a nucleation barrier F(n) (see fig 4),
where F is the free energy of a nucleus of n particles. Here F
is expressed in units of kBT and ∆F(n) = F(n)−F(0). The
nucleation barrier can be calculated if σ , the free energy of
the melt-crystal interface, and ∆G, the Gibbs free energy dif-
ference between the crystal and melt phases, are both known.
In principle, ∆G can be calculated from the degree of under-
cooling. However, this requires an accurate knowledge of the
properties of the phase into which nucleation occurs. This is
not always straightforward to obtain for polymers, as the nu-
cleated phase may not be the final crystal phase43. The inter-
facial energy σ is even harder to obtain and is often treated as
a parameter to be fitted to experimental data.

The local diffusion rate D(n) changes with nucleus size n
as the nucleus surface area increases with size. In order to nu-
cleate, the system must diffuse over the barrier peak and con-
tinue a sufficient distance down the other side that re-crossing
is negligibly improbable. Briefly, Kramers’ method41 solves
the diffusion equation with an absorbing boundary condition
placed beyond the barrier peak and a constant input flux of
new nuclei at the barrier base. The crossing rate can be in-
ferred from the steady state number of nuclei in the system.
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Fig. 4 A 1D nucleation barrier, illustrating the quantities n∗ (critical
nucleus size), ∆F∗ (barrier height) and L (plateau width), which
make important contributions to the nucleation rate.

Kramers’ problem can be solved for an arbitrary barrier
F(n), but to simplify the resulting expression I have made
the following assumptions, which are typically true for nucle-
ation: the barrier peak is ∆F∗ � kBT ; the barrier is steep at the
base; the barrier peak is a smooth maximum; and the diffusion
kinetics do not change significantly along the barrier peak. Al-
though, the problem can be solved for discrete or continuous
n, I use here the continuous representation for mathematical
clarity. More detailed discrete treatments that relaxes some of
the above assumptions are possible44.
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Fig. 3 Progressively increasing levels of coarse-graining in modelling polymer crystallisation. MD figure courtesy of Prof. A Likhtman and
Lattice MC figure courtesy of Prof W Hu, reprinted with permission from Hu et al.40, copyright 2002 American Chemical Society.

Employing Kramers’ method leads to an analytic expres-
sion for the nucleation rate Ṅ,

Ṅ =
1√
2π

�
1
Z

exp(−∆F∗)

��
D(n∗)

�
−F ��(n∗)

�
, (2)

where Z is the barrier partition function, considering only the
base up to the peak Z =

� n∗
0 exp(−F(n))dn. For a sufficiently

steep initial barrier Z ≈ 1
F �(0) . This nucleation rate expres-

sion can be understood at a scaling level as follows. The first
square bracket is the equilibrium occupancy probability at the
barrier peak (i.e. the fraction of time that the system spends
around the barrier peak). Having reached the peak, in order to
successfully cross, nuclei must diffuse along the plateau, suf-
ficiently far that the chance of returning to the barrier base is
vanishingly small. Hence the plateau is defined as the region
around n∗ over which the barrier remains within unity of F∗

(see fig 4). Thus the plateau length L scales as 1/
�
−F ��(n∗).

Therefore the term in the second square bracket corresponds
to the flux across the plateau at the barrier peak.∗

Kramers’ method can be generalised to N−dimensional
barriers, leading to a comparable expression for the crossing
rate41. However, this is limited to a modest number of dimen-
sions because locating the barrier peak in high-dimensions is
usually prohibitively expensive. Thus application of classical
nucleation theory is limited to low-dimensions, in contrast to
the very high number of degrees of freedom in molecular sys-
tem. Motivated by classical nucleation theory, I will discuss
a method to project high-dimensional nucleation problems on
to lower dimensional systems in section 4.1.2.

In summary, classical nucleation theory enables calculation
of the nucleation rate from the barrier shape, F(n), and the

∗The crossing flux scales as 1/L rather than 1/L2, which might be anticipated
for a diffusion problem. This is because visits to the barrier peak (from the
first term) specify a constant probability density at the boundary of the plateau
region rather than a zero flux boundary condition which gives 1/L2 scaling.

diffusion kinetics, D(n). For conditions that are typical of nu-
cleation, the important barrer properties are the height of the
peak, F(n∗), the initial gradient, F �(1), and the plateau length,
characterised by F ��(n∗). Other features of the barrier con-
tribute only weakly to the crossing rate. Similarly, only the
diffusion kinetics at the barrier peak, D(n∗), contribute signif-
icantly to the crossing rate. These ideas will form the basis of
a fast algorithm for simulating nucleation in section 4.1.1.

3.2 Macroscale Continuum models

A key aim of modelling polymer FIC is to provide tools to
model polymer processing. Modelling polymer processing in-
variably involves computations in complex flow geometries
(for example, see fig 1). Tractable modelling of FIC in these
complex flow geometries requires equations that are free of
stochastic terms. These macroscale continuum models typi-
cally use ordinary differential equations to describe the crys-
tallisation kinetics under flow. These are usually formulated
using the Schneider/Kolmogorov rate equations45,46, which
compute the crystal evolution, provided nucleation and growth
rates are known functions of time. These models provide
many details of the crystallisation, including spherulite den-
sity, radius, surface area and volume. They are also computa-
tionally inexpensive and so can be used in finite element cal-
culations in complex flow geometries47.

A significant disadvantage is that this level of modelling
cannot predict how the nucleation rate depends upon chain
deformation under flow, Macroscale models require, instead,
this to be an input assumption. Such models typically assume
an empirical dependence of the nucleation rate on the flow
conditions15, the stress tensor48, or the chain stretch49,50. Of-
ten these functional forms are chosen empirically to best de-
scribe available data. This step severs the link with molecu-
lar modelling. Furthermore, changes with molecular weight
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distribution and temperature cannot be dealt with in a system-
atic way. Thus the expressions used for nucleation in such
models usually contain uncontrolled parameters and require
extensive characterisation against experiments. This charac-
terisation must be repeated for each new resin, as changes
in the molecular weight distribution between batches is com-
mon. These difficulties proliferate when these models are gen-
eralised to the nucleation and formation of shish kebabs.

A notable approach at this level of modelling has recently
been developed by Howard and Milner51. They used a 2D
version of classical nucleation theory, combined with a “cylin-
drical cap” nucleus model to describe isotactic polypropy-
lene. A key element is that the unknown interfacial energies
are not just extracted from experimental data, but also con-
firmed against all-atom lattice dynamics simulations52. Con-
sequently, their approach deals with temperature in greater de-
tail than comparable models. This work highlights the poten-
tial of multiscale modelling to exploit the strengths and over-
come the weaknesses of each level of modelling. Although,
the approach currently only pertains to quiescent nucleation,
the authors also discuss the possibility of extension to FIC.

3.3 Molecular dynamics

At the highest level of detail, molecular dynamics (MD) sim-
ulations provide a rigorous approach to crystallisation by re-
solving the motion of individual monomers. Previous work
has established suitable united-atom force fields for polyethy-
lene53–57 and polypropylene58. MD potentially provides a
wealth of detailed information on polymer crystallisation and
its dependence on molecular weight, temperature and flow. I
provide a brief review here. A more detailed review, focussing
primarily on MD, has recently been made by Yamamoto59.

Many studies have focussed on crystal growth, providing
a detailed molecular picture of how it depends on molecular
weight and temperature. Simulations have validated and pa-
rameterised a model that decomposes the growth rate into con-
tributions from secondary nucleation at the growth front and
molecular diffusion of chain segments60. Simulations have
also elucidated details of tapering at the growth front, lamella
thickening and chain folding at the lamella surface61.

Some MD studies have observed primary nucleation in
polymers53,55–57. Yamamoto analysed the supercooled melt
structure during homogeneous nucleation, observing changes
in the radius of gyration and persistence length55. Rutledge
and coworkers53,62 observed nucleation during a uniaxial ex-
tension flow. They used flow rates with Weissenberg numbers
of Wi � 2 †, which is comparable to processing conditions and
well-controlled experiments. These simulations demonstrated
that flow enhances nucleation, if the strain is sufficient. In

† The Weissenberg number is defined as Wi = (flow rate) × (material relaxation
time), giving a dimensionless comparison of flow against relaxation.

these simulations, no crystallisation was observed during flow
itself and crystallisation was delayed until cessation flow, af-
ter which it proceeded at a much enhanced rate. This is in
accord with experiments of Balzano et al28. Further simula-
tions on the same system53 revealed how temperature affects
the balance of the nucleation and chain relaxation rates as they
compete to determine the crystallisation kinetics.

MD has the key limitation that computational expense re-
stricts the accessible timescales to typically ∼ 10ns. Compu-
tational cost also restricts the chain length due to the limited
simulation box size. Therefore nucleation in MD simulations
can only be observed for short chains at high undercooling,
where the simulation temperature is set far below the crystalli-
sation temperature. Lowering the temperature increases the
thermodynamic driving force for crystallisation, which dras-
tically increases the nucleation rate to within the simulation
timescale. However, this fast nucleation at high-undercooling
is likely to have a different mechanism to the low undercool-
ing that is typical in polymer processing. For example, Ya-
mamoto55 observed an unexpectedly steep increase in the per-
sistence length at large undercooling. This suggests that, at
low undercooling a strong increase in chain stiffness, may as-
sist nucleation. Furthermore, experiments show that insight
into both low undercooling and long chains is essential to both
a fundamental and practical understanding of FIC5,6, as the
most pronounced flow-induced effects occur in these regimes.

MD can deliver highly resolved molecular detail of the
crystallisation process, with very few modelling assumptions.
However, it suffers from strong lengthscale and timescale lim-
itations. Thus further work is needed, building on the above
MD are studies, to address issues with simulating rate events,
to quantify the nucleation rate and to build connections with
more coarse-grained simulations. Very recent MD studies57

have begun to address these issues and to extract unknown pa-
rameters for classical nucleation theory from molecular simu-
lation. I will discuss this recent progress in section 4.2.

3.4 Lattice Monte Carlo

Lattice Monte Carlo (MC) methods40,63–65, restrict polymer
chains to a regular lattice and model the dynamics as discrete
hops between lattice sites. This significantly reduces the com-
putational cost of evaluating the system’s potential energy and
hugely increases the simulation timestep. This allows larger
chains to be simulated for longer timescales, compared to MD.
The potential energy has contributions from the number of
parallel (nonbonded) bonds on neighbouring sites, the number
of chain-solvent contacts and the number of kinks along the
each chain. The dynamics are described by a micro-relaxation
model. Polymers move either by local jumps, involving single
monomers or by sliding moves, involving longer chain seg-
ments. The sliding moves greatly increases the sampling rate
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and mimic the real dynamics of polymers in dense systems.
Despite the gains in computational speed, the rare event is-

sue still means that nucleation is difficult to simulate, espe-
cially at low undercooling. However, using a combination of
biased sampling, multi-histogram techniques and parallel tem-
pering66, Hu et al.(2003)63 determined the free-energy bar-
rier for nucleation of a single-homopolymer chain. They also
explored the strong dependence of the barrier on molecular
weight, as they could simulate chains of several hundred re-
peat units. The application of a similar simulation algorithm
to thin films of short polyethylene65 chains observed primary
nucleation directly. Nucleation occurred during the simulation
timescale because of a relatively deep quench and because nu-
cleation is faster at the film free surface than in the bulk.

Hu et al.(2002)40 have used chain alignment to enhance
the primary nucleation rate. They simulated a system of free
chains with a single, fully aligned chain spanning the sim-
ulation box. Simulations were performed below the melt-
ing temperature but above the temperature at which homo-
geneous nucleation was accessible on simulation timescales.
The free chains rapidly formed rows of crystal nuclei along
the stretched chain. These nuclei then grew into plate-like
lamellae (see fig 3), essential reproducing the experimentally
observed shish-kebabmorphology (fig 2). These simulations
confirm that even a single aligned chain can both accelerate
crystal nucleation and initiate the formation of shish kebabs.

Recently, Hu and co-workers67 imposed a homogenous
stretch to a bulk melt and then used dynamic Monte Carlo
to observe strain-induced nucleation. These simulations could
be run close to the melting point. Beyond a critical strain, the
nucleus morphology shifted from isotropically-oriented chain-
folded nuclei to aligned fringed-micelle nuclei (similar to
fig 5). These authors also extended this work to strain induced
nucleation in random co-polymers68. The non-crystalline co-
monomers mimic the effect of sequence defects that are found
in industrial polymers. Increasing co-monomer content in-
creases the onset strain for crystallisation, which could be ex-
plained by a thermodynamic model.

Although lattice MC simulations lead to significant gains in
accessible chain length and timescale compared to MD, they
require coarse-graining assumptions. The algorithm must pos-
tulate which moves are dynamically the most relevant. Nu-
merous types of moves can be imagined and the relative fre-
quency of attempts of these moves must also be assumed. Also
the course-graining of the molecular potential leads to new un-
known parameters, such as the energy cost of separating a pair
of parallel bonds. Finally, it is not always clear how the pre-
dictions are affected by confining chains to a discrete lattice.
Thus there is a need to compare results with MD simulations,
where the windows of plausible time and length scales for the
two techniques overlap, in order to provide guidance on the
assumptions inherent to the lattice MC method.

3.5 Coarse-grained kinetic Monte Carlo

3.5.1 Model outline I recently developed a highly coarse-
grained simulation algorithm for polymer nucleation, the Gra-
ham and Olmsted (GO) model69,70. The model aims to bridge
between detailed simulations and macroscale continuum mod-
els; to utilise detailed rheological models that have proven
successful in predicting the flow dynamics of non-crystalline
polymers71,72; and to be suitable for comparison with exper-
imental data. The model is also simple enough to allow the
use of rare event simulation techniques and to enable a projec-
tion onto a low-dimensional model. The model uses a kinetic
Monte Carlo algorithm with an adaptive time-step73. This al-
gorithm has previously been applied to highly coarse-grained
simulation of crystal growth in polymers74,75. However, it
is also well suited to nucleation as, for small nuclei where
progress is slow, large timesteps are automatically taken.

Segment 
addition

Stem addition

Fig. 5 A diagram of the nucleus description used in the GO
model69,70 . Crystallised monomers are arranged in stems, with
amorphous chains protruding from the surface. The whole structure
can be rotated by the flow A 2-D cross section of the 3-D ellipsoid
polymer nucleus with an illustration of the two possible moves
which add one Kuhn step to the nucleus.

The simulation takes a minimal nucleus description that is
still able to model both enhanced nucleation and shish for-
mation (see fig 5). The nucleus comprises NT crystallised
monomers, arranged in Ns stems, with each stem formed from
a single chain. The number of monomers in each stem, is
tracked during the simulation, with the arrangement of the
monomers within the crystal not being resolved. The nucleus
is assumed to be spheroidal, which allows both the volume
and surface area to be computed from NT and Ns. The nu-
cleus free energy consists of a bulk free-energy reduction due
to crystallisation, proportional to the nucleus volume, and a
free-energy penalty proportional to the spheroid surface area.
Nuclei evolve by addition and removal of individual parti-
cles and there are two ways to add a monomer: addition of a
monomer onto an existing stem or addition of a new stem. The
rate of these individual steps is calculated from the free-energy
change resulting from the step. It is here that the effect of flow
is implemented. The deformation of the surrounding chains
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under flow is computed using a separate rheological model,
known as the GLaMM model71. From the configurations of
the surrounding amorphous chains, provided by the GLaMM
model, the entropy loss due to stretching can be calculated.
This entropy loss is deducted from the bulk term in the free
energy, creating a stronger thermodynamic driving force for
crystallisation. The degree of polymer deformation depends
on position along the chain contour, with monomers close to
the chain centre being most deformed, while those close to the
chain ends remain undeformed. Thus there is a wide spec-
trum of differently stretched chains sections, leading to a cor-
responding spread in attachment rates. If the polymer melt
also contains a spread of molecular weights, then the range of
attachment rates will be wider still.
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Fig. 6 A master curve of nucleation rate against stretch ratio for a
range of molecular weights, flow rates and flow geometries. Here Z
is the dimensionless molecular weight expressed in terms of the
molecular weight between entanglements8.

3.5.2 Results A number of key results were produced by
direct simulation of the GO model. Simulations predict the
formation of highly elongated nuclei, at higher shear rates.
Essentially, the shish nuclei are seeded by a small number
of stretched chain segment and lengthening of the nucleus is
driven by these stretched chains crystallising by zipping-up
along the chain. In the simulations, shish nuclei are produced
more readily in bimodal blends than in monodisperse melts
and the anisotropy is increased by decreased undercooling,
both of which are seen experimentally.

A second key result is that nucleation during a transient
flow is quasi-static. That is, the nucleation rate depends only
on the instantaneous barrier, not its prior history. Therefore
the instantaneous nucleation rate can be found by solving the
much simpler static problem obtained by holding the amor-
phous chain configurations fixed at that corresponding to time
of interest. This quasi-static result arises essentially because
the evolution of the nucleation barrier is slow compared to the
time taken for a successful nucleation event to traverse from
the barrier base to beyond the barrier peak.

The quasi-static result can be further extend to show that the
simulated nucleation rates have a universal dependence on the
chain-stretch ratio (defined as the polymer length normalised
by its quiescent value), independent of flow rate, molecular
weight and flow geometry. Fig 6 shows an example master
curve, for a fixed degree of undercooling. It should be noted
that the shape of the master curve depends upon the quiescent
free energy landscape. In particular as the quiescent barrier
height increases so does the sensitivity to flow. As the barrier
height increases with temperature, the model correctly pre-
dicts that flow sensitivity increases with temperature, as in ex-
periments12,18. The later two results justify some of the tacit
assumptions in macroscale continuum models. Furthermore,
the nucleation rate against stretch master curve provides the
molecularly motivated expression for the nucleation rate that
is missing from macroscale continuum models.

A successful comparison of the GO model with nucleation
rate measurements from a flowing isotactic polypropylene
melt under has also been made70. This comparison has re-
cently been extended76 using the enhanced simulation and 1D
projection techniques described in section 4.1 and so I delay
discussion of this comparison until then.

3.5.3 Model weaknesses Although the high level of
coarse-graining in the GO model has enabled the generation
of useful results and a comparison with experimental data,
the simplicity of the nucleus description also leads to some
limitations. The high level of coarse-graining necessitates
some modelling assumptions. In particular, ad hoc choices
for the structure of the nucleus and the effective surface area
for attachment of new stems were needed during the model’s
derivation. Ultimately, these choices will only be justified by
comparison with more detailed simulation techniques.

The model also contains a number of quiescent crystallisa-
tion parameters.These parameters are τ0, the basic monomer
attachment timescale, εB, the bulk free energy gain upon crys-
tallisation and µs, the interfacial free energy cost. Changes of
these parameters with temperature will strongly influence the
nucleation, yet the model has no mechanism to predict these
changes. There may also be subtle changes with molecular
weight, which the model also cannot predict. Again, results
from more detailed simulations will help resolve these issues.

There are also some limitations of the flow modelling. Cur-
rently the GLaMM model71 has been developed and validated
for monodisperse and bidisperse molecular weight distribu-
tions. However, crystallisation experiments are almost always
conducted on polydisperse materials. Consequently, when
comparing to nucleation rate measurements, the polydisperse
melt had to be approximated by a bimodal distribution, in or-
der to capture the role of the high molecular weight tail. A
further limitation is the GLaMM model’s treatment of stretch
fluctuations under flow. Real chains, subjected to non-linear
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flow, are likely to show significant non-equilibrium fluctua-
tions due to molecular individualism77,78. Experimental mea-
sures that characterise the flow of non-crystalline chains, such
as mechanical stress71 and neutron scattering79 depend only
on the mean chain deformation, which is computed by the
GLaMM model. However, as nucleation is an intrinsically
rare and discrete event that is strongly enhanced by highly
stretched chains, it is likely that nucleation is disproportion-
ately affected by rare non-equilibrium incursions into highly
stretched states. In the GO model, stretch fluctuations are
treated using an equilibrium technique. This is potentially
underestimates the influence of flow. This final two limita-
tions can be addressed within the framework of the GO model.
However, they require improvements of the underlying rheo-
logical model on which the GO model relies.

4 Recent developments

In this section I summarise some recent developments in mod-
elling polymer crystallisation. These recent studies build tech-
niques that enable insight and quantitative results from one
level of modelling to be exploited by modelling at a different
level of coarse-graining.

4.1 The GO model

4.1.1 Fast nucleation algorithm The GO model algo-
rithm is fast but still does not address the rare event problem.
Nucleation barriers in experiments can typically be ∼ 80kBT
so nucleation in polymer experiments is extraordinarily rare.
When simulating such high barriers, the overwhelming major-
ity of the simulation time is spent resolving the dynamics of
small nuclei that are close to the barrier base. As indicated by
equation (2), these dynamics at the barrier base are irrelevant
to the nucleation rate. Instead, it is the dynamics over the bar-
rier peak that have the dominate contribution. However, in a
direct nucleation simulation, these dynamics are sampled only
vanishingly often and for an extremely short period.

My group recently developed a simulation technique to ad-
dress this problem80. Our approach is inspired by the realisa-
tion that only the dynamics over the barrier peak are impor-
tant and the suggestion from equation (2) that nucleation can
be decomposed into two parts: injection of particles into the
plateau region from an equilibrium distribution and diffusion
across the plateau region. Our algorithm simulates the dynam-
ics only over a reduced region, which is defined as NT > Nmin,
where Nmin is some minimum nucleus size. Our criterion for
choosing Nmin is described below.

We obtain the nucleation barrier through an equilibrium
simulation. Here, reflecting boundary conditions are placed at
both ends of the simulation. This simulation samples the equi-
librium occupancy probability of each NT value, from which

the free energy can be obtained. As the barrier peak is very
rarely visited, we constrain the simulation to a small region
of the NT space and piece together the whole barrier from a
sequence of overlapping simulations. This ensures good sam-
pling across all states, even for large nucleation barriers.

To simulate the dynamics over the plateau, nuclei are intro-
duced at Nmin, with their arrangement of monomers and stems
drawn from the Boltzmann distribution. The nucleus dynam-
ics are then simulated in the plateau region using the usual
algorithm. Any run where NT falls below Nmin is restarted
by reinserting the nucleus at Nmin. We record the fraction of
runs that successfully cross the barrier. The nucleation rate
is then the product of the true flux into the plateau region
and this success fraction. We compute the true flux into the
plateau region as an average over the fluxes into Nmin from the
states immediately below, weighted by the Boltzmann distri-
bution across the full barrier. The Boltzmann distribution is
essentially exact for states with NT < Nmin, provided Nmin is
chosen such that F(Nmin) is sufficiently smaller than F∗. In
this case the resulting nucleation rate is independent of the
choice of Nmin and approximates very closely the nucleation
rate from a direct simulation of the whole barrier. We found
that F∗ −F(Nmin) ≈ 7kBT is usually sufficiently large for ac-
curate convergence with respect to Nmin.

As the reduced simulation is always over a relatively mod-
est barrier size our algorithm does not become more expensive
with increasing barrier size. This enables essentially arbitrar-
ily high barriers to be simulated inexpensively. Via this tech-
nique we were able to map out the model’s predictions over
a very wide range of input parameters76. This characterisa-
tion was key to validating or 1D projection method (see sec-
tion 4.1.2) and to comparing the model to experimental data at
a range of different temperatures (see section 4.1.3).

Our algorithm is related to the widely-applicable technique
of milestoning81, in which a rare event is simulated by linking
together a sequence of simulations of sub-regions that cover
the overall simulation space. However, a key difference of our
method to milestoning is that only two sub-regions are consid-
ered, the barrier base and the barrier peak, and that the base of
the barrier is not simulated, but is dealt with analytically.

4.1.2 1D projection method Projection of the polymer
nucleation problem onto a low dimensional space is a key
coarse-graining step. A low-dimensional projection groups to-
gether states in the high-dimensional simulation phase space,
according to some property, for example the total nucleus size
NT . This new co-ordinate is intended to describe the progress
toward nucleation using fewer degree of freedom (see fig 7).
The projection converts a simulation algorithm into an ana-
lytically tractable problem, similar to classical nucleation the-
ory, from which details of the nucleation process can be ob-
tained as closed form expressions. This is a key step in pass-
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ing insight from molecular simulations (which are intrinsically
stochastic) to macroscale continuum models, for example by
providing an analytic expression connecting the chain config-
uration under flow to the nucleation rate. In general these low
dimensional projections are very difficult. One must identify a
reaction co-ordinate and obtain both the barrier and diffusion
rates for the dynamics projected onto this reaction co-ordinate.

Fig. 7 A schematic illustration of our 1D projection approach. Here
microscopic nucleus configurations containing the total number of
monomers are collected together to form a lower dimensional
co-ordinate for nucleation. The green arrows indicate microscopic
moves whose rates must be averaged to produce diffusion rates
along the new co-ordinate.

Locating appropriate reaction co-ordinates is a notoriously
difficult problem82. However, to carry out such a projection
for the GO model, we postulated a reasonable candidate reac-
tion co-ordinate, namely the total nucleus size NT , and demon-
strated a posteriori that the resulting projection leads to a use-
ful result44. To obtain the barrier, we use the same equilibrium
technique as our fast nucleation algorithm (see section 4.1.1).
We also require the diffusion rate between neighbouring states
along the reaction co-ordinate, which will depend upon posi-
tion along the co-ordinate. This diffusion rate is an average
over the individual states that comprise a given value of NT ,
weighted by the occupancy probabilities of the full barrier
crossing problem. Thus analytic calculation of these diffu-
sion rates is as intractable as solving the full high-dimensional
barrier-crossing problem. Therefore, we developed a tech-
nique that reverse-engineers the problem by extracting the dif-
fusion rates from our simulations. This ultimately leads to an
analytical model that is extremely effective at predicting the
nucleation rate for a very wide range of barriers, not just those
used to characterise the projection.

Our 1D projection method is as follows44. For a discrete 1D
system, detailed balance specifies that, in the uphill section of
the barrier, the forward and reverse move rates from state i, k+i
and k−i , are given by

k+i = Di exp(−(∆Fi+1 −∆Fi)), k−i+1 = Di, (3)

where ∆Fi is the 1D barrier, obtained above, and Di is the col-
lection of diffusion rates that we seek. For downhill sections

of the barrier the expressions are similar, but the exponential
term appears in the expression for k−i+1. In steady state the
following net flux expression holds for each i

J = k+i χi − k+i χi+1, (4)

where J is the total crossing rate and χi is the occupancy prob-
ability for the full non-equilibrium barrier crossing problem.
Substituting eqn (3) into eqn (4) and rearranging gives an ex-
pression for Di, in terms of quantities that can be extracted
from our simulation of the full system

Di =
J

χi exp(−(∆Fi+1 −∆Fi))−χi+1
. (5)

Thus for any given simulation we can always extract a 1D
projection that has the same non-equilibrium occupancies, χi
and overall crossing rate J as the full simulation. However,
the projection algorithm is as numerically expensive as merely
simulating the crossing rate. Therefore, the projection is only
useful if it can predict the result of other simulations, for ex-
ample with different barrier characteristics. This is the case
with our projection of the GO model.

We performed the 1D projection for the GO model, em-
ploying a range of different quiescent barrier parameters (∆F∗

and n∗) and chain stretch ratios. We also simulated nucle-
ation from bimodal blends, in which the short chains remained
unstretched while long chains are allowed to stretch. We in-
vestigated a range long chain concentrations for these simula-
tions44. In almost all cases, the results for Di were virtually
independent of the barrier characteristics and they fell on a
mastercurve for Di. This is a strong indication that our choice
of reaction co-ordinate is appropriate and is leading us to dif-
fusion measures that are indicative of some intrinsic under-
lying dynamics of the model. Furthermore, the master curve
for Di enables us to predict accurately the nucleation rate for
virtually all parameter sets, through an analytical Kramers cal-
culation (see section 3.1), without needing to run any further
simulations. Finally, the form of Di extracted from our sim-
ulations was very close to that obtained by assuming that all
nuclei remain spherical throughout nucleation.

There are some deviations from the spherical behaviour in
the kinetics extracted from our GO model simulations, for bi-
modal blends. These deviations are most pronounced for di-
lute long chains, subjected to high stretch. Such conditions
lead to highly elongated nucleation in the GO model. This
suggests that when elongated nucleation occurs, our choice of
1D reaction co-ordinate becomes inappropriate and, probably,
a more detailed co-ordinate with two or more dimensions is
required to systematically describe this region of the model.

With a 1D model for the nucleus diffusion kinetics in hand,
we now seek a method to analytically obtain the 1D nucleation
barrier for stretched chains. Although a full analytical solution
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to this problem is possible83 the resulting expressions are suf-
ficient unwieldy to be unusable in practise. Instead we simu-
lated nucleation barriers for a wide range of quiescent barriers
and degrees of chain stretching76. These results show that, for
monodisperse polymers, the chain deformation modifies the
quiescent barrier with a term this is a simple function of the
chain stretching alone, independent of the quiescent barrier.
Hence the 1D landscape under flow can readily be calculated
for monodisperse chains. Unfortunately, the barrier modifi-
cation for bimodal blends is a nonlinear function of ∆F∗, n∗
and the degree of stretch. Therefore we developed a semi-
analytical method to rescale a small set of reference data for
the flow-induced barriers to predict barriers for any model pa-
rameters. This rescaling method enables us to compute the
nucleation rate for the GO model for any reasonable combina-
tion of ∆F∗, n∗, chain stretch and long chain concentration.

4.1.3 Comparison with experiments We recently per-
formed76 a quantitative comparison of the GO model with
direct nucleation rate measurements from a flowing melt by
Pantani and coworkers17,18. These measurements were made
on a polydisperse isotactic polypropylene (iPP) melt in steady
shear, at a range of shear rates and temperatures. To model
these data with the GO model, we approximated this fully
polydisperse material as a bimodal blend69. There is no sin-
gle obvious position to define the division between the high
and low molecular weight fractions of the melt and so we took
the final 1% of the molecular weight distribution as the long
chain component. Flow parameters could be accurately deter-
mined from literature values and were confirmed against linear
rheological measurements69. However, the crystallisation pa-
rameters could only be estimated from the literature and final
values were determined by fitting to the flow-induced nucle-
ation data. In order to predict the nucleation rate we require
the basic move attempt timescale τ0 and the quiescent values
of ∆F∗ and n∗ (or equivalently, the bulk and interfacial free
energy parameters εb and µs). The basic move rate τ0 could
be estimated from the monomer diffusion time that is implied
by the rheological relaxation times, ∆F∗ can be estimated by
considering the ratio of the quiescent nucleation rate to τ0 and
n∗ can be estimated by assuming the critical nucleus size to
be of the same order as the lamella thickness84. We obtained
the final values of these crystallisation parameters by fitting to
the iPP nucleation rate data17, across the full range of mea-
sured flow rates, at 140◦C. Essential to this fitting process was
the 1D projection method described in section 4.1.2, which
enabled rapid evaluation of the GO model’s nucleation rate
predictions as a function of the input parameters, without the
need for numerically expensive simulations.

Having fitted the values for a single temperature (140◦C) we
extended the comparison to the two additional experimental
temperatures18. We assumed that µS does not change signifi-
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Fig. 8 Comparison of the GO model’s nucleation rate predictions to
experimental measurements of the nucleation rate from an iPP melt
undergoing steady shear at several temperatures17,18.

cantly with temperature and that τ0 shifts in the same way as
the rheological timescales. This leaves the bulk free energy of
crystallisation εB as the only free parameter for each of the two
new temperatures. The result of fitting εB is shown in fig 8.
The model captures well the experimental data, confirming
that changes in entropy upon stretching are sufficient to ac-
count for observed enhancement of nucleation. There is some
systematic disagreement at the highest shear rate for each tem-
perature. At these highest shear rates, the model overpredicts
the nucleation rate, suggesting that some addition factor sup-
presses the acceleration of shear-induced nucleation. It may
be that, at high shear rates, the finite supply of long chains
begins to locally exhaust as nuclei are formed.

The experimental nucleation rate data in fig 8 show an in-
creased sensitivity to shear as the temperature increases. That
is, the general slope of the nucleation rate with shear rate in-
creases with temperature. The GO model successfully pre-
dicts this trend and provides a molecular explanation. As the
temperature increases so does the quiescent critical nucleus
size, n∗, due to the weaker thermodynamic driving force for
crystallisation. For larger n∗ a greater number of stretched
segments can be incorporated into the nucleus before it grows
beyond the critical size, giving a correspondingly larger reduc-
tion in the nucleation barrier due to chain stretching.

4.2 Molecular dynamics

Yi et al.56,57,85 have recently performed an intriguing series
of molecular dynamics simulations. Although these simula-
tions concern only quiescent nucleation, they highlight poten-
tial pathways to progress in FIC. The simulations contain two
key innovations that involve the interplay of very detailed MD
simulations with the analytic modelling of classical nucleation
theory. Firstly, they used MD simulations to extract both the
interfacial energies for classical nucleation theory and details
of the nucleus topology along the nucleation pathway. Sec-
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ondly, they used concepts from classical nucleation theory to
extend their results to lower undercooling where the nucle-
ation rate is not accessible by direct simulation. This provides
the a quantitative model of homogeneous nucleation in poly-
mers derived from first principles, along with a methodology
by which MD simulations can inform the modelling assump-
tions required for more tractable approaches.

Yi et al. performed direct MD simulations of nucleation of
polyethylene chains at about 30% undercooling. From these
data, they used first passage time analysis to extract the nucle-
ation rate and identify the critical nucleus size n∗. They stud-
ied chains with 8, 20, 150 and 1000 carbons56,57,85, with the
latter two chains being long enough to exhibit chain folding
when crystallised. Monte-Carlo sampling of the free energy
barrier, also confirmed the barrier properties obtained by first
passage time analysis85. A cylindrical model, based on clas-
sical nucleation theory, was used to characterise the nucleus
shape and to extract the interfacial free energies. The nucle-
ation rates obtained for the longest two chains were almost
identical. This indicates that nucleation, at this high under-
cooling, is controlled by the local environment, which is in-
sensitive to molecular weight. Indeed, even nuclei of ∼ 800
atoms involved only short segments the chains.

Using the survival probability method, the critical nucleus
size was determined as a function of temperature. This avoids
the need for direct simulations at higher temperature as the
nucleation pathways obtained for 30% undercooling were as-
sumed to be valid at high temperatures. This approach pro-
vides n∗ as a function of temperature, along with the variation
of the two interfacial free energies. For the longest chains, the
interfacial free energies were found to vary strongly with tem-
perature. These interfacial free energies were then combined
with the Gibbs free energy difference between the crystal and
melt phases, which was calculated from the degree of under-
cooling, to compute the nucleation barrier. The computed free
energy barrier and the segmental dynamics, were then used in
a classical nucleation calculation, which lead to the tempera-
ture dependence of the nucleation rate.

5 Open questions and future directions

5.1 Future directions

There is still significant new research that is required in order
to meet the ultimate goal of multiscale modelling in polymer
crystallisation: that is, to drive insight and quantitative results
gained from the most detailed level of simulations, through
the various coarse-graining levels, to derive macroscale con-
tinuum models that simultaneously have deep-rooted molecu-
lar origins and yet are suitable to model polymer processing.

I have described here a few examples of this methodol-
ogy in practice. These include work by Rutledge and co-

workers56,57,85 and Howard and Milner51,52 to extract the pa-
rameters for classical nucleation theory from detailed molec-
ular simulations. Another example is my group’s work to
project the GO model onto an analytically tractable low di-
mensional model44. Such approaches, that unite models
across different levels of coarse-graining, are needed at all
modelling levels in fig 3. This will require insight, new tech-
niques and the adoption of ideas from other areas86. A key
factor will be identifying which quantities to extract from de-
tailed simulations to resolve the coarse-graining assumptions
in less detailed techniques and to produce the closest corre-
spondence between neighbouring models.

A significant issue with stochastic simulation of nucleation
is the rare event problem. Specifically, although successful
nucleation events will be relatively fast, they occur so rarely
that the simulation times required to directly observe nucle-
ation are too long. These fluctuation-driven rare events are
ubiquitous in molecular science, for example in chemical reac-
tions, branched polymer dynamics and protein folding. Hence
there already exists a wide range of techniques to simulate
rare events. Some methods rely on an a priori specification
of an order parameter. The maximum of the free energy along
this order parameter must capture well the dynamically impor-
tant states that are at the cusp between progressing or failing
(i.e. the transition state). These approaches include Chandler’s
method87,88 and milestoning81. Intrinsic to these methods is
an insightful choice of order parameter. There are also alter-
native methods where the order parameter does not impose
assumptions on the pathways and only distinguishes between
the initial and final states, such as Transition Path Sampling82,
which has been generalised to non-equilibrium89 and to non-
stationary90 systems. I have discussed above how such tech-
niques have been used to solve the rare event problem in sim-
ulations of the GO model80. A key step will be identifying
which techniques are suitable for MD and lattice MC simula-
tions of polymer nucleation under flow.

The 1D projection algorithm, described in section 4.1.2, ef-
fectively produced an analytic expression for the nucleation
rate in the GO model. This enabled an effective comparison
with experimental data and provides key results towards de-
riving a macroscale continuum model from the GO simula-
tion algorithm. An important next step will be extending this
method to capture high shear rates, where oriented and elon-
gated nuclei develop. It seems likely that a higher dimensional
projection will be required to account for the higher number
of degrees of freedom (e.g. nucleus size, aspect ratio and long
chain composition) that are needed to describe these shish-like
nuclei. Another key step will be to apply this methodology to
MD and lattice MC simulations. The greater spatial resolution
of these simulations will test whether the total nucleus size is a
suitable projection for these more detailed simulations. More-
over, the diffusion constants extracted by technique will give
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a clear measure of the effective surface area available for at-
tachment in a polymer nucleus.

Every level of modelling requires a method to impose flow
onto the nucleation simulation. Although there are estab-
lished methods for molecular dynamics53,62,91, other levels of
coarse-graining require new approaches. For example, Hu et
al.(2002)40 used a single aligned chain to mimic the effect of
flow on long chains. However, this approach cannot be di-
rectly related to any particular flow rate or geometry. The GO
model relies on a rheological model to predict the amorphous
chain deformation under flow. It currently uses a model that
has been validated for both monodisperse71 and bimodal72

molecular weight distributions. Macroscale continuum mod-
els similarly rely on rheological models. Further development
of molecular flow models is needed as there is currently no
widely validated model for non-linear flow of polydisperse
polymers. Validating such a model for use in FIC modelling
is likely to require more than just comparison to mechanical
stress measurements. This is because very long chains at a
concentration of a few percent or less affect the bulk stress
only under very specific flow conditions. In contrast, it is
known that highly stretched chains at concentrations as low as
0.5% still dominate flow-induced nucleation11. Recent neu-
tron scattering measurements on flowing bimodal blends have
isolated the contribution from the long chain fraction72 and
this is a promising technique for determining the high molec-
ular weight tail dynamics in polydisperse polymers.

5.2 Open questions.

Despite the progress described above, there remain a number
of unsolved modelling problems in polymer nucleation. Some
relate to physical questions about the underlying nucleation
mechanism, while others concern the approaches required to
enable fully integrated multiscale modelling.
What is the shish kebab formation mechanism? Ex-
perimental evidence suggests that shish formation is a mul-
tistage process26–28, which may require cooperation between
multiple densely packed precursors. This poses a number of
questions. What is the nature of the order in the shish pre-
cursor? How does this precursor promote shish nucleation?
What role does flow-induced liquid-liquid separation play?
Are these structures formed from isolated elongated structures
as in the GO model or, instead, through the aggregation of
trains of closely packed precursors that are more spherically
shaped? Understanding these mechanisms will be essential
to controlling and optimising the favourable properties that
shish-kebabs imbue to solidified materials.
How does polydispersity affect the nucleation barrier? It
is clear that the concentration of stretched chains influences
both the nucleation rate and the crystal morphology. The GO
model accounts for bimodal blends, and can be generalised to

polydisperse systems. However, there is currently no reliable
way to predict the effect of concentration on the nucleation
barrier even for the simplest polydisperse system, bimodal
blends. However, experiments and polymer processing invari-
ably involve fully polydisperse systems. A reliable method
to compute the nucleation barrier for an arbitrary mixture of
chains of varying degrees of stretch is one method to obtain
an analytic model. Furthermore, the more detailed simulation
techniques, such as MD and lattice MC, have yet to explore
polydisperse systems, perhaps because of the large simulation
box sizes that are required to accommodate long chains and to
ensure good sampling of the most rarely occurring chains.
What is the correct low-dimensional projection for poly-
mer nucleation? Projecting molecular simulations onto lower
dimensional models is a key step in producing tractable mod-
els that are free of stochastic terms. Essential to this projection
is an effective choice of the reaction co-ordinate. A reaction
co-ordinate is a low-dimensional path through the system’s
phase space that provides a good measure of the progression
towards nucleation. More specifically, a “good” reaction co-
ordinate will be a strong predictor of the whether the trajec-
tory is fated to progress to the final state or to return to the
initial state. However, reaction co-ordinates are notoriously
difficult to determine even for well-studied systems, because
the dynamically relevant pathways are a complicated function
of the system’s interactions and dynamics. A commonly used
quantity in discussing reaction co-ordinates is the committor
probability92. This is the fraction of trajectories that success-
fully reach the final state, when released from a given point.
The optimal reaction co-ordinate is normal to the surface of
equal committor probabilities93. Unfortunately, isocommittor
surfaces are extremely expensive to compute.

Despite these difficulties, some useful results have been de-
rived using ad hoc reaction co-ordinates, i.e. projections that
have not been demonstrated to comply fully with the require-
ment of a reaction co-ordinate. For example, Hamer et al.44

used the total nucleus size NT and a number of studies51,57,63

have used the cylindrical nucleus model. The useful results
gained from these works suggests that, although these intu-
itively chosen co-ordinates are not fully orthogonal to the iso-
committor surfaces, they still provide a serviceable measure
of the extend of nucleation. This is, perhaps, because the
most dynamically relevant pathways to nucleation are suffi-
ciently narrow that the reaction co-ordinate need only be ap-
proximately orthogonal to the isocommittor surface in a small
region around the most likely nucleation path. Indeed Yi et
al.57 demonstrated that different choices for the reaction co-
ordinate give slightly different barriers but the same overall
crossing rate. However, detailed studies on crystal nucleation
in Lennard-Jones fluids94, have shown that nucleation oc-
curs along many distinct pathways, encompassing both well-
ordered compact nuclei and large, less ordered nuclei, imply-
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ing that the reaction co-ordinate must include both the cluster
size and the quality of the crystal structure.

From the work of Hamer et al44, it also seems possible
that the dimensionality of the projection may have to change
with flow rate, to account for the transition from point-like
to thread-like nuclei. As the shish kebab formation mecha-
nism remains unclear it is also unknown whether a projection
is even suitable in this case. Further work is needed to give
less ambiguous and ad hoc answers to these questions and to
provide a more systematic framework86 for selecting reaction
co-ordinates for polymer nucleation, particularly under flow.
Which simulation techniques for rare events can be ap-
plied to polymer nucleation? A key problem for modelling
nucleation in polymers is the difficulty in simulating rare
events. This issue affects all levels of coarse-graining that re-
quire stochastic simulation. As rare events are ubiquitous in
molecular science, a range of simulation techniques have been
developed to address this general problem, as discussed in sec-
tion 5.1. These techniques have been shown, in other contexts,
to be extremely effective. An important future task will be to
apply and adapt these algorithms to nucleation in polymers.

Some work addressing the difficulties of direct simulation
of nucleation has been carried out. My group recently ap-
plied a method similar to milestoning to solve the rare event
problem in the GO model80. Furthermore, Yi et al. used
a survival probability method to obtain nucleation rates, via
classical nucleation theory. Yi et al.’s method relies upon nu-
cleation paths that are obtained from direct simulation at high
undercooling remaining valid at higher temperatures. This is
essentially the assumption that the reaction co-ordinate does
not change appreciably with temperature. At very low un-
dercooling or under strong flow the appropriate reaction co-
ordinate is likely to change due to qualitative changes in the
nucleation mechanism. Their method also relies on classical
nucleation theory holding in the region of interest. Both as-
sumptions may well be justified over a range of temperatures
and perhaps even under flow. However, the reliability of this
potentially very useful coarse-graining technique should ide-
ally be verified against separate simulations, either by direct
simulation or using an alternative fast nucleation algorithm.
How to incorporate flow into fast nucleation algorithms?
Even though flow hugely enhances the nucleation rate, fast
nucleation algorithms will still be required to simulate low
undercooling. In principle this is extremely problematic as the
dynamics under flow are non-reversible, which rules out many
of the rare event algorithms. There are exceptions to this, such
as forward flux sampling89, which provide one possible av-
enue for progress. A further possibility is offered by the quasi-
static result that was found for the GO model69. This suggests
that the separation of timescale between the slow flow dynam-
ics and rapid local crystallisation dynamics means that chains
can be held fixed in their instantaneous flow-induced config-

uration in order to sample the resulting instantaneous nucle-
ation rate. This approximation would allow the use of rare
event algorithms that rely on reversible dynamics. Within in
the GO model freezing the chain configurations is straightfor-
ward as the chain stretching under flow and nucleation dy-
namics are modelled by separate algorithms. However, in
molecular dynamics simulations the flow is imposed on the
simulation box. Thus, to exploiting the quasi-static result re-
quires some method hold the chains fixed in their flow-induced
configurations during the fast nucleation simulation. There
is no unambiguously correct way to implement this, how-
ever, it may be possible to exploit the separation of length-
scales between the flow dynamics and the nucleation dynam-
ics to locate a lengthscale above which the chains should be
held fixed. Some experimentation with different algorithms,
combined with comparison with direct nucleation simulations,
where possible, will be need to establish a reliable approach.
What is the role of the specific work? In particular, it is not
established why the macroscopically imposed specific work
summarises so well experimental data that encompasses vari-
ations in flow rate and flow time. Furthermore, it is not un-
derstood why the specific work appears to control both the
nucleation density and the threshold for shish-kebabs. Nev-
ertheless, these are well-supported empirical facts, which cur-
rently have no theoretical explanation. Although the specific
work is fundamentally a macroscopic quantity, it should be re-
latable to some molecular quantity. Ideally, the specific work
should emerge as a prediction of a molecular argument that
can predict the variation of the critical work with chemistry
and molecular weight distribution, rather than being an input
assumption3. As the specific work summarises large amounts
of experimental observation, understanding its origin will be
of great use to the development of continuum level models.
How does the crystal morphology influence the solid state
properties? It is known that the crystal morphology hugely
influences solid state properties. For example, shish-kebabs
improve mechanical properties20 and reduce permeability21.
However, in order to optimise final product properties a quan-
titative understanding of the connection between morphology
and solid properties is required. A key factor is the num-
ber of tie molecules and chain entanglements95. Both struc-
tures involve topologically constrained links between sepa-
rate lamella caused by amorphous sections of chain. These
links significantly improve mechanical properties, particularly
crack resistance. Information on these formations is accessi-
ble from detailed simulations and must be included in more
coarse-grained approaches.

6 Conclusions

Flow induced nucleation in polymers is significant to both
fundamental science and practical industrial processing. A
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detailed molecular understanding of flow-induced nucleation
would enable polymer processors to tailor and optimise the
solid state properties of polymer products by controlling pro-
cessing conditions. The most pronounced flow-induced af-
fects occur for long chains and at low undercooling. Un-
derstanding this regime is essential, but it presents the most
formidable modelling issues.

Polymer crystallisation involves a huge spread of both
length and timescale: the dynamics emerge from local
monomer motion but crystallisation leads to structures the
size of whole chains, or bigger, that develop on macroscop-
ically slow timescales. Multiscale modelling is essential to
bridge gaps in both length and timescales. There are a wide
range of simulation techniques that are applicable to poly-
mer nucleation, from molecular dynamics to highly coarse-
grained kinetic Monte-Carlo approaches. Tight integration of
the various levels of simulation is essential to ensure that more
tractable approaches retain the correct molecular physics.

There is a further timescale problem that arises because nu-
cleation is a rare event: the system makes frequent attempts to
nucleate but fails in the overwhelming majority of cases. The
success fraction decreases exponentially with the height of the
nucleation barrier and becomes extremely small at lower un-
dercooling. Therefore direct simulation requires very small
timesteps but must access very long timescales to observe a
statistically significant number of nucleation events. As this
difficulty affects all levels of modelling that rely on stochas-
tic simulation, it cannot be solved by coarse-grained algo-
rithms alone. However, there are simulation approaches that
address the issue of rare events. Recent attempts to apply
some of these ideas to polymer nucleation have begun to ex-
tend the range of temperature that can be simulated. Many
more sophisticated approaches to rare event simulation have
been developed from the numerous fields that are afflicted by
this common difficulty. A key next step will be applying and
adapting these techniques for polymer nucleation. Particular
care will be required to produce techniques that remain rigor-
ous even in the presence of strong flow.

Finally, the full potential of modelling polymer FIC will
only be achieved if molecular insight can be translated into
quantitative modelling of polymer processing, ultimately lead-
ing to optimisation of polymer products. This demands
tractable models that are free of stochastic terms. One method
to derive these macroscale continuum models is to project ex-
pensive simulations onto a lower dimensional model, which
can then be solved analytically using techniques from classi-
cal nucleation theory. This approach is fraught with the diffi-
cult of identifying an appropriate reaction co-ordinate. Some
recent approaches have made successful progress using intu-
itively estimated co-ordinates. Future progress will depend
upon a deeper understanding of which co-ordinate choices are
acceptable, leading towards a more systematic approach to ob-

taining co-ordinates and establishing their reliability.
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