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Propargylic Cation-Induced Intermolecular 
Electrophilic Addition / Semipinacol Rearrangement 

Hui Shao, Xiao-Ming Zhang, Shao-Hua Wang, Fu-Min Zhang, Yong-Qiang Tu,* 
Chao Yang,  

A novel propargylic electrophile-induced tandem intermolecular addition/semipinacol 
rearrangement was developed efficiently under mild condition. Various allylic silylether 
substrates as well as Co-complexed propargylic species were well applicable to this protocol 
and gave a series of synthetically useful β-propargyl spirocyclic ketones in moderate to good 
yields. Its synthetic application was also demonstrated by an efficient construction of the 
key tricyclic moiety of daphlongamine E. 
 

As one of the powerful methods for C-C bond formation and 
reorganization, the electrophilic addition / semipinacol 
rearrangement of allylic alcohol has been extensively utilized in 
organic synthesis.1 Accordingly, lots of electrophiles have been 
explored for achieving different synthetic goals via this 
rearrangement, but most of them belong to the non-carbon species, 
1b-d such as proton, halogens and some other heteroatom-containing 
species. In fact, carbon electrophile-initiated rearrangements could 
generate more complex and diverse carbon skeleton of resulted 
molecules if the electrophilic addition step can be realized, and thus 
would play a much more important role in the synthesis of complex 
architectures. However, it was not until 1969 that an intramolecular 
acetal-participated semipinacol rearrangement (also known as Prins-
pinacol reaction) was explored.2a-b Later this reaction was further 
extended and used as a key step in a number of synthetic 
approaches.1a,2 In contrast, the intermolecular carbon electrophile-
initiated rearrangements is much underexplored in comparison with 
the intramolecular version, despite of its more powerful and versatile 
utilities than the latter in view of generating the complexity and 
diversity of carbon framework.3 In 2007, Cha's group reported such 
a hemiacetal-initiated intermolecular reaction,3a which was well used 
in the total synthesis of cyathin A3 and B2.3b Later in 2010, Aube′s 
group further extended this method to accomplish the synthesis of 
lepadiformines.3c Recently, our group also has reported that an 
activated aldehyde carbonyl group of ethyl glyoxalate ester could 
trigger such a reaction with the dihydropyran-type allylic silylethers 
under the catalysis of Cu (II), providing various tricyclic systems in 
high efficiency.3e In spite of these pioneering works above, the 
carbon electrophiles used in these intermolecular reactions are only 
confined to the oxonium ions derived from acetal or aldehyde 
(Scheme 1a). Therefore, exploring the multi-functionalizable 
electrophile and further developing the synthetically more versatile 
intermolecular carbon-electrophile-initiated semipinacol 
rearrangements are still in high demand for organic synthesis. 
  The challenge for developing this kind of intermolecular reaction 
lies in not only finding a suitable condition to generate a carbenium 
ion electrophile active enough to take an intermolecular addition to 
the allylic alcohol or its silylether, but also requiring the substrate 
can survive from self-rearrangement under this condition. In this  

 

 
Scheme 1 Design of Carbon Electrophile-Initiated Semipinacol Rearrangement 

regard and in consideration of multi-reactivity and broad synthesis 
utility of the propargylic electrophiles generated from Nicholas Co-
complexed propargylic species,4,5 we envisioned that this in situ 
generated cation would be an electrophile active enough6 to promote 
such an intermolecular reaction (Scheme 1b). Herein, we wish to 
present our preliminary research results on this tandem 
propargylization/ semipinocal reaction, which has provided a series 
of α-quaternary β-propargyl spirocyclic ketones and established a 
short route to the 5/6/7-tricyclic core of daphlongamine E. 

As the spirocyclic units possessing oxa-, aza- and all-carbon- 
quaternary center were present in numerous bioactive natural 
products, for example capillosanane, vallesamidine and 
daphlongamine (Figure 1), the allylic silylether substrates with the 
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corresponding dihydropyran,3e,7a dihydropyrrole7b and 
cycloalkenone7c-d 

 
Figure 1 Natural Products Containing Various Spirocyclic Units 

motifs, which can be readily prepared from commercial available 
materials in short steps, were used to examine our expected tandem 
reaction for constructing these units, respectively. Firstly, the 
dihydropyran-type allylic silylether 1a and the Ac-protected Co-
complexed propargylic species 2a were used as the model substrates 
to screen the reaction condition (Table 1). Initially, several Lewis 
acids (BF3·Et2O, In(OTf)3, EtAlCl2 and AlCl3) were tested in DCM. 
Unfortunately, reactions always resulted in the sole undesired self-
rearrangement product 4 in high yield, except using AlCl3 (entry 1)8 
in which the desired product 3a could be produced in low total yield 
of 32 % after subsequent demetalation of Co-complexed-product 
with Fe(NO3)3·9H2O. Considering that the competing self-
rearrangement might take place prior to the formation of Co-
complexed propargylic cation under Lewis acids promotion, we 
altered our experimental sequence.9 Thus, the mixture of AlCl3 and 
2a in DCM was firstly stirred at 0 ºC for 1.5 hour, then a solution of 
1a in DCM was added at -78 ºC. To our delight, this operation 
improved the yield to 43 % (entry 2). Then, more Lewis acids were 
screened to further optimize this reaction. In the presence of 
In(OTf)3 or SnBr4, only undesired ketone 4 was obtained (entries 3 
and 4). Other Lewis acids, such as EtAlCl2, BF3·Et2O, and TiCl4, 
were effective, but also could not avoid the formation of 4 
completely (entries 5-7). Fortunately, a good overall yield 71 % was 
achieved when SnCl4 was used, and only trace amount of 4 was 
obtained (entry 8). Furthermore, solvent effects were also observed 
in this tandem process. When toluene was used, the reaction yield 
decreased dramatically to 42 % (entry 9). While the use of some 
other solvents containing O- or N-atom (such as acetone, acetonitrile, 
THF, or DME) afforded much poorer results, leading to only 4 or no 
reaction. 

Table 1. Optimization of Co-Complexed Propargyl Electrophile Initiated 
Semipinacol Rearrangementa 

 
Entry Lewis 

acid Solvent Time 
(min) 

Yield of 
3ab 

Yield 
of 4b

1c AlCl3 DCM 90 32 % 23 %
2c AlCl3 DCM 90 43 % 40 %
3c In(OTf)3 DCM 90 none 70 %
4 SnBr4 DCM 45 none 42 %
5 EtAlCl2 DCM 10 23 % 66 %
6 BF3·Et2O DCM 10 37 % 37 %
7 TiCl4 DCM 10 58 % 25 %
8 SnCl4 DCM 10 71 % trace
9c SnCl4 toluene 90 42 % trace
aUnless other specified, reaction operated  in a general process.9 
b Isolated  yield. c Reaction performed  at -78 ºC to RT. 

With the optimized condition (Table 1, entry 8, also see a 
detailed description9) in hand, we then probed the substrate 
scope of this transformation (Table 2). Firstly, a range of active 
dihydropyran-type allylic silylethers 1a-1f was subjected to the 
standard reaction condition. Among them, 1b-1d with aryl or 

alkyl substituent on the cyclobutane moiety went smoothly 
through the rearrangement initiated by un-substituted Co-
complexed propargyl electrophile, giving corresponding 
spirocyclic ketones 3b-3d in moderate to good yields (65-75 %). 
A bigger-sized cyclopentanol silylether 1e could also be 
effective to this rearrangement, albeit in a slightly lower yield 
(57 %). And this protocol could be further extended to the 
secondary alcohol silylether 1f, but the yield of 3f formed was 
much lower (31 %), which might be due to partial 
decomposition of Co-complexed 3f in the acidic environment. 
Next, various substituted Co-complexed proparyl electrophiles 
were examined under the same condition9. Fortunately, 
different substitutions at C1 and C3 of the Co-complexed 
propargyl electrophiles were well tolerated without 
significantly affecting the reaction efficiency, affording the 
corresponding products 3g-3l in moderate to good yields in 
most cases. Additionally, the use of 3,3-dimethyl-substituted 
Co-complexed propargyl electrophile only resulted in the self-
rearrangement product, probably because the in situ formed 
cation underwent a proton-elimination before electrophilic 
addition.10 The trans-relative configurations between propargyl 
and migrating carbon in products 3a-3l were deduced by X-ray 
diffraction of 3j as a representative (Figure 2), which was 
consistent with the stereoselectivity of typical electrophilic 
addition/  semipinacol rearrangement.11 

Table 2 Reaction Results of Dihydropyran-type Allylic Silylethers 1a-1l with Co-
Complexed Propargyl Electrophiles 

1. SnCl4, DCM, 0 oC to -78 oC
2. Fe(NO3)3•9H2O, EtOH, RT

2

R3

Co(CO)3(CO)3Co

R4

+
OAcO

OTMS
O R2

R3

R41a-l
3a-l

R2R1 O R1

 
 

Subsequently, the dihydropyrrole-type allylic silylether 1g 
was examined and demonstrated to be well effective to several 
Co-complexed propargylic electrophiles under the standard 
condition9, producing 3m, 3n, and 3o in good yields (Table 3). 
The relative configuration of 3m-o was deduced by X-ray 
diffraction of 3n (Figure 2). 

Table 3. Reaction Results of Dihydropyrrole-Type Allylic Silylether 1g with Co-
Complexed Propargyl Electrophiles 
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