ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this *Accepted Manuscript* with the edited and formatted *Advance Article* as soon as it is available.

You can find more information about *Accepted Manuscripts* in the [Information for Authors](http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp).

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard [Terms & Conditions](http://www.rsc.org/help/termsconditions.asp) and the Ethical quidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

Page 1 of 3 ChemComm

Journal Name RSCPublishing

COMMUNICATION

Unexpected dehomologation of primary alcohols to one-carbon shorter carboxylic acids using *o***iodoxybenzoic acid (IBX)†**

Cite this: DOI: 10.1039/x0xx00000x

Shu Xu,‡ Kaori Itto,‡ Masahide Satoh and Hirokazu Arimoto*

DOI: 10.1039/x0xx00000x

Received 00th January 2012, Accepted 00th January 2012

www.rsc.org/

A novel and efficient transformation of primary alcohols to one-carbon shorter carboxylic acids using IBX is reported. Mechanistic studies revealed that the combination of IBX and molecular iodine produces a different active hypervalent iodine species.

The adjustment of carbon chain length is often crucial in organic synthesis. Dehomologation, as the necessary complement to homologation, is thus regarded as a fundamental reaction. However, even the dehomologation of simple substrates sometimes requires tedious multi-step strategies. For instance, primary alcohols may be oxidized to carboxylic acids and then subjected to the Hunsdiecker reaction to obtain corresponding dehomologated alkyl halides. To the best of our knowledge, the simple dehomologation of primary alcohols has only been achieved with concentrated nitric acid¹ or Cr (VI) reagents, ^{2,3} and thus, both methods have limited scope. Herein, we report a novel dehomologation of primary alcohols to corresponding one-carbon shorter carboxylic acids using *o*iodoxybenzoic acid (IBX)⁴ as a mild oxidant.

In the course of our studies on natural product total synthesis, we attempted to prepare aldehyde **1b** via oxidation of precursor alcohol **1a** with IBX in refluxing EtOAc (Scheme 1). Surprisingly, the major product was one-carbon shorter carboxylic acid **1c**, albeit in modest yield. The expected product **1b** and its overoxidized product $(carboxylic acid without carbon loss⁵)$ were not detected. In fact, the above reaction conditions were originally reported to provide aldehydes.⁶ To the best of our knowledge, this dehomologation has yet to be reported under similar conditions. It was thought that the partial decomposition of IBX to a lower valent iodine species may affect this surprising and interesting dehomologation, because a light red color was observed as the reaction progressed, suggesting the generation of I² . Because of the potential usefulness of the transformation and our interest in the reaction mechanism, we next investigated the scope of the reaction.

In an initial study, using *n*-heptanol (**2a**) as the model substrate, IBX dehomologation in the presence or absence of I_2 was explored (Table S1, ESI). When I_2 was added to the reaction system, a shorter reaction time and a higher dehomologation ratio of *n*-hexanoic acid (**2c**) to *n*-heptanoic acid (**2d**) was observed. Solvent screening then disclosed that DMF yielded the best selectivity and the shortest reaction time. While an oxygen atmosphere provided a better yield,

excellent **2c**/**2d** selectivity was retained even under an Ar atmosphere.

With the optimized conditions in hand, we then investigated the scope of the dehomologation reaction (Table 1). In all cases, little, if any, unhomologated carboxylic acid was obtained, demonstrating the high selectivity of the established conditions. Substituents including alkyl chloride (entry 2), cyclopropane (entry 3), aryl bromide (entry 8), nitrile, (entry 9), anisole (entry 10), naphthalene (entry 11), phenyl ether (entry 12), benzyl ether (entry 13), and benzoate (entry 14) groups were tolerated in the reaction. Even 3 branched alcohols, including an adamantane subunit, gave good yields. Thus, the bulkiness of neighboring groups had only a limited effect on the rate and yield of the reaction (entries 4–6). In addition, both electron-donating and -withdrawing groups on the benzene ring in aromatic substrates did not alter the yield (entries 8–10). However, in contrast to the results with 3-branched alcohols (entries 5, 6, 8– 11), 2-branched alcohol **16a** gave the dehomologated ketone **16c** in only 5.5% yield,⁷ together with unhomologated carboxylic acid as the major product (entry 15).

Scheme 1 Serendipitous observation of the IBX dehomologation reaction. Tf = trifluoromethanesulofonyl, IBX = *o*-iodoxybenzoic acid.

To clarify the reaction mechanism, the dehomologation of **2a** in deuterated DMF (D₇-DMF) was monitored via NMR (Scheme 2). The reaction mixture was first stirred at room temperature for 1 h, and then the temperature was raised to 100°C. The yield of **2c** in this experiment was similar to that in Table 1 (entry 1). The 1 H- and 13 C-NMR analyses for the first 1 h indicated the oxidation of **2a** to aldehyde **2b** and formation of a small amount of 2-iodoaldehyde **2f**. Formation of **2b** and **2f** were also confirmed via GC–MS analysis using authentic samples.⁸ After the reaction temperature was raised to 100° C, **2b** was converted to **2f** and then further dehomologated to the carboxylic acid **2c**. In independent experiments (Scheme 3), aldehyde $2b$ and iodoaldehyde $5f$ were treated under $IBX-I_2$

conditions to afford the corresponding dehomologated carboxylic acids 2c and 5c, respectively, in good yields.⁹ These observations suggest the intermediacy of the aldehyde and iodoaldehyde in the dehomologation of primary alcohols. Moreover, the reaction of *n*-heptanoic acid (**2d**) under optimal $IBX-I_2$ conditions did not lead to the formation of *n*-hexanoic acid, thus excluding the possibility of the generation of unhomologated carboxylic acid as an intermediate. In addition, the generation of CO_2 as a product was confirmed via ¹³C-NMR analysis of the reaction of a 13 C-labeled substrate (Figure S3, ESI).

Table 1 IBX dehomologation with various primary alcohols ^a						
	OH. R^2 2a-15a		O DMF, 100 °C	$O_0^{''}$ OH (IBX), I_2 , O ₂ OН R 2c-15c		
Entry	Substrate		Time (h)	Product		Yield ^b $(\%)$
1	OН	2a	7	CO ₂ H	2c	74
\overline{c}	OН CI	3a	3	∕CO ₂ H CI ⁻	3c	97
3	OН	4a	3	CO₂H	4c	99
4	OH	5a	3	CO ₂ H	5c	73
5	OН	6a	3	CO ₂ H	6с	81
6	ОH	7a	9	CO ₂ H	7с	69
7	OH	8a	3	CO ₂ H	8c	72
8 9 10	$R = Br$ OН CN R OMe	9a 10a 11a	3 3 3	$CO2H$ R = Br CN R OMe	9с 10c 11c	72 100 90
11	OH	12a	3	CO ₂ H	12c	99
12	OН	13a	18	CO ₂ H	13c	82
13	OH	14a	$\overline{4}$	CO ₂ H	14c	57
14	OН	15a	21	260 ₂ H Ω	15c	91
15 ^c	OH	16a	3		16c	5.5

 a ^a Reaction conditions: a mixture of alcohol **a** (0.25 mmol), IBX (2.0 mmol), and I_2 (0.40 mmol) in DMF (3.6 mL) was heated at 100° C under an O₂ atmosphere for the indicated time. *^b* The yield was determined by GC–MS with *n*-nonanic acid as the internal standard. c IBX (10 eq) and I_2 (1.1 eq) were used and unhomologated carboxylic acid (41%) was also detected.

Additionally, NMR analysis of the reaction provided a clue to the active species that actually mediates dehomologation. Specifically, IBX was observed to be consumed via rapid reaction with I_2 to generate a species designated as X , which was the major detected hypervalent iodine species present during the conversion of the aldehyde **2b** to the carboxylic acid **2c**.Therefore, it is assumed that the newly formed compound *X* plays a key role in the novel dehomologation process. *X* was isolated in a nearly pure form as a colorless solid via filtration of an IBX-I₂ mixture without added substrate alcohol. The NMR spectra of *X* are shown along with those of IBX, *o*iodosobenzoic acid (IBA), and o -iodobenzoic acid $(BA)^{10}$ in Fig. 1 (for IR spectra, see ESI). Notably, the aromatic H-3 proton in X is not observed in the $H-MMR$ spectrum at room temperature, but can be seen in the spectrum obtained at 80° C.¹¹ In addition, the melting point of *X* was observed to be 238–240°C (dec.) and is also different from that of IBX $(233^{\circ}C)$,^{4a} IBA $(234^{\circ}C)$,^{12a} and BA $(161.6-163^{\circ}C)$.^{12b}

However, X-ray crystallographic analysis of *X* was not possible, and therefore, its structure remains unclear at this time. A tentative structure (Fig. 1a) is proposed based on the following evidence: (1) X forms via the reduction of IBX with I_2 , and BA forms via the reduction of *X* with I_2 , suggesting that the valence of the iodine atom in X is lower than that in IBX and higher than that in BA; (2) Hydrolysis of *X* in aqueous DMF provided IBA at room temperature. This observation suggests that the iodine atoms in X and IBA may have the same oxidation level (data not shown); and (3) The NMR spectra of *X* are very different from those of IBX and BA but similar to those of IBA (Fig.1).

Scheme 2 IBX-mediated dehomologation of **2a** in D7-DMF.

Scheme 3 IBX-mediated dehomologation of reaction intermediates **2b** and **5f**.

We next turned our attention to the role of X in this transformation (Scheme 4). As shown in Scheme 3, primary alcohols are oxidized to their corresponding aldehydes and then dehomologated to corresponding carboxylic acids. First, it was determined that the addition of *X* to alcohol **2a** did not provide the corresponding aldehyde in the presence or absence of I_2 . This implies that the aldehyde intermediate is generated via IBX oxidation. On the other hand, aldehydes (e.g., $5b$) react smoothly with X to afford the corresponding 2-iodoaldehydes (e.g., **5f**), which are dehomologated to the corresponding carboxylic acids at 100 °C. Notably, in the presence of a catalytic amount of I_2 , the dehomologation with X is accelerated and proceeds in higher yield. These results suggest that both *X* and some inorganic iodine species may work together during the carbon–carbon bond cleavage step. For comparison, the combination of molecular iodine with Dess–Martin periodinane (DMP) or (diacetoxyiodo)benzene (PhI(OAc)₂) was investigated using *n*-heptanal (**2b**) as the dehomologation substrate. Neither alternative hypervalent iodine species yielded results comparable to those obtained with IBX or species *X*. In fact, the desired dehomologated product **2c** was obtained in less than 20% yield with DMP and was not detected with $PhI(OAc)_2$.

During the last decade, IBX has attracted intense interest,¹³ not only as a reagent for the oxidation of alcohols to aldehydes and ketones,4b but also as a mild and selective reagent in other

surprisingly versatile transformations.^{13c-j} Therefore, it has been widely applied in the total synthesis of complex natural products.^{13f} The novel dehomologation of primary alcohols conducted by us stands as a new member of this class of reactions and will also be useful for the synthesis of functional molecules.

Fig. 1 Comparison of the ¹H- and ¹³C-NMR spectra of *X*, IBX, IBA, and BA. All spectra were measured in D_7 -DMF at room temperature. (a) ¹H-NMR spectra (600 MHz, 7.3 to 8.7 ppm). (b) ¹³C-NMR spectra (150 MHz, 90 to 180 ppm). A \neq H.

In summary, a novel, highly selective dehomologation of primary alcohols to their corresponding one-carbon shorter carboxylic acids using the mild, hypervalent iodine reagent IBX was developed. A stable hypervalent iodine species was isolated and shown to be crucial for the dehomologation. Further study of the reaction mechanism is currently underway.¹⁴

K. Itto thanks JSPS for a Research Fellowship for Young Scientists. We thank Associate Professor Yasunori Ohba and the late Professor Seigo Yamauchi (Institute of Multidisciplinary Research for Advanced Materials, Tohoku University) for helpful discussions.

Notes and references

Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan. Fax: + 81 22 217 6204; Tel: + 81 22 217 6201; E-mail: arimoto@biochem.tohoku.ac.jp

† Electronic Supplementary Information (ESI) available: Experimental procedures, optimization of reaction conditions, and spectroscopic data. See DOI: 10.1039/b000000x/

- ‡ These authors contributed equally to this work and are co-first authors.
- 1 (*a*) P. H. Washecheck, BE 775729, May 23, 1972 [*Chem. Abstr.*, 1972, **77**, 113810]; (*b*) C. Harald and K. Manfred, Ger. Offen., DE 3800790, July 27, 1989 [*Chem. Abstr.*, 1990, **112**, 7044]; (*c*) S.-B. Li, S.-M. Zhang, K. Wu and Y.-L. Li, *Huaxue Shiji*, 1992, **14**, 60.
- 2 (*a*) P. Bijoy and G. S. R. Subba Rao, *Syn. Commun.*, 1993, **23**, 2701- 2708; (*b*) R. A. Fernandes and P. Kumar, *Tetrahedron Lett.*, 2003, **44**, 1275-1278.
- 3 Dehomologation has been reported as a side reaction in Jones oxidation, see: (*a*) G. Just, C. Luthe and H. Oh, *Syn. Commun.*, 1979, **9**, 613-617; (*b*) J. T. Doi, G. W. Luehr, D. del Carmen and B. C. Lippsmeyer, *J. Org. Chem.*, 1989, **54**, 2764-2767.
- 4 (*a*) C. Hartmann and V. Meyer, *Ber. Dtsch. Chem. Ges.*, 1893, **26**, 1727-1732; (*b*) M. Frigerio and M. Santagostino, *Tetrahedron Lett.*, 1994, **35**, 8019-8022.
- 5 For IBX oxidation of alcohols to carboxylic acids without carbon loss, see: A. P. Thottumkara, M. S. Bowsher and T. K. Vinod, *Org. Lett.*, 2005, **7**, 2933-2936.
- 6 J. D. More and N. S. Finney, *Org. Lett.*, 2002, **4**, 3001-3003.
- 7 For examples of chromium reagents dehomologation of 2-branched alcohols to the ketones, see Ref. 2.
- 8 Aldehydes and alpha-iodoaldehydes were characterized as key intermediates via GC–MS and NMR analyses. The characterization of other reaction intermediates and the examination of their possible involvement in this dehomologation are underway.
- 9 This result implied that our reaction conditions were also effective for the dehomologation of aldehydes, and may be a promising supplemental method for the Norrish I photocleavage and the transition-metal catalyzed deformylation of aldehydes, while the latter two methods usually could only produce the unfunctionalized dehomologated alkanes.
- 10 IBA and BA have been reported as reduced species of IBX by I_2 in DMSO, see: J. N. Moorthy, K. Senapati and S. Kumar, *J. Org. Chem.*, 2009, **74**, 6287-6290.
- 11 For attribution of NMR peaks of *X* and comparison of NMR spectra of *X* at room temperature and 80°C, see ESI†.
- 12 (*a*) J. G. Sharefkin and H. Saltzman, *Anal. Chem.*, 1963, **35**, 1428- 1431; (*b*) W. J. Horton and D. E. Robertson, *J. Org. Chem.*, 1960, **25**, 1016-1020.
- 13 For recent reviews, see: (*a*) V. V. Zhdankin, *Chem. Rev.*, 2008, **108**, 5299-5358; (*b*) M. Uyanik and K. Ishihara, *Chem. Commun.*, 2009, **45**, 2086-2099; (*c*) V. Satam, A. Harad, R. Rajule and H. Pati, *Tetrahedron*, 2010, **66**, 7659-7706; (*d*) V. V. Zhdankin, *J. Org. Chem.*, 2011, **76**, 1185-1197; (*e*) J. P. Brand, D. F. González, S. Nicolai and J. Waser, *Chem. Commun.*, 2011, **47**, 102-115; (*f*) A. Duschek and S. F. Kirsch, *Angew. Chem., Int. Ed.*, 2011, **50**, 1524- 1552. Other references: (*g*) D. S. Bhalerao, U. S. Mahajan, K. H. Chaudhari and K. G. Akamanchi, *J. Org. Chem.*, 2007, **72**, 662-665; (*h*) E. V. Bellale, D. S. Bhalerao and K. G. Akamanchi, *J. Org. Chem.*, 2008, **73**, 9473-9475; (*i*) E. V. Bellale, S. N. Huddar, U. S. Mahajan and K. G. Akamanchit, *Pure Appl. Chem.*, 2011, **83**, 607- 612; (*j*) J. S. Yadav, S. K. Biswas and R. Srinivas, *Synthesis*, 2006, 4237-4241.
- 14 A plausible reaction mechanism for this homologation is proposed in Fig. S4 of the ESI.