This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Crystallographic determinations of solid-state structural transformations in a dynamic metal–organic framework

Gui-Lian Li, Guang-Zhen Liu,*a Lu-Fang Ma,a Ling-Yun Xin,a Xiao-Ling Li,a and Li-Ya Wang,a,b

Various solid-state transformations in a metal–organic framework were determined by X-ray crystallography.

Metal-organic frameworks (MOFs) with structurally dynamic properties have attracted extreme interest due to their unique potential in switching, sensing, transport, and storage etc.1,2 Implementation of MOFs with single-crystal to single-crystal (SC-SC) structural transformation would enable clear expression of such dynamic features,3 because the single crystal X-ray crystallography paves the way for the accurate determination of the intermediates during the solid-state transformations that are typically involved in a significant rearrangement of structure motifs in the crystals including rotation, bending, swinging, sliding, or even cleavage/formation of chemical bonds.4 Unfortunately, there are not many dynamic MOFs with the ability to undergo a SC-SC transformation, as such crystals usually do not survive large degree of structure deformations.5 Generally, the solid-state transformation mechanisms were indirectly investigated through vibrational spectroscopy to monitor the topotactic nature, solid-state NMR to probe the conformational details of possible intermediates, and atomic force microscopy (AFM) techniques to explore the surface properties etc.6

Herein, we presented a new 3D “soft” MOF, [Zn$_2$(nbdc)$_2$(bpe)$_2$(OH)$_2$]$_2$H$_2$O·C$_2$H$_5$OH (1·H$_2$O·C$_2$H$_5$OH) (H$_2$nbdc = 4-nitrobenzenedi-1,2-bicarboxylic acid and bpe = 1,2-di(4-pyridyl)ethylen), prepared by hydrothermal reaction of Zn(OAc)$_2$·2H$_2$O, H$_2$nbdc, and bpe in EtOH·H$_2$O. The phase purity of the bulk material was confirmed by powder X-ray diffraction (PXRD) (Fig. S1, ESI†). Single crystal X-ray diffraction (SCXRD) revealed that 1·H$_2$O·C$_2$H$_5$OH consists of a linear trinuclear [Zn$_3$N$_2$(µ$_3$-OH)$_3$(COO)$_4$]$_3$, dictating the overall framework topology of (6,8) cda. The framework consists of two types of cage structures identified as A and B, of which two smaller cages A at the channel corners accommodated by one H$_2$O molecule possess a triangular prism-like shape enclosed by four bpe and two nbdc linkers, and the larger cage B at the channel centre filled with one EtOH molecule possesses a sphere-like shape surrounded by four nbdc linkers. Each unit cell contains four cages (2A and 2B) with each cage A accommodated by one H$_2$O molecule and each cage B filled with one EtOH molecule (Fig. S2–S6, ESI†). The hierarchical pore structures provide a desired platform allowing for detailed exploration of the SC-SC structural transformations including reversible desolvation-resolution, I$_2$ uptake-release, and photochemical [2+2] cycloaddition.

Thermogravimetric analysis (TGA) (Fig. S7, ESI†) and variable-temperature powder X-ray diffractions (VTXRD) (Fig. S8, ESI†) showed that the air-stable crystals of 1·H$_2$O·C$_2$H$_5$OH can maintain good crystallinity and framework integrity at least before 240°C. It is noted that 1·H$_2$O·C$_2$H$_5$OH can suffer from various SC-SC desolvated-resolvated structural transformations (Fig. 1). Wherein the solvent-free phase I is hard to be captured because a rapid and dynamic rehydration process (Fig. S9 and S10, ESI†) is completed within several minutes in air to give a hydrated phase I·H$_2$O·2.5H$_2$O (Table S1, ESI†) with one H$_2$O molecule located in cage A and 2.5H$_2$O molecules accommodated in cage B.

Fig. 1. Schematic representation of various SC-SC desolvated-resolvated behaviors for 1·H$_2$O·C$_2$H$_5$OH with different routes labeled as Route a→h.

Fortunately, we succeeded in capturing an intermediate during the hydration of I to give a partly hydrated phase 1·H$_2$O (Table S1, ESI†)
with one H$_2$O molecule accommodated in cage A leaving cage B still empty. This clearly shows that the water molecules firstly fill the smaller cage A, then occupy the larger cage B, that is, 1·H$_2$O is the intermediate from 1 to 1·H$_2$O·2.5H$_2$O. It is reasonable to propose that water molecule can diffuse into the cage A from the cage B through the side window between them, considering that the cage A has no pore opening in the crystal surface to allow for the direct access of guest molecule. The filling of the smaller then the larger adsorption sites is consistent with the theory of micropore filling, indicating a two-step pore-filling sequence. Such fast water adsorption behavior in air in a SC-SC manner is a rarely observed phenomenon in coordination polymers.

Furthermore, the exposure of crystal 1 to mixed EtOH/H$_2$O vapours makes it restore to 1·H$_2$O·C$_2$H$_5$OH in a SC-SC manner, implying a stronger EtOH affinity over H$_2$O for the cage B; this prompts us to examine iodine-uploaded capacity of the microporous framework. The crystals appear a remarkable change of color from colorless to violet after suspending the crystals into ethanol solution gave 1.07I$_2$ for three zinc atoms. The colour change is consistent with the presence of iodine delivered by the framework. The crystals display a color change from colorless to violet after suspending 1·H$_2$O·C$_2$H$_5$OH in iodine cyclohexane solution for a period of time. Thiosulfate determination of the iodine content by the release of I$_2$ into ethanol solution gave 1.07I$_2$ for three zinc atoms. The photographs (Fig. S11, ESI†) showed that the “static” iodine release without disturbing the crystals induces the color of solution gradually appearing violet with increasing time, and the “kinetic” iodine release with constant stirring explored by time-dependent UV/vis spectroscopy displays the absorption maximum λ_{max} at 206, 226, 288 and 360 nm becoming stronger with increasing iodine content in the ethanol (Fig. S12, ESI†). The intensity of absorption band at 206 nm is proportional to concentration of I$_2$ molecule, and the absorption bands at 288 and 360 nm correspond to polyiodide I$_n^-$ anion that is generally stabilized by H$^+$ ion. It is shown that the delivery of iodine increases linearly with increasing time at least in first 90 min, whereas a complete iodine release needs more than two weeks to reach the equilibrium state, implying that the iodine delivery is governed by a strong host-guest interaction, in contrast to conventional iodine adsorbent materials lacking an accessible well-defined host-guest interaction.

Fig. 2

(a) The cell unit of 1·H$_2$O·I$_2$. (b) The relative position between the disordered I$_2$ molecule and nbdc ligands.

The SCXRD (Table S1, ESI†) showed that the EtOH guest in cage B was exchanged by one I$_2$ molecule disordered over two positions, leaving the H$_2$O guest in cage A static (Fig. 2). The TGA (Fig. S13, ESI†) showed that a value of x \approx 0.94 was obtained by taking into account one water guest for per molecular formula 1·H$_2$O·X$_i$S, which is consistent with thiosulfate determination and SCXRD analysis. The I$_2$ affinity of 1·H$_2$O·C$_2$H$_5$OH may be attributed to regular π-electron-rich wall of the cage B made of four nbdc carboxylate ligands. The separation between the centre of I-I bond and the centroid of the benzene ring of nbdc ligand ranges from 4.125 to 4.253 Å, probably forming CT-complex between I$_2$ and benzene rings (CT = charge transfer), which achieves a better controlled uptake and release of I$_2$. The calculated density of 1·H$_2$O·I$_2$ (1.907 g/cm3) increased remarkably (ca. 19.8%) relative to that of 1·H$_2$O·C$_2$H$_5$OH (1.591 g/cm3). A few examples of iodine inclusion into organic/inorganic porous frameworks12 and into MOFs10,13 have been known, however, the reports on iodine adsorption of MOFs in a SC-SC manner only recently emerged, to the best of our knowledge.14 Probably, the inclusion of I$_2$ requires to break original host-guest H-bonding interactions and to reconstruct new host-guest interactions such as CT-complex and halogen bonds, which creates strain to make the crystal present a certain degree of pulverization.

Furthermore, the distance between the centers of the C–C bonds of parallel positioned bpe ligands is 3.738 Å (less than 4.2 Å), satisfying the topophotochemical criteria established by Schmidt.15 It is noted that there are two different orientated bpe pairs bridging the trimeric Zn$_3$ units to form two uniform ladder motifs propagating along the [110] and [1–10] direction, respectively. Such structural features provide an ideal model to study the details of the solid-state photodimerization of C=C bonds. Upon UV irradiation of 1·H$_2$O·C$_2$H$_5$OH for a period of time, the crystals display a color change from colorless to yellow. The X-ray crystallography showed that 1·H$_2$O·C$_2$H$_5$OH can also convert to 1·H$_2$O·2.5H$_2$O resulting from the evacuation of EtOH guest when UV irradiation above 6h and the subsequent rehydration after removing the light. The 1H NMR spectra showed the signals from olefinic protons ($d = 7.54$ ppm) gradually weaken, accompanying with the appearance of the signals of the cyclobutane protons ($d = 4.67$ ppm) as prolonged irradiated time, and the shifted signals of bipyrine protons gradually strengthen ($d = 8.35$ and 7.24 ppm), coupling with the gradually weakened signals from unreacted bpe ligands ($d = 8.60$ and 7.62 ppm) (Fig. S14, ESI†) and that the prolonged irradiation can improve the percentage of photodimerized product; finally reaching a maximum 78% [2+2] cycloaddition after irradiation for 63h. Due to the loss of the single crystalline nature, the solid-state structure of the final photochemical product could not be determined by SCXRD.

Fortunately, a 50% photoreactive intermediate, [Zn$_2$(nbdc)$_2$(rect-pbct)$_6$(bpe)$_4$(OH)$_3$]·H$_2$O·0.5H$_2$O (2) (Table S1, ESI†), was successfully captured by irradiating crystals of 1·H$_2$O·C$_2$H$_5$OH for 13h (Fig. 3). The SCXRD showed that the framework almost remains unchanged (Fig. S16, ESI†) except for the local formation of new C=C bonds across the ethylene bonds between parallel bpe ligands along the [1–10] direction, whereas parallel bpe ligands along the [110] direction only display a degree of the distortion. For unreacted bpe pairs, the C–C bond distance of 1.508 Å within bpe ligands is larger than 1.319 Å of initial C=C bond and comparable to that of normal C=C bond, but the C–C distance of 2.226 Å between parallel bpe ligands is much less than the separation of 3.738 Å across two initial C=C bonds. It is clear that 1·H$_2$O·C$_2$H$_5$OH displays an extremely anisotropic photoreactivity along the [110] and [1–10] directions. In the formation of the cyclobutane derivative, the cleavage and formation of chemical bonds is gradual rather than sharp, probably undergoing a serials of transition states. To the best of our knowledge, both the anisotropic photoreactivity and the gradual transformation mechanism are firstly observed in MOFs.

To date, there is only two reports on the photochemical [2+2] cycloaddition of 3D MOFs,17 in addition to a pillared-layer, [M$_2$(HC$_3$O$_4$)$_3$(bpe)$_2$(H$_2$O)$_2$]ClO$_4$·H$_2$O·bpe18 with a 60% photoreactivity between bridging bpe ligands and lattice bpe molecules, wherein the hydrogen-bonded bpe in the lattice probably provided the flexibility needed for photoreactivity. Usually, the bridging ligands are interlocked at both terminals such that the movements are restricted upon metal coordination. In such 3D cases, although the ligands have been found in parallel arrangements, the solids may not be photoreactive19 despite satisfying Schmidt’s
criteria. Most of the dimerization reactions usually occur in various organic compounds, metal complexes as well as low-dimensional coordination polymers (1D and 2D).1,2,6,20 The photoreactivity of 1H_2O-C_2H_5OH implies that its framework can suffer from a relatively high degree of structure deformation.

In summary, “soft” MOFs can suffer from various solid-state structural transformations with the framework retaining high integrity. The crystalline solids with hierarchical pore structures are inclined to a stepwise pore-filling during guest uptake, whereas the transport of I\textsubscript{2} is facilitated by unique host-guest interactions such as CT-complex. Solid-state photochemical [2+2] cycloaddition is extremely anisotropic and related to gradual rather than sharp cleavage and formation of chemical bonds.

This work was supported by the National Natural Science Foundation of China (No. 20971064 and No. 21271098) and by the Foundation for University Young Key Teacher by Henan Province of China (Grant No. 2011GGJS-153).

Notes and references

a College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471022, China. E-mail: gzliyul@126.com.

b College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, Henan 471061, China. E-mail: wly@nynu.edu.cn.

† Electronic Supplementary Information (ESI) available: Experimental and synthetic details, Table S1-S3 and Fig. S1-S16. CCDC 972455-972459. For ESI and crystallographic data in CIF or other electronic format. See DOI: 10.1039/c000000x/

