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1,2-Dideoxy-2-C-diphenylphosphinylglycopyranosides were 

first synthesized by the novel Mn(II)/air promoted reaction of 

diphenylphosphine oxide with various glycals in high yields 

with excellent regio- and stereoselectivities, which was 10 

clarified as a radical addition reaction controlled by the 

oxygen of vinyl ether. 

Because carbohydrate-derived organophosphorus compound 
plays an important role in the biosynthesis of oligosaccharides, 
the synthesis of nonhydrolyzable analogues has been an 15 

interesting subject.1 These analogues are considered to be 
metabolically inert and used as enzyme inhibitors in the study of 
enzyme mechanisms as well as the carbohydrate metabolic 
pathways.2 Among them, the carbohydrates that lack the hydroxyl 
group at the C-1 position are promising candidates. Besides, 20 

analogues such as carbohydrate-derived phosphine oxides and 
phosphines have also been successfully prepared and applied to 
homogeneous catalysis as enantiomerically pure ligands in the 
enantioselective syntheses.3 
   There are a number of naturally occurring carbohydrate 2-25 

phosphates.4 Therefore, The development of a general and 
efficient method for the formation of C-P bond at C-2 position of 
carbohydrates to synthesize 2-phosphono sugar analogues has 
become very important. The introduction of phosphonate at the 
C-2 position of carbohydrate was achieved by several groups,5 30 

and lithium diphenylphosphide was also introduced at C-2 
position of pyranoses to generate 2-deoxy-2-C-
diphenylphosphinyl-α-D-altropyranoside as an enantiomerically 
pure ligand.6 However, most previous syntheses require many 
steps and suffer bad regio- and stereoselectivities. The 35 

carbohydrate containing C-P bond at C-2 position that lacks the 
hydroxyl group at C-1 position remains sparse, although it is 
nonhydrolyzable analogue and enantiomerically pure ligand. In 
continuation of our interest in the syntheses of 2-C-substituted 
sugar analogues7 and biologically active carbohydrate analogues,8 40 

we wish to describe a general and efficient synthesis of 1,2-
dideoxy-2-C-diphenylphosphinylglycopyranosides by novel 
regio- and stereoselective phosphonyl radical addition to glycals, 
which was promoted via Mn(II)/air . 

In recent years, manganese(III)-based oxidative free radical 45 

reaction has become a valuable synthetic method, in which 
Mn(OAc)3 is most commonly used as a single-electron-transfer 

reagent to generate radicals from various carbonyl compounds.9 
Mn(II)/Co(II)/O2 catalyzed phosphonation of arenes10 and 
Mn(III) acetate promoted phosphonation of heteroaryl 50 

compounds11 were also achieved. We envisaged that the 
Mn(II)/O2 Redox Couple or Mn(III) promoted phosphonyl 
radicals could add to unsaturated sugars to form phosphorus-
containing carbohydrates. 
   Glucal 1 (Scheme 1) prepared according to the known 55 

procedure12 was first used as a radical acceptor to react with 
diphenylphosphine oxide in the presence of very cheap 
Mn(OAc)2·H2O in atmosphere. The formation of 2 was 
investigated under various conditions. The ratio of 
Mn(OAc)2·4H2O to glucal and the solvent have major influence 60 

on the reaction. The optimum is 3:1. Below 3:1, the yield 
decreases (Table 1, Entry 1-5). Acetic acid as a solvent is 
efficient at 60 °C, and a isolated yield of 92% was attained by use 
of acetic acid and 3 equiv of Mn(OAc)2·4H2O (Table 1, Entry 4). 
Above 60 °C, the yield decreases. The structure of 2 was 65 

definitely characterized by spectroscopic data. 2 also gave crystal 
suitable for X-ray analysis after recrystallization from methanol. 
Its X-ray crystal structure (Scheme 1) indicates the newly formed 
C-P bond at C-2 locates in equatorial position and the sugar ring 
keeps in chair conformation. 70 
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Scheme 1 regio- and stereoselective synthesis of 2-C-
diphenylphosphinylglucopyranoside 2 via Mn(II)/air promoted 
radial addition to glucal and its X-ray crystal structure. 75 

 
  To investigate the generality of this method and to synthesize 
various 1,2-dideoxy-2-C-diphenylphosphinylglycoside, the 
reaction was performed with the various glycals in acetic acid and 
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at 60 °C in the presence of 3 equiv of Mn(OAc)2·4H2O. 
Fortunately, all the reaction gave regio- and stereoselectivities, 
and the corresponding products were obtained in good to 
excellent yields, which were shown in Table 2. The reaction of 
acetyl protected glycal with diphenylphosphine oxide was much 5 

cleaner than the benzyl protected one and gave higher yield. In all 
cases, yields were higher than 65%. Besides, the by-product 1,2-
dideoxy 1-C-diphenylphosphinylglycoside from phosphonyl 
addition to C-1 position was not obtained. All the new 
compounds were characterized by 1H NMR, 13C NMR, 2D NMR, 10 

MS and IR spectra. 
 
Table 1 synthesis of 2-C-diphenylphosphinylglucopyranoside 2 
under various conditionsa 

Entry Mn(OAc)2·
4H2O/1 

Solvent T(°C) Time 
(h) 

Yield 
(%)c 

1 0:1 AcOH 60 24 0 
2 1:1 AcOH 60 36 trace 
3 2:1 AcOH 60 16 58 
4 3:1 AcOH 60 2 b 92 

5 3:1 AcOH 80 1.5 72 
6 3:1 CH3CN 60 24 67 
7 3:1 EtOH 60 16 32 
8 3:1 DMF 60 24 trace 
9 3:1 HCOOH 60 24 trace 
 
a190 mg (0.4 mmol) of 1 was used. bTLC indicated the reaction 
went completely and it was stopped immediately. cIsolated 
yield. 

     15 

In order to uncover this novel reaction further, the solvent 
AcOH was degassed,  it was then performed in the presence of 3 
equiv of Mn(OAc)2·4H2O under Ar atmosphere. No desired 
product was obtained. When this reaction was performed in the 
presence of the other Lewis acid such as FeCl3, AlCl3, Cu(OTf)2 20 

and InCl3·4H2O rather than Mn(OAc)2·4H2O/air, the desired 
product was also not obtained, which indicate Lewis acid can’t 
promote this kind of addition reaction. The reaction was then 
carried out using Mn(OAc)3 instead of Mn(OAc)2·4H2O/air or 
other Lewis acid. As expected, the various same products 1,2-25 

dideoxy-2-C-diphenylphosphinylglycopyranosides were 
obtained. Obviously, in the course of the reaction, Mn(OAc)3 
took effect as a single-electron-transfer reagent rather than a 
Lewis acid. Mn(OAc)2·4H2O itself can’t promote this addition 
reaction. Under air atmosphere, it was oxidized into Mn(OAc)3, 30 

which reacted with diphenylphosphine oxide by one-electron 
oxidation to generate diphenylphosphinyl radical 10 (Scheme 2). 
This radical could attack C-2 and C-1 position of glycal to give 
the corresponding adducts 11 and 12, respectively. In the C-2 
adduct 11, the newly formed C-1 radical next to an oxygen is 35 

stabilized by p-p orbital conjugation. However, in the C-1 adduct 
12, the p-p conjugation is interrupted by C-1. The energy of 11 
should be considerably lower than that of 12, thus the reaction to 
12 would be suppressed. In this way, the stable radical 11 could 
be more favourably formed, which was reduced by manganese(II) 40 

species followed by protonation to give the desired product 13.  
To authenticate the proposed mechanism, the structure of the 

radical 11 and 12 (R1 = CH2OAc, R2 = Ac) as examples were 

modelled using Gaussian 09 program.13 The structures of the 11 
and 12 were optimized at the B3LYP14/6-31G(d) level in AcOH, 45 

using the integral equation formalism polarisable continuum 
model (IEF-PCM).15 The energy of 11 is 3.49 kcal/mol lower 
than that of 12, indicating that 11 is much more stable than 12. 
The calculated molecular orbitals of 11 definitely reveal this p-p 
conjugation exists (Figure is shown in Page 12 in supporting 50 

information). The C-1 adduct 14 was not observed in TLC in this 
case. All of these have confirmed the proposed mechanism. The 
selective radical addition of phosphonyl to C-2 to form 13 is 
controlled by the oxygen atom of the vinyl ether.  

 55 

Table 2 Regio- and stereoselective syntheses of various 1,2-
dideoxy-2-C-diphenylphosphinylglycopyranosides via Mn(II)/air 
promoted phosphonyl radical addition to glycalsa 

Entry Glycalb Product Time 
(h)c 

Yield(
%)d 

 
 

1 
O

OAc

AcO
AcO

 

O

OAc

AcO
AcO

PPh2O
2  

 
 

2.5 

 
 

92 

 
 

2 
O

OAcOAc

AcO

 

O

OAc
OAc

AcO

PPh2O

3  

 
 

2.5 

 
 

85 

 
 

3 
O

OAc

AcO

 

O

OAc

AcO

PPh2O

4  

 
 

2 

 
 

80 

 
4 

OAcO
AcO

 

OAcO
AcO

PPh2O
5  

 
2 

 
82 

 
 

5 

O

OBn

BnO
BnO

 

O

OBn

BnO
BnO

PPh2O
6  

 
 

3 

 
 

65 

 
 

6 
O

OBnOBn

BnO

 

O

OBn
OBn

BnO

PPh2O
7  

 
 

4 

 
 

73 

 
 

7 
O

OBn

BnO

 

O

OBn

BnO

PPh2O
8  

 
 

0.5 

 
 

62 

 
8 

OBnO
BnO

 

OBnO
BnO

PPh2O
9  

 
3 

 
75 

aAcOH was used as the solvent and the reaction was performed 
at 60 °C in the presence of 3 equiv of Mn(OAc)2·4H2O under 
air. b9.0 mmol of glycal was used. cTLC indicated the reaction 
went completely and it was stopped immediately. dIsolated 
yield. 
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    In summary, this work demonstrated a novel Mn(II)/air 
promoted phosphonyl radical addition reaction of glycals with 
regio- and stereoselectivities. The selectivity of phosphonyl 
radical addition at C-2 was controlled by the oxygen atom of 
vinyl ether in the sugar ring due to the energy superiority and the 5 

formation of p-p orbital conjugation. The mechanism has been 
confirmed by theoretical calculation and experimental results. 
This novel reaction is mild, clean and efficient, suitable for 
various glycals. In this way, various metabolically inert 1,2-
dideoxy 2-C-diphenylphosphinylglycopyranosides were first 10 

synthesized in good to excellent yields. These sugars containing 
diphenylphosphine oxide moiety are also novel enantiomerically 
pure ligands and the precursors of chiral phosphine ligands in 
the enantioselective syntheses. 
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Scheme 2 The mechanism for the formation of 1,2-dideoxy 2-C-
diphenylphosphinylglycopyranosides. 
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