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Selective Synthesis of [7]- and [8]Cycloparaphenylenes 

Friederike Sibbel,a† Katsuma Matsui,b† Yasutomo Segawa,b,c Armido Studera and 
Kenichiro Itami*,b,c,d 

 

Cycloparaphenylenes (CPPs) are a remarkable class of hoop-

shaped conjugated macrocycles with inimitable properties. 

Herein we describe a divergent synthesis of [7]CPP and 

[8]CPP. Furthermore we present the first crystal structure of 

[7]CPP. Thus, we now have established the size-selective 

synthesis of [n]CPP (n = 7–16) in a uniformed cyclohexane-

based method. 

   Synthesis and characterization of belt-shaped conjugated systems, 
as well as their unique properties and their potential applications 
captivated scientists for decades.1 The creation of 
cycloparaphenylenes (CPPs),2 especially, gained significant interest 
due to their simple structure and the representation of the shortest 
sidewall segment of armchair carbon nanotubes (CNT).1f,3 Since the 
first successful synthesis of CPP by Bertozzi et al.,4 a variety of 
synthetic routes from the groups of Itami,5-10 Yamago,11-14 and 
Jasti4,15-19 have been published and [n]CPPs, where n is 6-16 have 
been synthesized. Moreover photophysical,4,11,12,15,16,19 optical20,21 
and electronic1b,6,22-26 properties as well as guest-encapsulating 
properties8,9,27 were investigated. More recently, we demonstrated 
the size-selective growth of CNT from a CPP template.28 Herein, we 
report a size-selective synthesis of [7]- and [8]CPP by a modular 
approach and present the first X-ray crystal structure of [7]CPP.  
   We previously reported the size-selective synthesis of [n]CPP (n = 
9-16).5,7,10 The key step of these syntheses is the formation of strain-
free triangle and square precursors from the terphenylene-
convertible L-shaped unit and linear units such as 1,4-
diborylbenzene or 4,4'-diborylbiphenyl. Although this methodology 
had an advantage to synthesize larger size [n]CPPs (n ≥ 9), it could 
not be applied to smaller CPPs. Therefore, we decided to develop a 
new arylcyclohexanone building block for the synthesis of [7]- and 
[8]CPP (Fig. 1). After the formation of a C-shaped unit from a L-
shaped unit and arylcyclohexanone, a nickel-mediated 
intramolecular C−Br/C−Br coupling should produce the macrocyclic 
precursor of [7]CPP. On the other hand, the reaction of the same 
intermediate in a palladium-catalyzed C−B/C−Br intermolecular 
cross-coupling reaction will lead to [8]CPP. This modular route to 
[7]- and [8]CPP shows the advantage that only one intermediate, the 
acyclic C-shaped unit, is necessary to synthesize both CPPs. In 

addition, cyclic precursors have less strain (see ESI). From the 
hypothetical homodesmotic reaction, the strain energies of triangular 
[7]- and [8]CPP precursors are 8.6 kcal·mol–1 and 10.4 kcal·mol–1, 
respectively, whereas [7]- and [8]CPP have much higher strain 
energy, 84.0 kcal·mol–1 and 72.2 kcal·mol–1, respectively.6 
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Fig. 1 Modular approach to [7]- and [8]CPP. 

   We started from our previously used L-shaped unit 1 and the 
newly developed 4-bromophenyl-4-methoxymethoxycyclohexanone 
(2), which is readily available via a two-step reaction from 1,4-
dibromobenzene and 1,4-cyclohexanedione-monoethyleneketal (for 
further information see ESI). The twofold addition of dilithiated 1 to 
2 afforded the C-shaped unit 3. A subsequent MOM-protection led 
to the desired precursor 4 for the following macrocyclization steps. 
The synthesis of [7]CPP was possible under cost-efficient 
conditions, using our previously reported nickel-mediated C−Br/C−
Br coupling8-10 in an intramolecular fashion. The macrocycle 5 was 
obtained in 67% yield. In case of [8]CPP, a palladium-catalyzed 
intermolecular cross-coupling of 4 with 1,4-benzenediboronic acid 
led to the desired macrocycle 6 in 27% yield. The treatment of 5 and 
6 with NaHSO4 under air facilitated the aromatization to furnish 
[7]CPP and [8]CPP in 17% and 12% yield, respectively. The total 
yield over six steps for [7]CPP was 4.6%, which is rather high 
compared to the previous report by Jasti et al. (eight steps, 1.5% 
yield)18 whereas total yield of [8]CPP (1.0%) was lower. 
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Scheme 1. Concise synthesis of [7]- and [8]CPP. Reaction conditions: a) TMEDA 

(N,N,N',N'-tetramethylethylenediamine), n-BuLi, THF, –78 °C b) iPr2NEt, MOMCl, 

CH2Cl2, r.t. c) Ni(cod)2, 2,2’-bipyridyl, DMF, 70 °C, 40 h; d) Pd2(dba)3∙CHCl3, X-Phos 

(2-dicyclohexylphosphino-2’,4’,6’-triisopropylbiphenyl), K3PO4, 1,4-

dioxane/water, 80 °C, 36 h; e) NaHSO4∙H2O, m-xylene/DMSO, 150 °C, 96 h for 

[7]CPP and 72 h for [8]CPP, respectively. MOM = methoxymethyl. 

   Recrystallization of [7]CPP from a chloroform/cyclohexane 
solution at room temperature afforded yellow single crystals 
which were suitable for X-ray crystallography. Fig. 2 shows the 
ORTEP drawing of the first crystal structure of [7]CPP, which 
forms a circular structure in the solid state. A disordered 
cyclohexane molecule was incorporated within the ring of 
[7]CPP. The packing mode of [7]CPP shows a herring bone 
type structure (Fig. 3), which was also observed in [8]-, [9]-, 
[10]-, and [12]CPP.8,9,13,17 Although only [6]CPP was aligned 
as tubular structure,16 it is still unclear what affects the 
alignment of CPPs in the solid state. 

 
Fig. 2 ORTEP drawing of [7]CPP∙cyclohexane with 50% thermal ellipsoids. All 

hydrogen atoms and the other part of disordered cyclohexane molecule are 

omitted for clarity. Half of the entire structure constitutes an asymmetric unit. 

 

 
Fig. 3 Packing structure of [7]CPP∙cyclohexane. A unit cell is shown as a 

rectangle. 

   The optical absorption and emission spectra of [7]- and [8]CPP in 
a chloroform solution are illustrated in Fig. 4. In the UV-vis 
absorption spectra, [7]- and [8]CPP exhibited shoulder-like 
absorption bands in the long-wavelength region around 400–420 nm 
in addition to the intense absorption bands with the absorption 
maximum wavelengths of 338–340 nm similar to other sizes of 
CPPs.19 The CPPs we synthesized gave almost the same absorption 
and fluorescence spectra as those reported by Jasti15 and Yamago11 
although the fluorescence spectrum of [7]CPP was slightly different 
from the reported one. The solution of [7]CPP shows very weak 
yellow fluorescence whereas [8]CPP shows green fluorescence 
excited at the absorption maximum wavelengths. 
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Fig. 4 Absorption (solid curves) and fluorescence (broken curves) spectra of [7]- 

and [8]CPP. 

   In summary, we have established a divergent and size-selective 
synthetic route to [7]CPP and [8]CPP. The overall yield of [7]CPP 
from commercially available starting materials is 2.4% over six steps. 
The X-ray crystal structure of [7]CPP, which was obtained for the 
first time, shows the same packing mode as larger CPPs, as well as 
the same tendency in bond alternations. The synthesis of [8]CPP was 
possible in a cost-efficient fashion. Thus, we now have established 
the size-selective synthesis of [n]CPP (n = 7–16) in a uniformed 
cyclohexane-based method. 
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