This is an Accepted Manuscript, which has been through the RSC Publishing peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This Accepted Manuscript will be replaced by the edited and formatted Advance Article as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication.

More information about Accepted Manuscripts can be found in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard Terms & Conditions and the ethical guidelines that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these Accepted Manuscript manuscripts or any consequences arising from the use of any information contained in them.
A highly porous metal-organic framework structurally consists of three topological kinds of 3-connected 1,3,5-benzenetricarboxylate ligands, $\text{Zn}_2(\text{COO})_6$, $\text{Zn}_3(\text{COO})_6$, and $\text{Zn}_4(\text{COO})_6$ SBU s, featuring a new 3,3,3,4,4,6-c hexanodal topology. Sorption behaviour in this complicated microporous MOF material has also been investigated.

Metal-organic frameworks (MOF) materials are recognized as a new subclass of solid state porous materials with high surface area and its tunable functional pore environment, which surpass significantly these commercially available materials such as activated carbons and zeolites in sorption capacity at ambient temperature, whose potential applications mainly focus on energy-related gas purification1 and storage2 to tackle the root of global climate problems, especially on-board hydrogen storage in mobile vehicles. More recently, great attention has been paid to the rational design and construction of microporous MOF materials owing to not only their versatile coordination polymers and MOF materials,3,4 however, building MOF materials with interesting structural and topological features represeps a huge challenge for chemists.

The structures of MOF materials are mainly made up of inorganic metal clusters and organic ligands, in which metal clusters are also known as the secondary building units (SBUs).5 Generally speaking, it is the combination of both above components that decides the final framework topology, which in turn plays a key role in the final gas sorption behaviour as a storage sorbent. Therefore, of particular interests are selecting the suitable SBU s and organic linkers for the proposed frameworks. Among typical SBUs, the dinuclear paddle-wheel clusters are the most commonly used ones in the isoreticular syntheses of MOF materials because they can easily generate lots of structures incorporating a wide range of organic ligands, for example HKUST-1.6 However, in the crystal structure of Cr-MIL-101,$_{\text{Cr}_3(\text{O}_3\text{C})_6}$ species are attached to the benzene dicarboxylate rings to result in a three-dimensional framework.7 Last but not least, MOFs constructed from Zn_nO SBUs are quite common with extended organic ligands, such as MOF-5.8 These known $\text{M}_2\text{(O}_2\text{C})_4$, $\text{M}_3\text{(O}_2\text{C})_3\text{O}$, and $\text{M}_4\text{(O}_2\text{C})_3\text{O}_2$ SBUs have been intensively utilized as square-planar, trigonal prismatic and octahedral SBU s by substitution of the available carboxylate groups. Although a large number of previously reported cases of MOFs contain one or two of them, such as CPM-5,9 to pack all of them in one MOF material still remains great challenge.

Our group has been interested in the design and production of novel porous metal-organic materials.10 We report herein the synthesis, single crystal structure and gas sorption behaviour of a new zinc-organic framework [M$_2$NH$_2$]$_2$ [Zn$_{12}$BTC)$_2$(H$_2$)$_2$] 3DMA•9H$_2$O (denoted as FJI-3; H$_3$BTC = 1,3,5-benzenetricarboxylic acid; DMA = N,N’-dimethylacetamide) that integrates three types of SBUs components. Structurally speaking, it is constructed from three topologically different kinds of 3-connected BTC3-ligands, featuring a new 3,3,3,4,4,6-c hexanodal net topology, whose gas sorption behaviour has also been investigated.

Colourless crystals of FJI-3 are obtained under solvothermal reaction of H$_3$BTC ligands with Zn(ClO$_4$)$_2$·6H$_2$O in a 1:1 molar ratio in an acidic (tetrafluoroboric acid, 40% in water) DMA solution at 100 °C for 5 days. The phase purity of the bulk product has been confirmed the powder X-ray diffraction (PXRD) analysis (Fig. S6). Single crystal X-ray diffraction analysis reveals that it crystallizes in the orthorhombic space group Pbam. Its asymmetric unit contains seven independent Zn(II) ions and three BTC clusters (BTC-1, BTC-2 and BTC-3), as shown in Fig. 1a. In coordination environment, these zinc ions adopt distorted tetrahedron ZnO$_4$ mode for Zn2, Zn5, Zn6, square pyramid ZnO$_5$ mode for Zn1, Zn4, Zn7, and octahedron mode for Zn3, respectively, with the observed Zn-O bond lengths in the range of 1.836(12) - 2.184(6) Å. As symmetry operation, both Zn1 and Zn7 can grow into dinuclear zinc paddle-wheel SBUs (PW1 and PW2) where PW1 is assembled by BTC-1 and BTC-2, while PW2 only by BTC-3. Zn2 and Zn3 link together to give an unusual Zn$_2$O SBu, where Zn2 is monodentated by one carboxylate oxygen atom from BTC-1, and Zn4, Zn5 and Zn6 link together to give a Zn$_2$O$_2$ SBu (Fig. 1b).

It should be noted that two of three carboxylate groups in BTC-1 adopt a chelating mode to link PW1 and Zn$_2$O SBu, while the left one takes a monodentating mode to link Zn$_2$O SBu (Fig. S3). However, all of the carboxylate groups in both BTC-2 and BTC-3 ligands adopt a chelating mode where the BTC-2 is connected to PW1, Zn$_2$O and Zn$_2$O SBu, while the BTC-3 is connected to PW2, Zn$_2$O and Zn$_2$O SBu. PW1 and PW2, typical dinuclear zinc paddle-wheel units, both serve as 4-c nodes. As depicted in Fig 1b, the Zn$_2$O SBu is unlike the typical characteristic of the M$_2$O$_4$(O$_2$C)$_3$ building block which usually is the junction of the three octahedral by sharing a μ$_3$-O atom. In this 6-c Zn$_2$O SBu, Zn2 ion is in 4-coordinated tetrahedral geometry, while Zn3 ion is typically 6-coordinated with one terminal coordinated water molecule.

Unusual pore structure and sorption behaviour in a hexanodal zinc-organic framework material

Jinjie Qian,a,b Feilong Jiang,a Linjie Zhang,a,b Kongzhao Su,a,b Jie Pan,a,b Qipeng Li,a,b Daqiang Yuan and Maochun Hong*aa

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x
Fig 1. a) The asymmetric unit of FJI-3; b) Secondary building units, symmetry codes: #1 = 1-x, y, 0.5-z; #2 = -x, 1-y, z; #3 = x, y, 1-z; c) Four kinds of cages; d) Schematic of pore framework structure for FJI-3; e) Topological representation of FJI-3.

Although these Zn,O SBU s similarly act as 6-c nodes, the coordination environments for Zn atoms are different from typical M,O(O-OrCr)-3 SBU, in which four Zn atoms have same four-coordinated tetrahedral geometries by sharing a µ4-O atom.

Careful examination of FJI-3 shows us that it is a three-dimensional framework with a very complicated solvent pore structure. There are four kinds of microporous cages with different sizes ranging from 4.0 ~ 7.2 Å (Fig 1c and S4). From topological viewpoints, the BTC3^- ligands serve as three kinds of 3-c nodes, whereas PW1 and PW2 as two kinds of 4-c nodes, Zn,O and Zn,O SBUs are one kind of 6-c nodes (ESI, section S4). As a consequence, FJI-3 adopts a very rare 3,3,3,4,4,6-c 6-nodal network with topological point symbol of [4.6^2]_4{4.8^2}_4{4.8^8}_4{6^2.8^4}{8^6}_4 (Fig 1e), which is previously never reported in the field of MOF materials. Finally, we notice that the distorted Me2NH2^+ cations lie inside the large solvent accessible void, which is the byproduct of in situ decomposition of the DMA solvent, thus leading to the charge equilibrium. 13

The free volume of FJI-3 with removal of guest solvent molecules is calculated to be ~57.8% by PLATON and the calculated pore volume is 0.29 cm^3 g^-1. We find that FJI-3 well retains its framework in acetonitrile which is confirmed by the following PXRD test. The permanent porosity has been confirmed by the obtained N2 adsorption isotherm at 77 K. The desolvated sample exhibits a reversible type I N2 isotherm, which confirms retention of microporosity upon removal of guest solvent with saturated uptake of 187 cm^3 g^-1 at 77 K (Fig. 2a). As one of microporous materials, FJI-3 corresponds to BET and Langmuir surface area of 697 m^2 g^-1 and 800 m^2 g^-1, respectively. A pore size distribution analysis conducted by Horvath-Kawazoe method shows that there is a wide distribution of micropores at 0.4 ~ 1.2 nm with the maximum distribution centered at ~0.5 nm, which accords well with the internal structural features of cages.

Meanwhile, we also investigate volumetric H2 uptake in FJI-3 at 77 K and 87 K. All H2 isotherms show rapid kinetics and good reversibility without hysteresis (Fig. 3a). The H2 uptake capacity is up to 141.3 cm^3 g^-1 (1.26 wt %) at77 K and 1.0 bar, and 101.3 cm^3 g^-1 (0.91 wt %) at 87 K and 1.0 bar. These absolute values in hydrogen capacity are quite comparable with those of recently reported highly porous MOF materials at the same condition. 15 Moreover, the adsorption heat of hydrogen (Qst) is simulated by the Clausius-Clapeyron quation and its value at zero coverage for FJI-3 is calculated to be 4.16 kJ mol^-1, and increases slowly with incessant H2 loading (Fig. 3b), much lower than those of many famous porous materials, such as FJI-1 (4.62 kJ mol^-1), MOF-5 (5.2 kJ mol^-1), NOTT-122 (6.0 kJ mol^-1), HKUST-1 (6.6 kJ mol^-1) and FJI-2 (7.18 kJ mol^-1). In this case, we consider that the high H2 uptake capacity is decided by the intrinsically large guest-accessible volume.

Fig 2. a) Experimental N2 isotherms for FJI-3 at 77 K, ○ adsorption, ○ desorption. Inset shows the pore size distribution dV/dw (f) vs. pore width (a); b) SEM images before and after the activation process.

Fig 3. a) H2 isotherms for FJI-3 at 810 mmHg and 77 K; b) The adsorption heat of H2 for FJI-3. (c) CO2, CH4 and N2 uptake curves at 273 K. (d) Adsorption selectivity of CO2 over CH4 or N2.
while the lower binding affinity might be attributed to its interlinked cage-based interior or incomplete activation.

The special cage-based large space in FJI-3 inspires us to further explore the potential functionalities toward CO$_2$/CH$_4$ and CO$_2$/N$_2$ gas separation. In this case, single component low pressure gas sorption isotherms toward CO$_2$, CH$_4$, and N$_2$ at 273 K are recorded and presented in Fig. 3c. Some deficiencies can be observed for CO$_2$ uptake in adsorption isotherm, specifically in very low relative pressure (0.10 bar, 12.3 cm3 g$^{-1}$), whose CO$_2$ isotherm displays a very flat slope, however, good materials tend to show a rapidly steep slope in low relative pressure zone. While at 273 K and 1.0 bar, the maximum uptake of CO$_2$ is 72.2 cm3 g$^{-1}$, even a little bit higher than that of FJI-2 (71.6 cm3 g$^{-1}$) at the same conditions, which is also comparably much higher than these obtained values of CH$_4$ and N$_2$ isotherms, as shown in Fig. 3c. CH$_4$ uptake of FJI-3 at ambient pressure is just 17.7 cm3 g$^{-1}$ at 273 K and 10.5 cm3 g$^{-1}$ at 295 K, and N$_2$ uptake is just 5.2 cm3 g$^{-1}$ at 273 K and just 3.3 cm3 g$^{-1}$ at 295 K. Thus compared to CO$_2$ at the same condition, these much lower uptake of CH$_4$ and N$_2$ encourages us to investigate the selectivity. Therefore, we try to predict binary mixture adsorption selectivity by adopting the ideal adsorbed solution theory (IAST). Utilizing the pure component isotherm fits, the adsorption selectivity is defined by $S_{ads} = (q_2/q_3)/(p_2/p_3)$, where q_i is the amount of i adsorbed and p_i is the partial pressure of i in the mixture. This material shows a very high S_{ads}(CO$_2$/N$_2$) of ~32.5 in a 15:85 molar ratio of CO$_2$ and N$_2$ mixture at 273 K and 1.0 bar, indicating that this material may be a promising candidate for post-combustion CO$_2$ capture application. Moreover, the calculated CO$_2$/CH$_4$ selectivity ratio is up to ~7.9 at 273 K and 1.0 bar from equimolar gas-phase mixtures (Fig. 3d), which is comparable to the high selectivities of CO$_2$ over CH$_4$ in reported Cu(bpy)$_2$(MeCN)$_2$B$_{ex}$ and Cu(bpy)$_2$(MeCN)$_2$B$_{ex}$ exchanged sample (blue), from the desolvated sample (gray). Thus, the high selectivity of CO$_2$/CH$_4$ at ambient pressure potentially makes it useful for future natural gas purification.

In following sorption experiment, we try to verify the cyclability of desolvated material for practical application by loading them on an ASAP2020 analyzer. We record the five cycles of N$_2$ adsorption at 77 K without the reactivation process between cycles. There is a very slight loss in adsorbed quantity for FJI-3 after 5 cycles, especially between the first two cycles (Fig. 4a). A ~10.6% loss (1st cycle, 184.3 cm3 g$^{-1}$; 2nd cycle, 164.7 cm3 g$^{-1}$) can obviously be observed at the first two cycles, but no apparent adsorbed quantity loss can be found (3rd cycle, 165.2 cm3 g$^{-1}$; 4th cycle, 159.4 cm3 g$^{-1}$; 5th cycle, 155.5 cm3 g$^{-1}$), thus indicating incomplete desorption during each generation cycle without reactivation process. Despite good gas uptake capacity, the regeneration energy penalty is inevitably required for FJI-3 to renew an active material for future applications.

This work was financially supported by the 973 Program (2013CB933203; 2011CBA00507), National Nature Science Foundation of China (21131006), and the Nature Science Foundation of Fujian Province.

Notes and references