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The thermally stable, paramagnetic Pt(III) complex 

[PtI2(IPr)2][BArF] has been prepared by oxidation of the 

Pt(II) complex [PtI2(IPr)2] with iodine in the presence of 

NaBArF. X-ray crystallographic studies revealed the 10 

mononuclear nature of this species with a square-planar 

geometry. EPR and DFT studies pointed out to a metal-

centred radical. 

Platinum compounds in closed-shell oxidation states of (0), 

(II), and (IV) abound in literature, but less is known about 15 

their (I) and (III) open-shell counterparts. Although dinuclear 

Pt(III) species are well known,1 the scarcity of well 

characterised paramagnetic mononuclear Pt(III) species is 

noteworthy,2 despite of being postulated as transient 

intermediates in several chemical transformations including 20 

oxidation of platinum alkyls and aryls,3 and anticancer 

activity of cis-platin and carboplatin.4 In 1984, Usón et al. 

reported the first crystallographically characterised anionic, 

mononuclear Pt(III) complex [Pt(C6Cl5)4]
−.2h Since then only 

a few reports have appeared on the full characterisation of 25 

mononuclear Pt(III) complexes.2 In most of the cases, the 

isolation was possible by using ligands that can easily 

delocalise the unpaired electron or preventing their 

dimerisation by blocking the axial coordination sites in their 

octahedral complexes. Bond and Colton reported that a bulky 30 

pincer phosphine ligand allowed for the spectroscopic 

(electron paramagnetic resonance, EPR) characterisation of a 

“moderately stable Pt(III) cation”,5 although the authors were 

not able to isolate it in a pure form as a consequence of its fast 

disproportionation into uncharacterised Pt(II) and Pt(IV) 35 

species. Some of us have isolated very recently a 

paramagnetic, mononuclear Pt(III) alkyl complex 

[PtBr(IPr’)(IPr)][BArF] stabilised by bulky N-heterocyclic 

carbene (NHC) ligands IPr (where IPr is 1,3-bis(2,6-

diisopropylphenyl)imidazol-2-ylidene and IPr’ indicates a 40 

cyclometallated ligand) that is an intermediate in the 

formation of a C–Br bond.6 The X-ray structure of this 

complex exhibited an unprecedented see-saw geometry. 

According to computational studies, such structure was not 

due to steric constrains but to the effect of the alkyl group in 45 

trans to the bromine ligand.6 In this report we have succeeded 

in the isolation and characterisation, including X-ray 

diffraction and EPR studies, of the first mononuclear, 

cationic, square-planar Pt(III) complex stabilised by NHCs, 

particularly IPr ligands. In fact the use of NHCs for the 50 

stabilisation of third-row radical complexes is limited to two 

other examples recently published, in one of them electron 

delocalisation on the imidazol ring has been proved.7 

 The complex trans-[PtMeI(IPr)2]
8 1 reacts with I2 to yield, 

almost quantitatively, the pale-yellow bis-iodide derivative 55 

trans-[PtI2(IPr)2] 2, formed after rapid reductive elimination 

of methyl iodide without detecting any Pt(IV) intermediates 

(Scheme 1). Compound 2 has been spectroscopically and 

crystallographically characterised (see ESI). 

 60 

Scheme 1 Synthesis of mononuclear, cationic Pt(III) species 3. 

 When complex 2 is reacted with half-equivalent of I2 in the 

presence of NaBArF (NaBArF = sodium tetrakis[3,5-

bis(trifluoromethyl)phenyl]borate) in dichloromethane an 

intense blue solution is formed almost immediately (Scheme 65 

1). The 1H NMR spectrum of the crude reaction mixture 

reveals the formation of a single product showing only broad 

signals in the range of −7.3 to 7.9 ppm for the carbene ligands 

that hints at the presence of a paramagnetic species in 

solution, from which it has been possible to isolate the Pt(III) 70 

complex 3. It should be pointed out that addition of either I2 

or NaBArF alone to 2 was not productive, recovering 

unaltered the reactants. Only when the three reagents are 

mixed together the formation of 3 is achieved. Therefore, 
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variation of the concentration of iodide through precipitation 

as NaI is key for the reaction to proceed. Complex 3 is fairly 

air-stable and partially decomposes at r.t. to uncharacterised 

complexes after a few days or weeks (in solution and in the 

solid state) but it can be kept indefinitely unaltered at 5 °C. 5 

 The X-band EPR spectrum (at 16 K) of a polycrystalline 

sample of complex 3 dispersed in n-hexane is shown in Fig. 1. 

It corresponds to low spin (S = ½) Pt(III) entity with a 

markedly orthorhombic effective g-tensor. Their principal 

values, g1 = 1.069(5), g2 = 1.280(5) and g3 = 3.612(5), deviate 10 

largely with respect to the free electron g-value (ge = 2.0023). 

It hints at one unpaired electron residing on a metal orbital, 

that is, suggesting a Pt(III) oxidation state, and excluding a 

ligand-centred radical. The signal at g3 = 3.612(5) (Fig. 1) 

shows hyperfine coupling (see Fig. S6 in ESI) to two 15 

equivalent 127I nucleus (natural abundance 100%, I = 5/2). 

Moreover, these eleven signals show satellites (see Fig. S6 in 

ESI) due to coupling with 195Pt (195Pt, natural abundance 

33.8%, I = 1/2). With respect to the signals at high-field (g1 

and g2) the lack of resolution hampered the observation of 20 

coupling to the 127I and 195Pt nuclei. 

 
Fig. 1 X-band EPR spectrum measured a 16 K of a polycrystalline sample 

of complex 3 dispersed in n-hexane. 

 Magnetic measurements, susceptibility as a function of the 25 

temperature, and isothermal magnetization at 1.8 K were also 

carried out (see ESI). The values can be interpreted in 

agreement with the EPR derived data, which means that the 

spectrum in Fig. 1 is associated to the main component of the 

sample and it is not due to minority paramagnetic entities. 30 

 Crystals suitable for an X-Ray diffraction study of complex 

3 were grown by slow diffusion of a concentrated solution of 

3 in dichloromethane into diethyl ether (Fig. 2). The molecule 

has crystallographically imposed twofold symmetry with the 

asymmetric unit containing two half cations and anions with 35 

the Pt and the B atoms on twofold axes, respectively (only one 

of the cations is shown in Fig.2). The structure of this 

compound is almost identical to that of its precursor 2 (see 

ESI). The platinum atom in 3 exhibits a perfect square-planar 

environment, as found in derivative 2. The two bulky IPr 40 

ligands9 are in a trans arrangement, reducing steric constrains 

with a C1–Pt1–C1_2 angle of 179.5(2)°. On the other hand, 

the angle formed by the I1–Pt–I1_2 moiety is almost linear 

(177.055(14)°). There are only slight dissimilarities in the 

structural parameters of 2 and 3, but it is particularly 45 

noteworthy the lengthening of the Pt–CIPr bonds by almost 

0.04 Å. Moreover, the dihedral angle defined by the 

coordination plane around the platinum atom and the 

imidazole ring is 77.65° in complex 3 and 70.01° in derivative 

2. We believe that these subtle differences are the result of a 50 

reduced π back-donation of the platinum atom to the NHC 

ligands, an effect previously observed for other systems.10 

Finally, a shortening of around 0.06 Å is observed for the Pt–I 

bond distances on going from Pt(II) to Pt(III). 

 55 

Fig. 2 ORTEP view of complex 3. Thermal ellipsoids are drawn at 30% 

probability level. The BArF anion has been omitted for clarity. Atoms 

labelled as “_2” correspond to those at equivalent positions. Selected 

bond lengths (Å): Pt1–C1: 2.069(1); Pt1–I1: 2.5294(2); N1–C1: 1.366(5); 

N2–C1: 1.362(5). 60 

 To support the previous findings, the neutral Pt(II) 2 and 

cationic Pt(III) 3 complexes were optimised at DFT level 

using the BHHLYP functional11,12 (see ESI for computational 

details). Both species clearly exhibit square-planar structures 

with I–Pt–I and CIPr–Pt–CIPr angles of 180.0°. N–CIPr–Pt–I 65 

dihedral angles are also similar, 76.6° and 78.0° for 2 and 3, 

respectively. The calculated bond distance trends are in line 

with the experimental evidences: from 2 to 3, Pt–CIPr bond 

distances are slightly enlarged (from 2.076 Å to 2.099 Å) 

whereas Pt–I values are shortened (from 2.674 Å to 2.581 Å).  70 

X

Z

Y

 
Fig. 3 Calculated SOMO of cation 3 (isovalue 0.05). 

 The calculated Mulliken spin density of 3 accounts for 41% 

on the platinum atom and 29% on each iodine atom. 

Significant contributions from the NHC moiety are not 75 
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observed. The shape of the singly occupied molecular orbital 

(SOMO, Fig. 3) indicates that the platinum atom participates 

with the dxz orbital and the iodine atoms with the px ones.13 

The strong electronic localisation on the platinum supports the 

EPR results and the partial contribution of iodine atoms 5 

agrees with the hyperfine coupling (Fig. 1).  

 In order to get some insight about the reversibility of the 

Pt(II)  Pt(III) process, cyclic voltammogram experiments in 

dichloromethane solutions of complex 2 have been 

undertaken. As shown in Fig. 4, the electrochemistry of this 10 

derivative shows both anodic and cathodic processes, which, 

if assumed to be a one-electron transfer, can be considered to 

be close to reversible in nature (peak-to-peak potential ~69 

mV and ratio of the anodic to cathodic peak 0.98). This result 

confirms the noticeable stability of Pt(III) species 3, derived 15 

from Pt(II) complex 2, in solution. 

 
Fig. 4 Cyclic voltammetric data gathered for compound 2 (10−3 M) using 

a 3 mm diameter glassy carbon disk and measured at 0.2 V s−1 in CH2Cl2 

with a 0.1 M solution of [nBu4N][PF6] as supporting electrolyte. 20 

 In summary, the mononuclear, paramagnetic Pt(III) 

complex [PtI2(IPr)2][BArF] (3) exhibits a square-planar 

structure according to X-ray diffraction studies and DFT 

calculations. EPR and DFT studies point out to a metal-

centred radical and cyclic voltammetric data enhance the 25 

stability of such paramagnetic species. Further studies on the 

preparation of related systems based on different NHCs are 

currently underway. 
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