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Pre-processing is nothing without scattering. If your spectra are from nice aqueous solutions with only fully dissolved particles,
there is no light scattering, and as such, pre-processing is not necessary. However, and this is important, scatter could also be
defined as unwanted variation in your data with a different source than light scatter. Sometimes it is possible to remove these
unwanted variations from your data through pre-processing methods designed to remove scatter. In this paper I would like to
take you into my world of pre-processing. Through three different examples I will discuss and tell what kind of information the
pre-processing can tell the user about the data, as well as some common pitfalls.

1 Introduction

For the application of multivariate data analysis to work opti-
mally, it is vital to pre-process the data in a correct manner. If
this is not done, there will be a mix-up between the informa-
tion which is sought and the noise which one are not interested
in. Noise does not only constitute of random deviations in the
measurements themselves. It can also contain systematic vari-
ations in the samples which is not of interest to the analyst.
One such variation is the light scattering; created by particles
which are illuminated. This effect is nearly non-existent for
liquid samples (although suspensions will show scatter), while
solid samples are prone to show scattering. Pre-processing of
spectra has focused a lot on NIR spectra, but the same methods
can readily be used for other spectroscopic techniques such as
IR and Raman.

This article will focus on the practical issues with regards
to pre-processing, and some issues one should be aware of
while using these methods. For a detailed description of pre-
processing methods I would like to refer to Rinnan et al.1 and
Boulet and Roger2. For a good discussion regarding the dif-
ference between SNV and MSC I would like to refer to Fearn
et al.3. It should be noted that this paper is not an exhaustive
review of pre-processing techniques, but should rather be seen
as a tutorial.

2 Materials and methods

In order to show how to perform pre-processing, and to
explain the reasoning behind each decision three different
datasets will be used, one from each of the three techniques:
NIR, IR and Raman.

a Department of Food Science, Faculty of Science, University of Copenhagen,
Rolighedsvej 26, 1958 Frederiksberg C, Denmark. Fax: +45 35 33 32 45;
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2.1 Software and datasets

All calculations and plots are made in Matlab (version 2012a,
The Mathworks, Natwick, MA, US). The codes used are all in-
house, but are all common chemometric tools, implemented in
most software packages. The NIR and Raman datasets can be
found at http://www.models.life.ku.dk/datasets (last accessed:
april 28 2014).

2.2 NIR - Soil samples

The samples herein are made up of 108 soil samples measured
by NIR in the range 400-2498nm with a 2nm resolution using
a NIRS6500 instrument (Foss A/S, Hillerød, Denmark) with a
round cup and equipped with a ring (Microsample inserts, Part
No. IH-0337). Both the background spectra and the samples
were measured as the average across 32 scans. Soil organic
matter (SOM) was measured using a reference method, and
the samples contain from 42.9%-95.9% SOM. More details
on the dataset can be found in Rinnan and Rinnan4.

2.3 IR - Milk

This dataset contain a total of 105 milk samples measured in
triplicates on the MilkoScan (Foss A/S, Hillerød, Denmark)b.
The reference which is of interest for this dataset is the fat
content in the milk, given in %w/w. The samples have been
measured in the range of 5000-800cm-1, and water was used
as the internal reference in the spectrophotometer.

2.4 Raman - Pork fat

A total of 105 pork fat samples were taken from a total of 16
pork carcasses, taken from different depth of the fat from the
skin. The samples were measured on a RamanRcn1 instru-
ment (Kaiser Optical Systems Inc., MI, USA) equipped with a
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Fig. 1 Raw NIR soild data. Data inspected in two ways: A) by plotting the raw data, and B) through a PCA, where the sample is colored
according to their SOM content (red = low, dark blue = high).

785nm near-infrared diode laser (Invictus, Kaiser Optical Sys-
tems Inc., MI, USA). The spectra were recorded in the range
of 1800-200 cm-1, as a sum of 16 measurements with 1s expo-
sure. The iodine value was calculated on the basis of GC-MS
measurements. More details with regards to the data can be
found in Lyndgaard et al.5.

3 Results and discussion

The following section will go into more detail with regards to
practical suggestions and hints on how to correctly perform
pre-processing to spectroscopic data. As said before, this is
not aimed at giving an exhaustive introduction to all exotic
variants of the most common methods, but I will rather focus
on the most typical of all pre-processing techniques.

3.1 NIR - Soil samples

The first natural step in all data analysis is to investigate your
raw data. This could either be done by plotting the spectra as
they come from your spectroscopic instrument, or it could be
based on a preliminary Principal Component Analysis (PCA)6

of the data.
Figure 1A shows the raw un-treated NIR spectra of 108 soil

samples, while the same data is shown in a PCA in Figure
1B. As can be seen from Figure 1A it is evident that there is
a rather large variation along the y-axis. However, it is diffi-
cult to assess whether this is due to chemical information or
if this is more physical in nature. By looking at the score-
plot, shown in Figure 1B, it becomes evident that the main

bThe data was kindly made available by Per Waaben Hansen, Foss A/S,
Hillerød, Denmark.

variation of these data are not the SOM content. A quick in-
spection of the SOM range (42.9-95.9%), it is clear that SOM
should be the main variation in the data. This is clearly not the
case. Since I know that these samples are soil samples I have
a suspicion that the large variation seen in Figure 1A is due
to scatter rather than chemical information. The natural next
step would be to try a few different pre-processing techniques
and see what effect these have on the data.

A natural pre-processing technique to apply to these data
would be the derivative. Most often a first or a second order
derivative is used. The first derivative will remove any off-
set difference between the data and the second derivative will
furthermore remove any slope effect in the data. However, be-
fore I show the results of the derivation, I would like to get into
a bit more detail with regards to how the different derivation
techniques work.

As just stated, the use of derivation as a pre-processing tech-
nique for NIR data is quite common. There are two typical
ways of estimating the derivative: Norris-Williams derivation
(NW)7 and Savitzky-Golay derivation (SG)8. The former is in
many ways a simplification of the latter. In NW the smoothing
performed to the data is according to a 0th order polynomial
(the average only), while for SG this smoothing function can
be set to any polynomial order (two is though the most com-
mon). The second parameter which should be set for NW is
the gap size. This truly is a bit of a curiousity as there is noth-
ing clear in the spectra which should indicate that you need
a gap size for anything. However, upon looking closer at the
equations used in NW, it becomes apparent that the gap-size
has a smoothing effect on the calculated derivative. In equa-
tions 1-3 I have shown how the first derivative is calculated for
variable number 4 in a spectrum, using a five point smoothing
and a gap size of 2. The reason for showing these equations is
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to emphasize that for many applications of NW, the derivative
is a simple finite difference operation, and little or no smooth-
ing actually takes place.

(x4)
′ = xs5 − xs3 (1)

(x4)
′ =

x3 + x4 + x5 + x6 + x7

5
− x1 + x2 + x3 + x4 + x5

5
(2)

(x4)
′ =

x6 + x7 − x1 − x2

5
(3)

Where xsn indicates the smoothed version of variable n of
the original data, and xn is the value of the raw data for variable
n. The apostrophe (‘) indicates the derivative. As can be seen
from equation 3 the derivative is the difference between the
points 6 + 7, minus the similar values for 1 + 2. If the gap size
was only one, the derivative would be:

(x4)
′ =

x7 − x2

5
(4)

The road to this equation follows the same steps as shown in
equation 1 and 2. The difference in equation 3 and 4 is only in
the number of points used in calculating the derivative. I.e. the
larger the gap-size, the more numbers are used in the estima-
tion of the derivative, and thus a greater smoothing effect has
been achieved. The total smoothing effect is thus a combina-
tion of the window size and the gap size used. The smoothing
effect can, though, never be higher than the window size.

SG on the other hand estimates a polynomial on the win-
dow size which is used for the smoothing of the data. The
derivative is subsequently estimated from this fitted polyno-
mial. The window size thus has a direct and straight forward
effect on the estimated derivative.

In both NW and SG, there is a challenge with regards to
the end-points. In NW, these end-points are simply removed
from the data. In the example given in equation 3 above, the
three first, and the three last points would thus be lost. If the
number of variables is large (which is normally the case nowa-
days), this loss in information is neglible. The same accounts
for SG-derivatives. However, Proctor and Sherwood10 and
later Gorry9 both suggested to use an assymetric window for
estimating the derivative at the end points. This can, however,
have detrimental effect on the subsequent multivariate mod-
eling. The reason can most easily be appreciated by looking
at how the end-points will look like if a 2nd order polynomial
was used in the smoothing, and the 2nd derivative is what is
sought for. The general behaviour of the 2nd derivative can be
seen in equations 5-7.

f (x) = b0 +b1x+b2x2 (5)

f ′(x) = b1 +2b2x (6)

f ′′(x) = 2b2 (7)

Where bn are constants, x are the original measured data
points and f (x) denotes the function of x which describes the
absorbance. As can be seen here, any estimate of the 2nd

derivative for any of the points used to estimate this polyno-
mial will all be equal to 2b2. This means that the first number
of variables will all have the same estimate for the derivative.
The same goes for the last number of variables. The exact
number of variables which will be identical depends only on
the window size used. The larger the window, the more vari-
ables of identical estimated derivative. Now, let us consider
where a spectrophotometer normally has the worst signal-to-
noise ratio. This is typical at the edges, as the manufacturer
has tried to push the system to give the maximum amount of
output. I have nothing against that, but by including the same
numerical value for the first couple of points, in effect, means
that the first point has a higher influence in the subsequent
multivariate data analysis, as the value has been duplicated
a number of times (equal to half the windows size, rounded
down). This does not make any spectroscopic (or mathemati-
cal) sense, and I would therefore suggest that the users should
keep the end-points as missing values, and thus reduce the
number of variables according to the window size used. I.e.
each spectra will loose window size - 1 variables compared to
the raw data.

If the user decides to use a higher order polynomial for the
fitting (i.e. 3rd or higher), these effect becomes different, as the
estimates of the derivative are not identical anymore. For a 3rd

order polynomial the end points form a line, with a 4th order
polynomial the end points form a polynomial etc. However,
and this is general, no matter what polynomial order was used
in the fitting; the polynomial parameters are estimated based
on the end-points of the spectrum. These points normally have
a lower signal-to-noise ratio than the rest of the spectrum (as
discussed above). It means that you will let one fitting (based
on low signal-to-noise ratio) to decide very many points in
your smoothed spectrum. So, even though the effect of the
noisy end-points is somewhat less if a higher order polynomial
has been used in the fitting, I would still recommend to not
perform this asymmetric fitting.

After this discussion on ways of estimating the derivative I
would now like to inspect what effect the 2nd derivative has on
the spectra, and the subsequent PCA.

By a close inspection of Figure 2A it can be seen that there
are no values for the first and the last variables in the spectra.
This is simply because I have deleted these variables after the
Savitzky-Golay preprocessing as to not give the end-points too
much influence in the PCA (see discussion above). Figure 2A
also shows that the baseline variation has been minimized. It
is easily appreciated, by looking at Figure 2B that the pre-
processing has transformed the data so that the variation in
the SOM is one of the major variations in the data, and not
as in Figure 1B where there only was a slight tendency that
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Fig. 2 NIR soil data. Data are treated by Savitzky-Golay using a window size of 9, 2nd order polynomial fitting and calculating the 2nd

derivative. A) The SG preprocessed data, and B) PCA on the same data, where the sample is colored according to their SOM content (red =
low, dark blue = high).

the variation in the SOM content was modelled along the 2nd

PC. This is in accordance with the data as SOM clearly is the
major component in soil. The above example clearly shows
that by the use of the appropriate pre-processing, the chemical
information inherent in the data can be brought forward.

3.2 IR - Milk

Normally it is not necessary to pre-process IR spectra, as they
show a lot less scatter than NIR, which in general needs pre-
processing and only seldom can be left as they are. However,
there are cases with IR spectra where it is better to do a bit of
pre-processing than to keep the spectra as is. The following
data are an example of that. Furthermore, I would like to use
this chapter to inform the reader on what information can be
gathered from the subsequent regression analysis on the effect
the pre-processing both has on the data, and where noise and
information is present.

The raw data is shown in Figure 3, and there are some areas
in the spectra which look suspicious. However, if the knowl-
edge of the user is limited with regards to how the spectropho-
tometer works, it would be natural to include all variables in a
subsequent data analysis. Based on this data I will create two
partial least squares regression (PLS)11 models, one which is
based on mean-centered data, and one which is based on au-
toscaled data. One can readily argue that one should never au-
toscale spectroscopic data. Well, now I do it anyhow. The per-
formance of the two models give a root-mean-squared-error of
cross-validation (RMSECV) of 0.12 at four PLS components,
and RMSECV = 0.07 at four PLS components, respectively
for the mean-centered and the autoscaled data. Thus, using
the “wrong” preprocessing technique the RMSECV value be-
comes a lot lower. Why is this? If we look back at Figure

Fig. 3 IR milk raw data. Data inspected by plotting the recorded
spectra including all wavenumbers. The spectra are colored
according to the fat content (pink - high, cyan - low).

3 we can appreciate that the first model will focus on the ar-
eas around 3100 cm-1 and 1600 cm-1, while the autoscaled
version will let all variables have the same influence on the
model. Thus, by weighting down the mentioned areas, as will
be the case for the autoscaled data, the subsequent PLS model
will be better. This indicates that these areas are detrimental
for the regression model, and should be omitted. By investi-
gating these areas it becomes evident that these are due to the
water bands. As water is the reference, hardly any signal is
transmitted through the sample and the reference in these ar-
eas. Thus two small, very uncertain, numbers are divided by
each other to find the absorbance, and the signal-to-noise ratio
will be very bad for these regions.
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Fig. 4 The Raman pork data, plotted A) prior to pre-processing, and B) after 1st order polynomial baseline correction.

After removal of these areas and also the flat regions from
5000-3800cm-1 and 2800-1800cm-1, and furthermore the ar-
eas in the fingerprint area below 1400cm-1, the model should
be able to give a good prediction of the fat content. The re-
maining of the spectra which has been kept has a high cor-
relation to the fat-content. We can emphasize this by making
two PLS models with different pre-processing, on this reduced
data range: only mean-centering, and another with multiplica-
tive scatter correction (MSC)12, followed by mean-centering.
The first model achieves a RMSECV = 0.048 at one PLS com-
ponent, while the MSC version achieves a RMSECV = 0.63 at
one PLS component. In other words, the error in the MSC
model is more than an order of magnitude higher than the cor-
responding mean-centered model. How can this be? The an-
swer can be found in how MSC performs the correction. As
the correction factors in MSC are found by plotting the aver-
age calibration spectra versus the raw data, it is of importance
what part of the spectra which is used in order to estimate these
corrections factors. As mentioned by Geladi et al.13 the cor-
rection parameter should optimally be calculated based on the
baseline of the spectra. However, as this often is problematic
to define, the whole spectra are very often used (also the case
in most software). In the case above, the remaining peaks in
the spectra mainly contain information with regards to the fat
content of the sample. Thus the MSC correction removes this
information from the spectra, and the subsequent PLS model
would then have great difficulties with predicting the fat con-
tent since that information is hardly present in the spectra any-
more. The correlation between the correction factors and the
fat content is as high as r2 = 0.996 for the slope correction,
clearly indicating that the height of these peaks are important
in the prediction of fat, and should not be minimized.

3.3 Raman - Pork fat

Raman spectroscopy is troubled by fluorescence in the spectra
(just as fluorescence spectroscopy is troubled with Raman
scattering). This is a typical love/ hate relationship which
I do not want to get closer into here. What is important is
that the fluorescence in Raman spectra has to be handled in
order to extract the chemical important information from the
Raman spectra. Lieber and An-Jansen14 proposed a method
of iterative baseline correction, where a baseline is fitted
much like spectral detrending introduced by Barnes et al.15.
However, Lieber and An-Jansen14 suggested to perform this
in an iterative manner, where the measurement points in
the raw data which appears above the calculated baseline is
not included in the next estimation of the baseline. This is
performed until no more measurement points are removed in
the process. The final baseline is then subtracted from the
spectra. The baseline can in principle be calculated using any
function, but a polynomial is the one which is most often used.

As can be seen from Figure 4 the first order polynomial
baseline correction removes some of the variation in the base-
line. By looking at the areas of the Raman spectra which indi-
cate baseline (the lower areas in the spectra), the samples are
in general well collapsed. It doesn’t seem that the peak ranges
have changed very much after the pre-processing. From a vi-
sual inspection of the effect of the pre-processing it seems that
the pre-processing has performed satisfactory. However, as
the goal of the analysis of these samples is the prediction of
the Iodine Value (IV), it is important that the subsequent PLS-
models perform as good as possible. In order to investigate
this four different pre-processing methods were investigated
and a 10 segmented partial random cross-validation (making
sure that the range is nicely covered in each segment) was per-
formed 20 times (same segmentation for all pre-processing
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methods), and the performance of the methods was used as
the basis for the selection of pre-processing method.

Figure 5B shows that the Standard Normal Variate (SNV)15

correction is the superior of the four methods. Spectral de-
trending and baseline correction are in principle identical,
while using no pre-processing leads to a model with one more
PLS component. As the general goal of pre-processing is an
improved and simpler model, I deem that the degree of free-
dom spent in the none vs. baseline/ detrend is the same, and
thus I would prefer the no pre-processing model before any of
these. However, SNV performs even better; not does it only
lead to even fewer latent factors in the model, but the RM-
SECV is also constantly lower, i.e. a significant gain in the
RMSECV going from the no pre-processed model data to the
SNV corrected data.

This shows that even though baseline correction theoreti-
cally is the best method to be used for Raman spectra, it is not
always the case (also higher order polynomials were tested).
It is a good idea to additionally investigate a few other pre-
processing techniques.

4 Summary

In this paper, I have discussed the use of some of the most
common pre-processing techniques through three spectro-
scopic examples. I have shown some typical pitfalls and dis-
cussed the use of pre-processing of spectroscopic data.
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Fig. 5 The Raman pork data. A) The SNV corrected data. B) The number of latent factors plotted versus the RMSECV for 20 cross-validated
models for data pre-processed by SNV (red), baseline correction (green), detrending (blue) and none (yellow).
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