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ToC graphic 

 

 

 

Predicting progressive disease in low-grade cervical cytology
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Abstract 

Cervical cancer is the 2nd most common female cancer worldwide. However, in the 
developed world, cervical screening has reduced this cancer burden. Most smear 
referrals are low-grade, requiring continuous monitoring until they regress. Others 
need monitoring for static disease, while a few require treatment due to persistent 
low-grade or progressive disease. The ‘Holy Grail’ in cervical screening is predicting 
which patient is likely to have progressive disease. Fourier-transform infrared (FTIR) 
spectroscopy exploits the fact that an infrared (IR) spectrum represents a 
“biochemical-cell fingerprint”, which can be obtained from a cellular specimen based 
on a wavenumber-dependent absorption band pattern of constituents’ vibrating 
chemical bonds. Low-grade (CIN1) specimens (n=67) diagnosed on cytology were 
analysed using IR spectroscopy. The n=67 study participants were rescreened by 
conventional cytology after a year whereupon three showed progressive disease and 
31 had persistent low-grade atypia; 33 had regressed. Spectra from the initial cytology 
samples were then analysed using principal component analysis (PCA) with output 
(10 principal components) being inputted into linear discriminant analysis (LDA) to 
predict which samples would progress, remain static or regress; this approach was 
compared with variable selection techniques, namely the successive projection 
algorithm (SPA) and genetic algorithm (GA). Significant wavenumbers distinguishing 
regressive vs. static disease were 1736 cm-1, 1680 cm-1, 1512 cm-1, 1234 cm-1, 1099 
cm-1 and 968 cm-1; separating the two categories is difficult due to a significant degree 
of ‘overlap’. Progressive disease can be significantly differentiated from static disease 
based on wavenumbers 1662 cm-1, 1648 cm-1, 1628 cm-1, 1512 cm-1, 1474 cm-1 and 
965 cm-1; it can be segregated from regressive disease with 1686 cm-1, 1674 cm-1, 
1625 cm-1, 1561 cm-1, 1525 cm-1 and 1310 cm-1. The GA-LDA model shows good 
separation for all categories (i.e., regressive vs. static vs. progressive disease) using 35 
wavenumbers. An ability to predict progressive disease will reduce the need for repeat 
smears every six months whilst allowing early identification of patients who require 
treatment. 
 
 
Keywords: Biospectroscopy; Cervical cytology; Dyskaryosis; Fourier-transform 
infrared; Low-grade; Multivariate analysis; Progression 
 
 
Abbreviations: A Randomised Trial of HPV Testing in Primary Cervical Screening, 
ARTISTIC; Cervical intraepithelial neoplasia, CIN; Cytology that progressed to high-
grade disease, PROG; Cytology that regressed after 1 y, REG; Fourier-transform, FT; 
Genetic algorithm, GA; High-grade squamous intra-epithelial lesion, HGSIL; Human 
papilloma virus, HPV; Infrared, IR; Kennard-Stone, KS; Large loop excision of 
transformation zone, LLETZ; Linear discriminant, LD; Linear discriminant analysis, 
LDA; Low-grade squamous intra-epithelial lesion, LGSIL; Minichromosome 
maintenance 7 protein, MCM7; Successive projection algorithm, SPA; Principal 
component, PC; Principal component analysis, PCA; twist-related protein 2, TWIST2 
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Introduction 

 
Cervical cancer is the 2nd most common cancer in women worldwide.1 Human 

papilloma virus (HPV) infection is the cause of almost all cervical cancers.2 As many 

as 46% of women are infected with HPV after their first sexual relationship.3 It is 

estimated that almost 70% of women will be infected with HPV during their lifetime.4 

Secondary prevention in the form of screening was found to lead to a significant 

reduction in the incidence of invasive cervical cancer, through early detection and 

earlier intervention.5 The current method of screening for disease in the UK is cervical 

cytology.6 The recently-introduced vaccination programme against HPV does not 

provide full protection. Screening programmes must therefore continue, but the 

challenge in cervical screening is in detecting those individuals who are at higher risk 

of tumour progression.7 Cytological and histological results do not reliably distinguish 

the few with abnormal results who will progress to invasive cancer from the vast 

majority that will regress or remain unchanged.8 

Cervical cytology screening has been shown to be associated with poor 

sensitivity and a poor positive predictive value.9 Testing for HPV DNA is more 

sensitive than cervical cytology in detecting pre-cancerous lesions.10 However, the 

ARTISTIC trial (“A Randomised Trial of HPV Testing in Primary Cervical 

Screening”) found that over two screening rounds a combined approach (i.e., HPV 

testing + cytology) did not detect a higher rate of high-grade disease over liquid-based 

cytology.11 HPV viruses are classified into high-risk, intermediate-risk and low-risk 

genotypes. The “High-Risk” HPV subtypes are 16, 18, 31 and 35; types 16 and 18 

alone contribute to 70% of all HPV-related cervical cancer.12 The “Intermediate-Risk” 

HPV subtypes are 33, 39, 52, 56, 58, 59 and 68. Subtypes 6 and 11 are “Low-Risk” 

viruses, and account for 90% of genital warts.13 HPV testing has a role in cervical 
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screening in women >35 y,14 but is unable to predict which disease is more likely to 

progress.15,16 

 Cervical dysplasia may be squamous or glandular. Most abnormalities are 

squamous in nature and for that reason we will deal with the natural history of 

squamous disease. Around 80% of cervical intraepithelial neoplasia (CIN)1 is likely 

to regress spontaneously over a period of 2 y.17 The published literature suggests that 

only 11% of CIN1 lesions will progress to high-grade disease.18 Up to 70% of CIN2 

will also regress without treatment within 2 y19,20 though as many as 24% will 

progress to CIN3.20 All women with CIN3 will be treated by an excision procedure. 

The treatment of CIN2, especially in younger women, is a topic of debate with 

national guidelines in some countries, including Ireland,21 advocating treating CIN2 

by excision while others suggest it is more likely to regress and should be managed 

conservatively.19 Currently the most common method of excision treatment is the 

Large Loop Excision of the Transformation Zone  (LLETZ) procedure. Women with 

CIN2 or persistent CIN1 are often treated by a LLETZ procedure. 

 The LLETZ treatment involves excision of the transformation zone using an 

electrical loop.22 It is cheap and easy to perform whilst allowing grade of dysplasia 

and margins to be easily evaluated. The LLETZ procedure is associated with a small 

risk of bleeding and infection. A recent meta-analysis study has suggested that 

cervical excision procedures are associated with an adverse pregnancy outcome. This 

may be due to cervical alteration as a result of the procedure, i.e., loss of cervical 

tissue volume, which compromises its mechanical function. The scar tissue and the 

newly-formed collagen may not be as strong. The risk of preterm labour increases 

with the size of the excision.23,24 Hence, it would be ideal to develop a screening tool 

with the ability to predict progression of CIN and avoid unnecessary treatment. 
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 Newer technologies are being developed to detect cervical dysplasia and its 

progression. Electrical impedance spectroscopy shows promise to reduce the need for 

a biopsy and has the potential to detect high-grade disease.25 Chromosomal studies 

using FISH probes to identify 3q26 gain show promise; absence of 3q26 gain has a 

100% negative predictive value for progression but is unable to predict which of the 

positive cases will progress.26 Studies on the +874 (T/A) IFNG and  +1188 (A/C) IL-

12B genes in cervical smears suggested that the C allele (mutant) may protect against 

the emergence of CIN and its progression.27 TWIST2, a basic helix-loop-helix 

transcription factor has been linked to cervical cancer progression.28 Ki67, p16 and 

mini-chromosome maintenance 7 protein (MCM7) are more common in high-grade 

specimens and have potential in assessing disease progression.29,30 In reality, there is a 

need for a cheap and robust test applicable to screening with predictive value. 

 FTIR spectroscopy is a technique that has been touted as an adjunct to help 

identify biomarkers of progression. Using this technique, cellular material has been 

analysed to determine toxin exposure31, stem cell characterization32 and to investigate 

cancer.33 It has shown potential in the field of cervical cancer screening. Being an 

inexpensive and robust technique with the ability to segregate grades of cytology, it 

could potentially be used globally.34 This technique employs IR to study cellular 

changes at a molecular level. Molecules absorb the mid-IR region (2.5 µm to 25 µm) 

at specific wavelengths corresponding to energy levels of the vibrating chemical 

bonds present, generating a spectrum or a biochemical-cell fingerprint (1800 cm-1 - 

900 cm-1).35 This region contains spectral peaks associated with lipids (≈1750 cm-1), 

Amide I (≈1650 cm-1), Amide II (≈1550 cm-1), methyl groups of lipids and proteins 

(≈1400 cm-1), Amide III (≈1260 cm-1), asymmetric phosphate stretching vibrations 

(vasPO2
-; ≈1225 cm-1), symmetric phosphate stretching vibrations (vsPO2

- ; ≈1080 cm-
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1), C-OH groups of serine, threonine and tyrosine and C-O groups of carbohydrates 

(≈1155 cm-1), glycogen (≈1030 cm-1) and protein phosphorylation (≈970 cm-1).35-37 

Of great interest would be the development of an automated algorithm to 

differentiate between grades of cytology and identify biomarkers of progression. 

Certain wavenumbers (i.e., particular spectral ranges) may differentiate categories: 

Amide I (1612 cm-1 to 1651 cm-1), Amide II (1512 cm-1 to 1551 cm-1), methyl and 

methylene groups of membrane lipid and proteins (1358 cm-1 to 1435 cm-1), vasPO2
- 

(1192 cm-1 to 1261 cm-1) and glycogen/protein phosphorylation (960 cm-1 to 1080 cm-

1).36,38-40 A well-developed approach to identify spectral biomarkers is the successive 

projection algorithm (SPA) or genetic algorithm (GA) in conjunction with linear 

discriminant analysis (LDA).41-43 Basically, SPA-LDA and GA-LDA each use a cost 

function associated with average risk of misclassification in a validation set and can 

also minimize generalization problems usually associated with collinearity whilst 

avoiding overfitting. This allows the detection of specific spectral ranges within 

which specimens differ not only within sample categories but also those that fall 

within the boundaries between different categories. These ‘crossover’ regions consist 

of specimens that are initially misclassified on the basis of spectral similarity. The 

‘Holy Grail in colposcopy’ would be the capability to identify which of such cases are 

likely to progress. 

This study is the first to apply FTIR spectroscopy to identify cases of CIN1 

that are more likely to progress. The principle of using biospectroscopy to detect pre-

cancer is based on the fact that it may be able to detect underlying disease better than 

cytology. Our aim was to apply this approach to predict progression as well as to 

identify wavenumbers as predictive markers, which could assist in predicting disease 

progression. A secondary aim was to determine if this approach could differentiate 
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between study participants (patients) whose disease is more likely to regress from 

those whose disease process remains static. This study analyses spectral data (from 

cytology specimens) from women who initially presented with a smear suggestive of 

CIN1 and to retrospectively segregate the three groups (those who regressed vs. who 

remained static vs. who progressed to disease) following a repeat smear a year later. 

 

Materials and Methods 

This study was conducted during the period from 1st September 2010 to 31st 

August 2011. Specimens were collected from two separate colposcopy units in 

Dublin, Ireland. The two centres are the Adelaide and Meath Hospital (Tallaght) and 

the Coombe Women’s and Infant’s University Hospital. Ethics committee approval 

was obtained from both hospitals independently prior to the commencement of the 

study. All specimens were collected into Thin-Prep® as per routine practice in the two 

centres. A total of n=67 specimens were collected over a period of one year. Written 

informed consent was obtained from each study participant (patient). Specimens were 

sent for spectroscopic analysis after the cytological diagnosis was obtained. Six mL of 

Thin-Prep® from each specimen was analysed at the Centre for Biophotonics, 

Lancaster University, UK. 

All specimens were centrifuged at 1500 rpm for 5 min. The cell pellet, after 

discarding the methanol (i.e., fixative in Thin-Prep®), was washed with distilled H2O 

and centrifuged; this process was repeated three times. The resulting cell pellet was 

suspended in 0.5 mL of distilled H2O. The suspension was applied and then left to dry 

on an IR-reflective slide (Low-E; Kevley Technologies Inc., OH, USA). Once dry, the 

specimen was desiccated for a further 24 h. This was to remove any possibility of 

H2O contaminating specimen spectra. A Tensor 27 FTIR Spectrometer with Helios 
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ATR attachment (Bruker Optik GmbH) was used to obtain a total of n=670 spectra 

(10 each from each of 67 specimens). The instrument settings were 32 scans, spectral 

resolution of 8 cm-1, and interferogram zero-filling of 2×. From each sample analysed, 

10 different spectra were objectively obtain from different areas. Prior to analysing 

each specimen, the diamond crystal within the spectrometer was washed and a 

background spectrum was obtained to account for atmospheric composition. 

 All data processing was carried out within MATLAB r2011a 

(http://www.mathworks.com) using the IRootLab toolbox44 

(http://irootlab.googlecode.com). Raw spectra were pre-processed by cutting between 

1,800 and 900 cm-1 (469 data points), rubberband baseline-corrected and normalized 

to the Amide I peak (i.e., around 1,650 cm-1). Acquisition of large datasets with 

hundreds of spectra, require algorithms to identify subtle but important differences 

between spectral categories, which are difficult to determine by univariate analysis 

alone. Therefore, multivariate analysis methods, principal component analysis (PCA) 

or PCA-LDA,45 were applied. PCA is an unsupervised data reduction technique 

generating scores and loadings plots from derived principal components (PCs) of 

mean-centred spectra.46 Each PC was examined individually to determine which 

represented the best segregation of categories. We calculated the variances of the 

individual PCs and found that the first 10 PCs capture between 99.1% and 99.6% of 

the total variance of the original dataset (i.e., the sum of the variances of the 

individual wavenumber absorbance intensities), depending on the analysis case 

reported below, with PCs of greater order representing mostly noise (only PC1 

captured around 76% of the variance in the original dataset). Therefore, input of the 

first 10 PCs into the supervised technique of LDA was applied. The PCA step prior to 

LDA is necessary to reduce the number of variables inputted into LDA, as it is 
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generally accepted that the ratio between the number of spectra and the number of 

variables (i.e., PCs) should be at least five, for inputting a dataset into a supervised 

method such as LDA.47 LDA maximizes inter-category variance in relation to intra-

category variance based on pre-set class labels,46 giving optimal category segregation. 

A scatter plot (“scores plot”) is generated to visualise segregation of the categories, 

whilst derived loadings plots determine the wavenumbers responsible for segregation 

between two categories. The loadings Statistical significance of each PC and linear 

discriminant (LD) contributing to inter-category segregation were determined by 

unpaired t-test and ANOVA. 

For SPA-LDA and GA-LDA models, the samples were divided into training 

(70%), validation (15%) and prediction sets (15%) by applying the classic Kennard-

Stone (KS) uniform sampling algorithm48 to the IR spectra, as shown in Table 1. The 

training samples were used in the modelling procedure (including variable selection 

for LDA), whereas the prediction set was only used in the final evaluation of the 

classification. The optimum number of variables for SPA-LDA and GA-LDA was 

determined from the minimum of the cost function G calculated for a given validation 

dataset as: 

∑
=

=
VN

n

n

V

g
N

G
1

,

1
                                                                                                              (1) 

where ng  is defined as 

),(min

),(

)(
2

)()(

)(
2

mInnlmI

nIn

n
mxr

mxr
g

≠

=                                                                                       (2) 

where )(nI  is the index of the true class for the nth validation object nx . 

The GA routine was carried out during 100 generations with 200 

chromosomes each. Crossover and mutation probabilities were set to 60% and 10%, 
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respectively. Moreover, the algorithm was repeated three times, starting from 

different random initial populations. The best solution (in terms of the fitness value) 

resulting from the three realizations of the GA was employed. 

 

Results 

A total of n=67 specimens were collected generating 670 spectra to be analysed. Of 

the 67 study participants with mild dyskaryosis on initial presentation, 33 had a 

normal smear after one-year follow-up, 31 a diagnosis of low-grade disease, and three 

a high-grade smear (two with moderate dyskaryosis, one with severe dyskaryosis). 

This means 49.25% of these CIN1 patients regressed after one year, 46.25% remained 

low-grade and 4.5% progressed to high-grade disease. Figure 1A shows the mean 

spectra of all three categories. All the spectra are plotted in Figure S1 [see Electronic 

Supplementary Information (ESI)], whereas the mean spectra with standard deviation 

bands are shown in ESI Figure S2. It is clearly evident that there are differences in the 

fingerprint spectra between the three categories depicted; although these is overlap of 

the error bands in ESI Figure S2; importantly, the mean spectra from the progressive 

disease category appear to be significantly different from the rest. ESI Figures S3 and 

S4 show the mean spectrum with standard deviation bands for representative 

samples/patients (highest and lowest mean variance across all wavenumbers, 

respectively, in the dataset). CIN1 is characterised by koilocytosis, which is the 

pathognomonic feature of HPV infection (Fig. 1B). It is recognised by the presence of 

a large sharply-defined, cleared peri-nuclear halo surrounded by a condensed rim of 

cyanophilic or fuchsia pink cytoplasm. Nuclei are enlarged and hyperchromatic with 

irregular membranes. Figure 2 is a 2-D PCA-LDA scores plot of the derived spectral 

points from each category, and demonstrates that progressive disease separates away 
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from regressive and persistent (static) states. However, there is marked overlap in 

spectral points of categories that remain static compared to those that regress. 

 PCA-LDA was subsequently employed to analyse the differences between the 

three categories (regressive vs. static vs. progressive disease) taken two-by-two 

(Figures 3-5). The results are visualized in the form of 1-D scores plots showing 

segregation of two categories along with estimated distributions of the scores for each 

category (“B” panels). Furthermore, we plotted the absolute values of the loadings 

vectors along with their envelope curves (“A” panels). An envelope curve is obtained 

by joining the peaks of the absolute value of a loadings vector. Such a curve is drawn 

over the loadings vectors in a thicker line to facilitate the identification of the most 

important peaks within these vectors. Taking the absolute value is a mathematical 

operation that discards negative signs. 

 When PCA-LDA was used to segregate the two categories, progressive 

disease vs. static cytology, the most category-distinguishing wavenumbers were 1662 

cm-1, 1648 cm-1, 1628 cm-1, 1512 cm-1, 1474 cm-1 and 965 cm-1 (Fig. 3A). Figure 3B is 

a 1-D scores plot that shows PCA-LDA is able to segregate spectral points derived 

from specimens that progress from those that remained unchanged. On the other hand, 

ATR-FTIR spectroscopy did not easily distinguish specimens that regress from those 

that remain unchanged (i.e., static). This is shown in Figure 4B where an ‘overlap’ 

(i.e., crossover) between the two categories hints at minimal segregation. However, 

the prominent wavenumbers distinguishing regressive vs. static, using PCA-LDA, are 

1736 cm-1, 1680 cm-1, 1512cm-1, 1234 cm-1, 1099 cm-1 and 968 cm-1 (Fig. 4A). 

Figure 5B shows a 1-D scores plot of specimens that regressed vs. those that 

progressed. Using PCA-LDA one can identify wavenumbers that appear to segregate 
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these two categories; those that appear important are 1686 cm-1, 1674 cm-1, 1625 cm-1, 

1561 cm-1, 1525 cm-1 and 1310 cm-1 (Fig. 5A). 

As can be seen in Table 1, the data [n=558 spectra = 210/CIN1 (static), 

318/REG (regressive) and 30/PROG (progressive)] were divided into training, 

validation and prediction sets, according to the KS algorithm. The algorithm was 

applied separately to each category, which is a classic method to extract a 

representative set of objects from a given dataset. This algorithm works basically in 

three steps by subset selection: Step 1: for each spectrum I not selected in the subset, 

the Euclidean distances d(k,i) between the considered spectrum and each spectrum k 

already selected in the subset are computed; Step 2: for each spectrum I not selected 

in the subset, the smallest Euclidean distance computed between the considered 

spectrum and the spectra already selected in the subset is found; and, Step 3: the 

nonselected spectrum I that has the highest distance is found and selected in the 

subset. Then, Steps 1-3 are repeated until the desired number of spectra has been 

included in the subset. 

 SPA was applied to the dataset (regressive vs. static vs. progressive disease) 

and resulted in the selection of 10 variables, namely 987 cm-1, 1018 cm-1, 1064 cm-1, 

1261 cm-1, 1504 cm-1, 1543 cm-1, 1616 cm-1, 1674 cm-1, 1735 cm-1 and 1797 cm-1, as 

shown in Figure 6A. Using these 10 selected wavenumbers, the Fisher scores was 

obtained and this generated improved segregation between each category (see Figure 

6B) when compared with PCA-LDA results. However, then GA was applied to the 

dataset and resulted in the selection of 35 variables, namely 898 cm-1, 906 cm-1, 952 

cm-1, 991 cm-1, 1014 cm-1, 1084 cm-1, 1087 cm-1, 1111 cm-1, 1149 cm-1, 1180 cm-1, 

1188 cm-1, 1195 cm-1, 1228 cm-1, 1234 cm-1, 1257 cm-1, 1288 cm-1, 1307 cm-1, 1334 

cm-1, 1342 cm-1, 1369 cm-1, 1404 cm-1, 1446 cm-1, 1492 cm-1, 1508 cm-1, 1525 cm-1, 
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1539 cm-1, 1562 cm-1, 1593 cm-1, 1597 cm-1, 1635 cm-1, 1639 cm-1, 1685 cm-1, 1708 

cm-1, 1720 cm-1 and 1732 cm-1. Using these 35 selected wavenumbers (Figure 6C), 

the Fisher scores was obtained for all the specimens in the dataset (Figure 6D) whose 

cost function minimum point was achieved with 35 wavenumbers. As can be seen, 

there was a good separation for each category, especially for the progressive disease 

class. However, there is a slight overlap between regressive and static cytology 

categories. Examination of the selected wavenumbers following PCA-LDA, SPA-

LDA and GA-LDA indicates that the main biochemical alterations are associated with 

lipids, proteins, nucleic acids, carbohydrates and to a lesser extent with DNA 

vibrations (Table 2). 

 

Discussion 

The introduction of the cervical cancer screening programme has reduced the burden 

of cervical cancer in the developed world.5 Abnormal cervical smears can cause 

significant patient anxiety. Most low-grade smears regress, but almost all patients 

with low-grade abnormal smears continue to be screened until the smear regresses, 

until it persists long enough to be treated, or until it progresses and is then treated. All 

this surveillance comes at a great cost, not only to the patient but also to the ‘Health 

Service’. Many CIN2 lesions are treated in women without children because there is a 

suspicion of underlying CIN3. This in the long-term may increase risks of prematurity 

and/or dysfunctional labours.49 With the advent of the cervical cancer screening 

programme in Ireland, it has been noticeable over the last few years that more women 

are booking into the Antenatal clinic with a history of some form of cervical excision. 

Multiple treatments and greater excisions are more likely to cause pre-term labour. 

This creates much anxiety amongst women. Cervical length scanning and cerclages 
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do not come without their own risks. Not only does this have implications for the 

antenatal care for this patient, it also has cost and resource implications in Maternity 

Hospitals. There is a need for a screening test that has the ability to give a diagnosis as 

well being capable of predicting likelihood of disease progression in order to reduce 

the number of unnecessary treatments performed. 

 In the developing world cervical cytology is the mainstay for cervical cancer 

screening. Though not universally applied yet, still it has brought about some 

reductions in cervical cancer, but there is a long way to go. In over-populated 

countries with low resources, patients who are screened may not return for follow-up. 

Screening costs money and is laborious. Outreach camps in rural and underprivileged 

areas attempt to integrate cervical screening into health packages. A test is needed that 

is cheap, robust, and can produce quick results at screening with the ability to predict 

progression. This way, in the not so distant future patients can be screened, the risk of 

progression assessed and they can be treated where necessary so as to avoid losing 

patients to follow-up. Fewer numbers of patients will require continuous screening 

making it more cost-effective. 

 FTIR spectroscopy has shown potential in distinguishing between normal, 

low-grade and high-grade disease.39 Certain wavenumbers may underlie the 

computational segregation between these three categories. Using the same principle, 

we tried to segregate regressive, static and progressive disease in CIN1 specimens. 

When n=67 study participants were re-investigated following a year (8 to 14 months) 

post-initial smear test, 4.5% of patient had progressive disease, almost half the cases 

regressed and close to half remained low-grade (i.e., static). This data is similar to 

other published work that suggests that only a small percentage of CIN1 will progress 

to high-grade disease,18 while most will regress. A certain percentage will continue to 
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be abnormal yet not progress and it is this very group that needs to be identified so 

that they are not over screened or over-treated. It would also be useful to know which 

cases are more likely to progress so that they may be treated early. There is some 

suggestion that HPV E6/E7 oncogenic transcripts may be used as a molecular 

biomarker in women with ASCUS or LGSIL to help predict which women will have 

disease progression.50 IR spectroscopy also shows potential in being able to predict 

which cases are likely to progress. 

 When ATR-FTIR spectroscopy was employed to predict disease progression, 

it was observed that using PCA-LDA gives better segregation than PCA alone. If 

SPA-LDA or GA-LDA following ATR-FTIR spectroscopy analysis was applied to all 

specimens, it was observed that these latter approaches result in even better 

segregation of cytology categories than PCA-LDA. SPA-LDA was applied in the 

dataset using only 10 variables to discriminate all the categories. The variable 

selection technique of GA with LDA was also performed if even better segregation 

between category-specific ATR-FTIR spectra could be obtained; the resulting GA-

LDA model successfully detected the biochemical alterations in the cytology 

specimens using only 35 wavenumbers. These wavenumbers should be important 

contributors to segregation between the three categories. 

When distinguishing between regressive vs. progressive disease, maximal 

differences were at the wavenumbers 1686 cm-1, 1674 cm-1, 1625 cm-1 (Amide I), 

1561 cm-1 (Amide II), 1525 cm-1 and 1310 cm-1. Differences between progressive vs. 

static disease were observed at 1662 cm-1, 1648 cm-1 (Amide I), 1628 cm-1, 1512 cm-1 

(Amide II), 1474 cm-1 and 965 cm-1 (protein phosphorylation). When comparing 

regressive vs. static disease, there was significant overlap making it difficult to 

segregate the two categories but wavenumber differences were noted at 1736 cm-1 
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(lipids), 1680 cm-1, 1512 cm-1, 1234 cm-1 (vasPO2
-), 1099 cm-1 (vsPO2

-) and 968 cm-1
 

(protein phosphorylation). Several selected wavenumbers (GA-LDA) appear to be of 

particular interest, namely, the variables at 1334 cm-1 and 1342 cm-1, representing the 

Amide III from proteins. The variables at 1369 cm-1 and 1404 cm-1 represent the 

spectral region of fatty acid region and the variables between 1508 cm-1-1597 cm-1 

correspond of Amide II of proteins. 

 The above would suggest that wavenumbers 1625 cm-1 to 1662 cm-1 (Amide 

I), 1512 cm-1 to 1525 cm-1 (righthand side of Amide II) and 956 cm-1 to 968 cm-1 

(righthand side of protein phosphorylation) appear to be the three main distinguishing 

features between these categories. However, 965 cm-1, 968 cm-1, 1014 cm-1, 1099 cm-

1, 1234 cm-1, 1334 cm-1, 1342 cm-1, 1508 cm-1, 1512 cm-1, 1562 cm-1, 1628 cm-1, 1648 

cm-1, 1685 cm-1, 1708 cm-1, 1720 cm-1 and 1736 cm-1 summarizes the highlighted 

variables responsible for separating static, regressive and progressive disease 

specimens by PCA-LDA, SPA-LDA and GA-LDA algorithms. Larger studies might 

be able to help distinguish an algorithm to segregate the groups blindly. The ‘Holy 

Grail’ in cervical cancer screening is the ability pick up disease that is more likely to 

progress.51 Many useful tests such as 3q26 gain, twist-related protein 2 (TWIST2), 

Ki67, p16 and minichromosome maintenance 7 protein (MCM7) are still under 

investigation. Most of these are still at a rudimentary phase; some are specialized and 

expensive. The need is for a cheap test that is easy to perform, robust and cost 

effective. This technique employs the same sample preparation as is required for 

conventional liquid-based cytology. Sample preparation only involves washing to get 

rid of the methanol to avoid it from affecting the spectral signature. The cost lies 

mostly in the instrumentation (e.g., a Bruker TENSOR27 with a Helios ATR 

attachment currently costs around £40k). This instrument is the size of a desktop 
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computer. It is robust with the potential to be made portable and cheaper with the 

possibility of being automated to increase throughput, making it cost effective. 

Essentially, this test has the potential to be cheap and easy to use. The 

computational process towards data classification needs further development and 

testing;52,53 for instance, a systematic assessment of pre-processing methods (e.g., 

rubberband baseline correction vs. derivatization) and classification methods (e.g., 

LDA vs. SVM) could be conducted on a larger dataset. Larger studies on the 

progression of low-grade disease and studies on conservatively managed CIN2 need 

to incorporate the use of IR spectroscopy to predict progression. This may also help 

reduce the screening interval for low-grade disease. 
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Legends to Figures 

 

Figure 1 Predicting progressive disease in low-grade cervical cytology. (A) Average 

spectra acquired from all specimens. The spectra from patients with regressive disease 

are shown in red; those with static disease (CIN1) are shown in blue; and, those from 

patients with progressive disease are in green. (B) An example of CIN1 following a 

conventional Papanicolaou stain showing a typical mixture of differing cell types. 

 

Figure 2.  Two-D PCA-LDA showing segregation as well as crossover. 

 

Figure 3. Comparison of static and progressive specimens. The panel shows principal 

component analysis-linear discriminant analysis (PCA-LDA) loadings plots (A) 

alongside one-dimensional scores plots (B) showing segregated and crossover 

specimens. 

 

Figure 4. Comparison of static and regressive specimens. The panel shows principal 

component analysis-linear discriminant analysis (PCA-LDA) loadings plots (A) 

alongside one-dimensional scores plots (B) showing segregated and crossover 

specimens. 

 

Figure 5. Comparison of progressive and regressive specimens. The panel shows 

principal component analysis-linear discriminant analysis (PCA-LDA) loadings plots 

(A) alongside one-dimensional scores plots (B) showing segregated and crossover 

specimens. 
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Figure 6. The application of variable selection techniques to the segregation of 

retrospectively categorised low-grade cervical cytology specimens. Successive 

projection algorithm (SPA)-linear discriminant analysis (LDA) results: (A) Ten 

wavenumber variables selected; and, (B) DF1 × DF2 discriminant function values 

calculated by using the variables selected by SPA-LDA from all specimens. Genetic 

algorithm (GA)-LDA results: (C) 35 wavenumbers selected; and, (D) DF1 × DF2 

discriminant function values calculated by using the variables selected by GA-LDA 

from all specimens. 
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Figure 1 

 

 

A) B) 
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Figure 2 
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Figure 3 

 

 

A)             B) 
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Figure 4 
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Figure 5 
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Figure 6 
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Table 1: Number of training, validation and prediction specimens (or spectra) in each 

category. 

Category Set  
training 

Validation Prediction 

CIN1 140 35 35 
REG 218 50 50 
PROG 20 5 5 
Total 378 90 90 

CIN1, static as cervical intraepithelial neoplasia 1; REG, cytology that regressed after 
1 y; and, PROG, cytology that progressed to high-grade disease 
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Table 2: Highlighted variables responsible for separating CIN1, REG and PROG 

specimens by PCA-LDA, SPA-LDA or GA-LDA algorithms. 

 

Wavenumbers 

(cm
-1
) 

Tentative Assignments 

965 Out-of-plane C-H bending 
968 DNA band 

1014 C-O and C-C stretching; C-O-H and C-O-C deformation 
of carbohydrates 

1099 VasPO2
– 

1234 VasPO2
– 

1334 Amide III 
1342 Amide III (N-H stretch, C-N stretch of aromatic amines) 
1508 Amide II of proteins 
1512 νC=O (Amide II) 
1562 Amide II of proteins (e.g., side-chain carboxyl groups) 
1628 Amide I  (C=N; associated with β-sheets) 
1648 Amide I (random coil) 
1685 Amide I (C=O stretch of ketones; conjugated) 
1708 C=O stretching vibrations of ketones 
1720 C=O stretching vibrations of aldehydes 
1736 Lipid (νCOOH carboxyl groups) 
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