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Abstract 

 It is estimated that approximately 13,000 people in the UK are diagnosed with brain 

cancer every year; of which 60% are metastatic. Current methods of diagnosis can be 

subjective, invasive and have long diagnostic windows. Raman spectroscopy provides a non-

destructive, non-invasive, rapid and economical method for diagnosing diseases. The aim of 

this study was to investigate the use of Raman and immersion Raman spectroscopy for 

diagnosing metastatic brain cancer and identifying primary sites of origin using brain tissue. 

Through spectral examination, the Raman peaks at 721 cm-1 and 782 cm-1 were identified as 

being the most distinct for discriminating between the glioblastoma multiforme (GBM), 

metastatic and normal brain tissue spectra. A ratio score plot of these peaks calculated the 

classification sensitivities and specificities as 100% and 94.44% for GBM, 96.55% and 100% 

for metastatic brain, and 85.71% and 100% for normal brain tissue. Principal Component-

Linear Discriminant Analysis (PC-LDA) also showed discrimination between normal, GBM 

and metastatic brain tissue spectra. We also present, for the first time, the use of Raman 

spectroscopy to investigate primary site of origin for metastatic brain cancer and any 

biochemical differences between different primary and metastatic cancer using linked 

samples. This study revealed interesting spectral differences in the amide regions showing 

changes in the biochemistry of the metastatic brain cancer from the primary cancer 
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Introduction 

It is estimated that a third of people in the UK will develop cancer at some point 

during their lifetimes; and approximately 50% of these will die as a result of the disease 

within five years after diagnosis [1]. Brain metastases are the most common form of 

intracranial neoplasms in adults and are predicted to develop in 20-40% of cancer patients 

[2]. It is reported that around 13,000 people in the UK are diagnosed with brain cancer every 

year, of which, 60% are metastatic tumours that have originated from primary cancers located 

outside the central nervous system [3]. All cancers have the potential to metastasise and their 

probability of doing so is influenced by their location; lung cancer is the most common 

cancer to metastasise and is responsible for 50% of all brain metastases, breast cancer is the 

second most common and accounts for 15-25%, melanoma accounts for 5-20%, and the 

remaining 5-30% are as a result of other cancers [4]. Identifying the site of origin of the 

primary tumour increases the efficiency of treatment and thus patient survival; however, in 

15% of metastatic cases, the location of the primary cancer is unknown [5].  

The current method of diagnosis for brain metastases and their primary sites is 

histopathological analysis. The cancer type and the origin of the primary cancer can be 

identified based on the tissue architecture observed [6]. This method requires a trained 

neuropathologist, has a long diagnostic window, and can be subjective [7]. As well as these 

issues, disagreement amongst pathologists is reported to occur in up to 43% of specimens [8]. 

The accurate and rapid diagnosis of disease allows early intervention of appropriate 

treatment, thus increasing life expectancy and reducing healthcare costs [9]. Therefore, there 
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is a requirement for non-subjective techniques that can rapidly and accurately identify 

disease.  

Raman spectroscopy is an analytical technique that utilises the phenomenon of 

inelastic light scattering to produce characteristic spectra unique to specific samples. When a 

tissue becomes diseased, molecular changes occur, which should be reflected in its spectrum. 

The identification of spectral differences between healthy and diseased tissue should enable 

objective diagnosis of specific diseases. Raman spectroscopy is not significantly affected by 

water and thus can be used in vivo to reduce and aid biopsy [10]. Raman spectroscopy is also 

a non-destructive, rapid and economical technique, making it an attractive method for 

diagnosis [11].  

The potential of Raman spectroscopy as a diagnostic technique for diseases has been 

demonstrated by a variety of studies. Many papers have shown the ability of Raman 

spectroscopy to diagnose cancers, such as: brain cancers using tissue on low-E microscope 

slides and CaF2 slides respectively [12, 13], lung tumours through the analysis of bronchial 

tissue sections [14], gastric adenocarcinomas using tissue samples [15, 16], non-melanoma 

skin cancers from the analysis of tissue in vivo [17], laryngeal cancers from tissue at 

endoscopy [18], breast cancers using fresh and frozen tissue specimens respectively [19, 20], 

cervical cancers from tissue in vivo and ex vivo [21, 22], bladder and prostate cancers from 

tissue sections [23, 24] and oesophagus and colon cancers through the analysis of snap frozen 

tissue on CaF2 [25]. 

Gajjar et al. reported the ability of Raman spectroscopy to differentiate between brain 

tumour and healthy brain tissue [12]. They observed successful discrimination between 

different brain tumour types in their study. They reported that metastatic brain tissue could be 

recognised from healthy brain tissue on low-E substrates based on spectral peaks at: 997 cm-1 
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(phospholipids and glucose-I-phosphate), 1077 cm-1 and 1446 cm-1 (lipids and proteins), 

1241 cm-1 (Amide III), ≈ 1460 cm-1 (cytosine) and 1654 cm-1 (Amide I) [12]. 

Tissue samples are usually fixed using formalin and impregnated with paraffin wax to 

preserve the tissue for future analysis. The addition of paraffin also provides support for the 

microtomy process, enabling the sectioning of the tissue block for microscopic examination. 

However, prior to histological and Raman analysis, tissue sections must undergo a dewaxing 

process to remove the added paraffin. This then allows histological staining of the tissue for 

pathological examination, and reduces the paraffin contributions in Raman spectra. Ó Faoláin 

et al. investigated the efficacy of dewaxing procedures on formalin fixed, paraffin preserved 

(FFPP) cervical tissue on glass slides [26]. They reported that dewaxing procedures 

employing the commonly used, xylene and histoclear solvents, do not completely remove all 

of the paraffin wax; they found hexane to be a much more efficient dewaxing agent [26] 

However it requires 18 hours of tissue submersion and is not clinically used for dewaxing 

procedures, conventional clinical dewaxing procedures were employed here [27].  

Immersion Raman spectroscopy utilises an immersion lens which is in direct contact 

with an appropriate liquid, such as deionised water covering a sample under investigation. 

Bonnier et al. describe and successfully demonstrate the use of immersion Raman 

spectroscopy for both live cell and the first example of in vitro tissue specimens on CaF2, and 

observed an improvement in spectral quality, sample stability and the reduction of spectral 

background [28, 29]. Bonnier et al. [28, 29] demonstrated that fluorescence, contributing to 

spectral background, is only significant from sources producing short wavelengths of light, as 

proteins typically only fluoresce when sources producing wavelengths below 500nm are used 

and therefore, the background contribution seen from spectra acquired when using 785 nm 

lasers should not be attributed to fluorescence, but to morphology dependant scattering of the 

incident light, and Raman lines that cause non-collimated entry into the spectrometer as stray 
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light. The exchange of a tissue/air interface with a tissue/liquid interface results in more 

uniform refractive indices, thus reducing this level of stray light, and in turn, the intensity of 

the spectral background. Submerging the sample in liquid also protects the tissue specimen 

from photo-damage; enabling more powerful lasers of shorter wavelengths to be used, longer 

acquisition times and higher numbers of accumulations to be employed hence, improving 

spectral quality.  

We present a comparison of Raman and immersion Raman recorded spectra, with a 

study highlighting the use of immersion Raman spectroscopy for the rapid diagnosis of site of 

origin of metastatic brain tumours. Vibrational spectroscopy has the ability to revolutionise 

the clinical environment allowing for increased efficiency within the diagnostic regime with 

corresponding decreases in mortality, morbidity and economic impact upon the health 

services [30]. 

 

Experimental 

Study participants 

Tissue sections were cut using a microtome. Parallel tissue sections of 4 µm in 

thickness were cut for glass microscope slides and 10 µm for CaF2 (Crystran, UK) substrates. 

Tissue was obtained from formalin fixed paraffin preserved (FFPP) tissue blocks from the 

Brain Tumour North West (BTNW) bio-bank under ethical approval (BTNW/WRTB 13_01). 

Patient data consisted of histological information, patient gender, and date of birth and origin 

of metastasis/histological subtype. A total of 48 tissue specimens were obtained from 41 

different patients. Tissue consisted of normal brain samples (n=7), glioblastoma multiforme 

(GBM) brain samples WHO (World Health Organisation) grade IV (n=5), metastatic brain 

samples (n=29) and primary cancer tissue samples (n=7). Table 1 displays further 

information about the tissue specimens.  
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Dewaxing and Haematoxylin and Eosin staining of tissue 

Tissue sections on the microscope slides were stained with Haematoxylin and Eosin 

(H&E) for histological examination So as to remove the paraffin, tissue sections were de-

waxed through 2 x 5 minute baths of Histoclear followed by 2 x 5 minute baths of ethanol. 

Prior to H&E staining, tissue sections were washed in distilled water for 5 minutes after de-

waxing. Sections were then bathed in haematoxylin for 5 minutes and washed in warm tap 

water to allow the nuclei to turn blue. The sections were then covered in eosin for 4 minutes 

and washed off with distilled water. Finally, the tissue sections were dehydrated in 2 x 5 

minute baths of ethanol and cleared in 2 x 5 minute baths of Histoclear tissue sections were 

protected and preserved through the application of Histomount and a coverslip. The sections 

were then microscopically examined in order to identify the metastatic sites present in the 

tissue. 

Figure 1 shows the microscopic images of the H & E stained tissue samples at x 100 

magnification. It can be observed that normal, metastatic and GBM brain tissue differ from 

one another architecturally, with differences also being observed between the differing 

metastatic types. 

 

Tissue section preparation for Raman spectroscopic analysis 

 The tissue sections on the CaF2 substrates also needed to be de-waxed prior to Raman 

analysis, in order to reduce the paraffin peak contributions in the spectra. The de-waxing 

procedure consisted of 3 x 5 minute baths of Histoclear followed by 3 x 5 minute baths of 

ethanol. The sections were left to air dry for 30 minutes, placed in a Petri dish and stored in a 

desiccator until spectroscopic analysis. 
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Raman spectroscopy instrumentation and analysis 

Spectroscopic measurements were carried out on a Horiba Jobin-Yvon LabRAM 

HR800 spectrometer. An air cooled CLDS point mode diode 785 nm laser with a single edge 

filter (cut off to 100 cm-1) and an output power of 300mW was used to acquire spectra; which 

was used with a grating of 300 gr/mm and blazed at 1000 nm. Non-immersion point spectra 

were acquired using a 0.9 numerical aperture (x 100) (MPlanN) objective and immersion 

point spectra were acquired using a 0.75 numerical aperture (x 60) objective (LUMPlanFLN, 

Olympus). The confocal hole was set at 100 µm for 785 nm spectral collections. The detector 

used was an Andor electromagnetic (EM) charged coupled device (CCD). A video camera 

within the Raman system was used to take images of the specimens.  

The instrumentation was calibrated before operation to silicon at the spectral line of 

520.8 cm-1. Spectra were acquired using the 785 nm laser at 100% exposure for 30 s and 

accumulated twice, with both the immersion and non-immersion objectives. A total of 1574 

spectra were generated through the production of 20 spectra from three to five areas on each 

tissue sample, ensuring a representative area was used to gather data. Immersion Raman 

spectroscopy was carried out by submerging the tissue sample in deionised water for spectral 

collection.  

 

Data processing and multivariate analysis  

Pre-processing and multivariate analysis was carried out on the raw data using 

LabSpec 6 spectroscopy software suite (HORIBA Scientific) and MATLAB version 7.11.0 

(R2010b) (The MathWorks, Inc., USA) using in-house written software. Pre-processing 

methods were kept to a minimum to enable better reproducibility; data were background 

subtracted through the application of a fifth order polynomial and smoothed using 7 point 

smoothing (Labspec 6) and vector normalised. Paraffin peaks were removed from the spectra 
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for multivariate analysis at the following wavenumbers: 882 cm-1 - 912 cm-1, 1051 cm-1 - 

1071 cm-1,  1115 cm-1 - 1143 cm-1, 1163 cm-1 – 1187 cm-1, 1284 cm-1 – 1305 cm-1 and 1407 

cm-1 – 1501 cm-1. Multivariate analysis was then carried out on the data set using PC-DFA. 

Martin et al. demonstrate the successful use of PCA-LDA for showing clustering and 

identifying the major contributory variables [31].   

Principal component analysis (PCA) is an unsupervised multivariate algorithm used to 

find spectral differences between recorded spectra. Being unsupervised means that the 

algorithm has no priori information on the grouping of the recorded spectra, PCA can only 

find orthogonal dimensions of spectral variance. One advantage to PCA is that can be used to 

reduce the dimensionality of the dataset prior to discriminate classification algorithms, such 

as Linear Discriminant Analysis (LDA). Without dimension reduction, LDA can overfit, 

producing over generous classification results based on random errors or noise, and not on 

the relationships between the recorded spectra. LDA is a supervised technique requiring prior 

knowledge of the group classes beforehand. LDA then finds the best linear hyperplane 

between the class groups at each variable dimension, maximising the intergroup variance and 

minimising the intragroup variance. The validities of the PC-LDA models were estimated 

using a cross-validation technique, partitioning the data matrix into two sets for training and 

testing. One third of the original data set was randomly removed while the remaining training 

set data is used to build the classification model. The classification model is then tested using 

the removed (blind) test set spectra [32, 33]. The performance of the model is judged on how 

well the model, built using the training set, predicts the new and previously unseen test set 

data. PC-LDA model performance was judged through the percentage of test set spectra 

correctly classified (%CC) and spectra classification sensitivities and specificities based on 

the 90% inner confidence ellipse. This study investigates three different PC-LDA models.  
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Results and Discussion     

Raman and Immersion Raman spectroscopy comparison  

The averaged raw spectra of all tissue samples on CaF2 using immersion and non-

immersion Raman spectroscopy are shown in Figure 2. It is clear that the averaged 

immersion Raman spectrum has an initial lower spectral background than the averaged non-

immersion spectrum in the 600 cm-1 to 930 cm-1 spectral range, which remains at a relatively 

stable intensity throughout. Immersion Raman also produces better delineated peaks with 

larger areas than spectra acquired by non-immersion Raman. Therefore, due to the advantage 

of better spectral quality, immersion Raman spectroscopy was chosen over standard 

techniques to analyse its potential as a diagnostic tool for metastatic brain cancer and its 

ability to identify primary cancer sites of origin.   

Spectral Histopathology: 

Cancer vs. Metastatic Tumours vs. Non-Cancer 

The averaged, vector normalised and background-subtracted immersion Raman 

spectra of normal (157 spectra from 7 patients), metastatic (668 spectra from 31 patients) and 

GBM (127 spectra from 5 patients) brain tissue on CaF2 substrates are displayed in Figure 3. 

Table 2 lists the assignments of the major peaks present in recorded spectra, based on 

literature [14, 25, 34-36]. Spectral differences between these tissue types are observed at the 

various peaks throughout the averaged spectra. The peak at 721cm-1, assigned as the C-N 

symmetric stretch of choline [34, 35], is prominently observed in GBM tissue. In normal and 

metastatic tissue this peak is not present, although a 725 cm-1 peak, assigned to adenine is 

present [37] (Figure 3). Choline content has been observed to increase in GBM tissue and all 

primary tumours through magnetic resonance spectroscopy; thought to be caused by 

increased cell proliferation and cell membrane turnover, resulting in an increased production 

of choline transporters and kinase enzymes [38]. 
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GBM and metastatic tissue both exhibit 782 cm-1 peaks of a considerable intensity in 

their spectra, assigned to nucleotide ring breathing [25], whereas the peak in the normal tissue 

spectrum is much weaker and is not easily identifiable. A peak at ~1081 cm-1, assigned to 

PO2
−
 symmetric stretching (nucleic acids) [39], is observable in the averaged spectrum of 

normal brain tissue, yet appears absent from the spectra of cancerous tissue (Figure 3).   

An amide III peak is present at 1263 cm-1 [36] in the normal tissue spectrum but for 

GBM and metastatic brain tissue spectra, the peak has been shifted to 1250 cm-1, possibly as 

a result of peak broadening, or changes in hydrogen bonding. As well as the shift, there is a 

noticeable increase in amide III peak intensity from the GBM and metastatic brain average 

spectra, when compared to normal tissue spectrum. As the 782 cm-1 has previously associated 

with ring breathing vibrations of nucleic acids [40] the increase in intensity from the 782 cm-1 

and may suggest an increase in cellular density from the cancerous tissue. The increase in 

intensity from the amide III band may well be in agreement with this, showing an increase in 

cellular proteins as a result of increased cell mass in the tissue.  

The peak present at approximately 1658 cm-1, attributed to the C=O stretch of amide I 

[25], appears to be shifted in the average spectrum of metastatic tissue to a higher Raman 

shift of 1661 cm-1. The intensity of this 1658 cm-1 peak is also decreased in both the 

cancerous spectra. This is consistent with the report of Gniadecka et al., who found reduced 

intensities of the amide I band of proteins in the spectra of melanoma. The changes in the 

amide bands between the normal and melanoma specimens are attributed to conformational 

changes to the protein structures [41]. 

It can also be observed from the averaged spectrum of normal tissue that the residual 

paraffin peaks (asterisked peaks) present are of a much lower intensity than those in the 

spectra of metastatic and GBM tissue. This could be attributed to either structural or 

Page 10 of 38Analytical Methods

A
n

al
yt

ic
al

 M
et

h
o

d
s 

A
cc

ep
te

d
 M

an
u

sc
ri

p
t



compositional differences between the tissue types showing a tissue effect on the dewaxing 

efficacy [27].   

 

 

 

 

The mean spectral intensity changes between spectral peaks of normal, GBM and 

metastatic brain tissue (Figure 3) indicate alterations in specific biomolecule concentrations 

when the tissue is in different states of health. These observable spectral differences 

demonstrate the ability of Raman spectroscopy as a potential diagnostic tool for brain cancer.  

 
 

As a result of there being spectral differences between GBM, Metastatic and normal 

brain tissue mean spectra (Figure 3), the recorded spectra were investigated using PC-LDA to 

see if linear separation boundaries could be found between the spectra recorded from the 

different tissue types in multidimensional space (Figure 4). Figure 4 shows a LDA scores plot 

(LDA1 vs. LDA2) of spectra recorded from GBM, Metastatic and normal brain tissue using 

immersion Raman spectroscopy. Although complete separation of the different tissue type 

spectra is not seen in the LDA scores plot (a degree of overlap seen between the different 

groups), there is some separation between spectra recorded from all three tissue types. The 

majority of GBM and normal brain tissue spectra are separated from Metastatic tissue spectra 

along the LDA 1 axis, and the majority of normal brain tissue spectra can be discriminated 

from GBM spectra along the LDA 2 axis. However, it can be seen in Figure 1 that all tissue 

types have some degree of tissue heterogeneity, with some Metastatic tissue types and GBM 

tissue being very heterogeneous. The heterogeneous nature of GBM tissue is said to be due to 

areas of necrosis found in the tissue surrounded by pseudopalisades and microvascular 

hyperplasia, believed to be instrumental in the accelerated growth of GBM [42]. By 
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investigating different areas on each tissue sample with Raman spectroscopy there is the 

possibility that non-cancerous tissue chemistry will be captured when investigating very 

heterogeneous cancerous tissue. This is possible reflected in Figure 4 (a), which shows that 

both Metastatic and GBM tissue spectra have some overlap with normal tissue spectra. 

Therefore, the spectra used for Figure 4 (a) was split into smaller groups and averaged (The 

20 spectra recorded from each patient tissue sample were split into 4 and averaged). This 

produced the LDA model displayed in Figure 4 (b), which now shows good separation 

between all three classes of tissue spectra; producing a classification model performance 

score of 97%CC. Details of both PC-LDA models created in Figure 4 can be found in Table 

3. 

Figure 5 displays the LDA loadings plots relating to the LDA scores plot in Figure 4 

(b). Table 4 identifies the Raman shifts from the LDA 1 and 2 loading plots which are 

responsible for distinguishing normal, Metastatic and GBM tissue spectra. The LDA 1 axis 

separates the Metastatic tissue spectra from the rest. The main peaks in the LDA 1 loading 

plot included the 718, 925, 1250, 1400 and 1670 cm-1 Raman bands associated with 

symmetric choline C-N stretch (membrane phospholipid head)/adenine, C-C stretching mode 

of proline, Amide III band, CH3 bending mode due to methyl bond in the membrane and the 

Amide I C=O stretching mode of β-sheet structural proteins respectively. These spectral 

differences are in agreement with the mean spectra and show the Metastatic tissue spectra to 

have reduced intensities from the 718 and 925 cm-1 peak’s, and increased intensities from the 

1250 1400, and 1670 cm-1 peaks when compared to the tissue spectra recorded from the GBM 

and normal tissue. The LDA 2 axis in Figure 4 (b) separates the majority of GBM and 

Metastatic spectra from normal tissue spectra. The main peaks in the LDA 2 loading plot 

included the 719, 780/805, 1078, 1234, 1268, 1653, 1672 cm-1 Raman bands associated with 

symmetric choline C-N stretch, cytosine/uracil ring breathing of nucleotide/A-DNA, PO2 
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symmetric stretching (nucleic acids), antisymmetric phosphate stretching, Amide III: (α-

helix, protein), Amide I (C=O stretching mode of proteins, α-helix conformation) and the 

Amide I C=O stretching mode of β-sheet structural proteins respectively. The loading of the 

peaks at 1235 and 1268 cm-1 are in agreement with the mean spectral differences, which show 

the Amide III peak in the cancerous spectra to shift from 1268 cm-1, associated with α-helix 

protein, to a lower frequency associated with β-sheet protein. The LDA 2 loading plot and 

mean spectral comparisons also show the cancerous spectra to have reduced intensity from 

the Amide I α-helix peak when compared to the normal tissue spectra, while the cancerous 

spectra also show increased intensity at ~1670 cm-1, associated with Amide I proteins with β-

sheet structural conformations. This may suggest a link between protein secondary structure 

content and cancerous tissue. Yamada et al. also showed β-sheet protein levels to increase 

significantly when investigating necrotic areas of murine carcinoma using FT-IR 

microspectroscopy. The increase in β-sheet protein levels coincided with a sharp decrease in 

α-helix protein levels, in agreement with our results [43]. It can also be seen from Figure 5 

(b) that the cancerous tissue spectra have increased intensity from peaks associated with 

nucleic acids and DNA structures. As previously described, the increase intensity from 

nucleic acid structures may suggest an increase in cellular density from the cancerous tissue, 

in agreement with increased cell proliferation.   

From the mean spectral differences (Figures 3 and 5) it can be visibly seen that the 

average normal brain tissue spectrum has a low intensity from the 782 cm-1 peak, when 

compared to the average GBM and Metastatic spectra. It can also be seen that the average 

GBM mean spectrum has a much greater intensity in the 721 cm-1 peak than the average 

normal tissue and metastatic spectrums. As a result, a 2D scores plot was produced based on 

the intensity ratios between the 721/782 cm-1 peaks and the 620 cm-1 peak (620 cm-1 peak 

intensity was relatively uniform in all the recorded spectra) (Figure 6). Figure 6 shows the 
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721 and 782 cm-1 peaks to be significant discrimination markers for GBM, Metastatic and 

normal tissue spectra, with average GBM, Metastatic and normal tissue spectra clearly 

grouped in the 2D scores plot (See Table 5 resulting sensitivities and specificities). This 

shows that the 721 and 782 cm-1 peaks could potentially be markers for diseased tissue 

therefore, the monitoring of these peak intensities through Raman spectroscopy may aid the 

early diagnosis of disease. However, Figure 6 does show two spectra which cannot be 

grouped with their representative class, identified as patient 007 and 509, belonging to the 

normal and metastatic group respectively. Upon visual inspection of the spectra, it was 

observed that they notably differed from the total averaged spectra for their tissue types. This 

could potentially be a result of tissue misclassification.  

 

Primary site analysis 

Raman spectra were also recorded from tissue representative of primary cancers 

(breast, melanoma, oesophagus and stomach and colon/rectum) and patient averaged. The 

primary cancer tissue samples are linked samples (from the same patient) of corresponding 

metastatic tissue samples in the metastatic tumour model. As before, PC-LDA was performed 

on the spectra recorded from the tissue samples using immersion Raman spectroscopy. The 

LDA scores plot (Figure 7) shows that spectra recorded from the colon/rectum (blue) and 

oesophagus & stomach cancerous tissue (green) have some good separation from the 

remaining spectra. Less clear is the separation of the primary breast and melanoma tissue 

spectra which are shown to be spectrally similar. This may suggest that the tissue architecture 

of both primary breast and melanoma tissue is similar. 

 
Analysis of site of origin 

Figure 7 shows that the identification of spectra recorded from some primary cancers is 

possible using multivariate classification algorithms. As the origins of metastatic brain tissue 
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are determined from the tissue architecture observed, it should also be possible to determine 

metastatic brain tissue origins from the spectra recorded. Therefore, PC-LDA was also 

performed on the metastatic tissue data with the LDA scores plot displayed in Figure 8. As 

with the data used in Figure 4 (b), the 20 spectra recorded from each patient tissue sample 

were split into 4 and averaged. The LDA scores plot in Figure 8 shows that although there is 

some overlap between the spectra recorded from each type of brain metastases, there is some 

separation between metastatic breast (blue), melanoma (red), oesophagus & stomach (black) 

and colon/rectum (green)/lung (cyan) spectra. As spectra recorded from both metastatic 

colon/rectum and lung tissue almost overlap in LDA scores space, this may suggest that the 

different tissue types have similar tissue architecture. The spectral similarities may also be 

due to insufficient spectra being recorded from the different tissue types, and as a result, 

spectra recorded from the three different sites of each patient sample have not been able to 

capture the differing tissue architecture which would discriminate between the two. However, 

it may also be possible that that the movement of metastatic cancer from primary sites to the 

brain effects the biochemistry of the cancers, with all metastatic cancer found in the brain 

becoming biochemically similar due to their new environment. This would suggest that 

biochemical differences between primary cancers are generally a result of the organ location 

and not the cancer type.   

 

Spectral analysis of primary site and corresponding brain metastasis  

Figure 9 (a) displays the baseline-subtracted averaged spectra of both Metastatic brain 

and their corresponding primary sites. It is observable from Figure 9 (a) that the Metastatic 

spectra (black) from the different sites of primary origin all look similar, whereas the same 

cannot be said from the primary cancer spectra (blue), with primary Colon/Rectum, 

Melanoma and Oesophagus and Stomach tissue spectra all showing mean spectral differences 
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when compared against their corresponding primary sites. This supports the theory that the 

movement of metastatic cancer from primary sites to the brain affects the biochemistry of the 

cancers, with all metastatic brain tissue spectra having relatively similar chemistry. However, 

the average primary breast cancer tissue spectrum and the corresponding metastatic brain 

tissue spectrum appear relatively similar to one another (Figure 9 (a, 1)). The PCA scores plot 

also shows no separation between the primary and Metastatic breast spectra therefore, 

suggesting that there is no real change from primary and Metastatic breast tissue. On the 

other hand, the spectral differences between oesophagus/stomach tissue and metastatic brain 

tissue are clear. The most noticeable disparity between the two average spectra is due to the 

peak at 1621 cm-1, which is much more intense in the primary site spectrum than the 

metastatic brain spectrum. This coincides with a much reduced peak intensity at ~1658 cm-1 

for the average primary site spectrum thus, a considerable change in protein structure for the 

primary oesophagus/stomach tissue during movement to the brain. It can also be seen from 

the mean spectral comparisons (Figure 9 (a, 4) that the primary site spectrum has a peak at 

~800 cm-1, associated with DNA and nucleic acid molecules, whereas the corresponding 

Metastatic brain spectrum does not. For melanoma tissue, the spectral differences between 

melanoma primary site and metastatic tissue are primarily due spectral differences seen from 

the amide I peak, the amide III and peaks present between 850-950 cm-1. However, the 

spectral differences between Colon/Rectum cancer tissue and the Metastatic brain tissue are 

not large, and vary mainly through differences in peak intensities. Therefore, only small 

biochemical changes in the tissue chemistry during Metastasis. 

    

Conclusion 

In this study, we have demonstrated the use of immersion Raman spectroscopy to 

differentiate between GBM, metastatic and normal brain tissue with sensitivities and 
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specificities of 100% and 94.44% respectively for GBM, 96.55% and 100% respectively for 

metastatic brain, and 85.71% and 100% respectively for normal brain tissue, based on the 

intensity ratios between the 721/782 cm-1 peaks. This shows that the Raman spectral peaks at 

721 and 782 cm-1, primarily associated with the symmetric C-N stretch of choline and the 

cytosine/uracil ring breathing of nucleotides respectively, may be possible spectral 

biomarkers for the discrimination of normal, GBM and Metastatic tissue. As well as this, PC-

LDA was performed on the tissue spectra producing good separation of GBM, Metastatic and 

normal tissue spectra, again highlighting the potential of the analytical technique for the 

classification of cancerous tissue. As well as investigating GBM, Metastatic and normal 

tissue spectra, this study has also been able to distinguish some of the different primary site 

cancerous tissue and the different Metastatic brain cancerous tissue, based on the Raman 

spectra recorded. Being able to distinguish Metastatic brain tissue origins based on recorded 

Raman spectra, coupled with supervised multivariate analysis, would be non-subjective, 

therefore, the analytical technique could be used as a qualitative tool alongside 

neuropathology for disease diagnosis. For the first time the chemistry of Metastatic brain and 

their corresponding primary site tissue have also been investigated in this study by Raman 

spectroscopy, with primary Colon/Rectum, primary Melanoma and primary Oesophagus and 

Stomach tissue all being separated from their representative Metastatic brain tissue in PCA 

scores space, plus, significant mean spectral differences were observed. This suggests that the 

migration of cells from primary sites to the brain may cause alterations to their biochemistry, 

and result in biochemical conformity to their new environment.                  
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Figure and Table Legends 

Table 1 Patient details with histological subtype and metastatic origin.    

Table 2 Bio-molecular assignments of main spectral peaks. 

Table 3 PC-LDA model details, including spectral numbers and the resulting sensitivities and specificities. 

Table 4 Spectral differences causing the separations seen in Figure 4 (b). 
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Table 5 The resulting sensitivities and specificities from the 2d peak ratio scores plot in Figure 6. 

Table 6 PC-LDA model details, including spectral numbers and the resulting sensitivities and specificities. 

 

Figure 1 Microscopic images of H&E stained tissue sections of normal brain, metastatic brain, primary sites 
and GBM brain WHO grade IV (x 100). Scale bar represents 50 microns. 

Figure 2 Immersion Raman average spectrum produced through averaging 1116 immersion acquisitions using a 
x 50 objective. Non-immersion averages spectrum was produced using 458 non-immersion acquisitions using a 
x 60 objective.  
 

Figure 3 GBM, Metastatic and normal brain tissue average spectrums, recorded using immersion Raman 
spectroscopy. The GBM spectrum was created from averaging 127 GBM acquisitions, the Metastatic from 668 
metastatic acquisitions and the normal brain spectrum from 157 normal brain acquisitions. Spectra have been 
vector normalised, the backgrounds have been corrected using a 5th order polynomial fit and 7 points of 
smoothing. The asterisks correspond to paraffin peaks from residual wax in the tissue. 

 

Figure 4 (a) LDA scores plot showing the separation of GBM (blue), metastatic (green) and normal brain 
tissue (black) spectra. Training spectra displayed with symbols filled and test spectra un-filled, 95% (outer 
ellipse) and 90% (inner ellipse) confidence limits are also shown; PC-LDA training model created using the first 
12 PCs, which achieved a %CC score of 72% (b) LDA scores plot of the same data used in (a) but with the 
spectra averaged. The 20 spectra recorded from each patient tissue sample were split into 4 and averaged. The 
training model was created using the first 8 PCs and achieved a % CC score of 97%. 
 

Figure 5 (a) PC-LDA loading plot of the LDA 1 separation boundary produced in Figure 4 (b) (pink) (upper 
curves) and mean spectra (lower curves), GBM (blue), metastatic (green) and normal tissue spectra (black) (b) 
PC-LDA loading plot of the LDA 2 separation boundary produced in Figure 4 (b). 

 

Figure 6 2D score plot of the 620 cm-1 to 782 cm-1 peak ratio versus the 721 cm-1 to 620 cm-1 peak ratio. Each 
data point is the spectral patient average. 
 

Figure 7 LDA scores plot of average spectra recorded from primary breast (black), primary colon/rectum 
(blue), primary melanoma (red) and primary oesophagus & stomach (green) cancerous tissue. Training spectra 
displayed with symbols filled and test spectra un-filled, 95% (outer ellipse) and 90% (inner ellipse) confidence 
limits are also shown; training model created using the first 12 PCs and achieved a % CC score of 72%. 
 

Figure 8 LDA scores plot of average spectra recorded from metastatic breast (blue), colon/rectum met (green), 
lung met (cyan) melanoma met (red) and oesophagus & stomach met (black). Training spectra displayed with 
symbols filled and test spectra un-filled, 95% (outer ellipse) and 90% (inner ellipse) confidence limits are also 
shown; training model created using the first 9 PCs and achieved a % CC score of 63%.  
 

Figure 9 (a) Mean spectral comparisons of primary (blue) and Metastatic brain tissue (black) (b) PCA 
comparisons of primary and Metastatic brain tissue recorded spectra (2d PCA scores plot displaying the best 
separation between Primary and Metastatic tissue). The spectra have been vector normalised, baseline corrected 
by 5th order polynomial fit and subtraction, and 7 points of smoothing (1) Primary Breast spectra vs. Met Breast 
tissue spectra (2) Primary Colon/Rectum spectra vs. Met Colon/Rectum tissue spectra (3) Primary Melanoma 
vs. Met Melanoma tissue spectra (4) Primary Oesophagus and Stomach spectra vs. Met Oesophagus and 
Stomach tissue spectra. 
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BTNW no. Gender Age Origin of Metastasis/histological 

subtype 

119 F 50 Breast (met and primary site) 

707 F 68 Breast (met and primary site) 

756 F 56 Breast (met and primary site) 

888 M 65 Colon/rectum (met and primary site) 

985 M 80 Melanoma (met and primary site) 

988 M 64 Oesophagus & stomach (met and 

primary site) 

1001 F 69 Lung (met only) 

690 / 1012 F 53 Breast (met and primary site) 

1004 F 57 Breast (met only) 

998 / 1010 M 67 Colon (met only) 

1020 F 65 Breast (met only) 

2 F 76 GBM 

3 F 32 GBM 

4 M 81 GBM 

5 F 55 GBM 

7 M 74 Normal Brain 

10 F 84 GBM 

78 F 58 Lung (met only) 

106 F 48 Normal Brain 

132 F 70 Normal Brain 

136 F 57 Normal Brain 

137 M 69 Colon/rectum (met only) 

164 M 59 Oesophagus & stomach (met only) 

184 F 65 Lung (met only) 

215 M 40 Lung (met only) 

274 M 73 Colon/rectum (met only) 

295 F 77 Lung (met only) 

358 M 78 Melanoma (met only) 

409 F 88 Colon/rectum (met only) 

444 M 35 Normal Brain 

509 M 83 Melanoma (met only) 

517 F 58 Lung (met only) 

521 M 64 Oesophagus & stomach (met only) 

562 F 60 Lung (met only) 

567 F 66 Melanoma (met only) 

668 F 70 Colon/rectum (met only) 

678 F 52 Normal Brain 

688 F 48 Melanoma (met only)  

694 M 62 Lung (met only) 

721 F 37 Oesophagus & stomach (met only) 

772 M 41 Normal Brain 

Table 1 Patient details with histological subtype and metastatic origin.    
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Raman Shift (cm
-1
) of peak Tentative assignment [14, 25, 33-35, 38] 

524 S-S stretch in proteins 

550 Tryptophan/cytosine, guanine 

620 C-C twisting mode of phenylalanine  

641 C-C twisting mode of tyrosine 

666 C-S stretching mode of cystine 

721 (only GBM) Symmetric choline C-N stretch (membrane phospholipid head)/adenine 

725 Adenine/C-S (protein)/C-H2 

756 Symmetric breathing of tryptophan  

782 

805 

Cytosine/uracil ring breathing of nucleotide 

A-DNA [38] 

827 DNA O-P-O, cytosine, uracil, thymine 

852 (CCH) ring breathing mode of tyrosine and C-C stretch of proline ring 

870 Proline 

888 

925 

Paraffin wax 

C-C stretching mode of proline [38] 

934 C-C stretching mode of proline and valine and α-helix protein backbone/glycogen 

957 Hydroxyapartite (PO4
3-

 symmetric stretching) /carotenoid/cholesterol 

1002 Symmetric ring breathing mode of phenylalanine 

1031 C-H in-plane bending mode phenylalanine  

1061 Paraffin wax 

1081 (only normal) PO2
− symmetric stretching (nucleic acids) [38] 

1098 C-C/C-O phospholipids 

1131 Paraffin wax 

1156 C-C carotenoids, C-N stretching of proteins 

1171 Paraffin wax 

1207 

1234 

Hydroxyproline, tyrosine/tryptophan, phenylalanine (C-C6H5) 

Antisymmetric phosphate stretching [38] 

1250 Amide III: (β-sheet, protein) [38] 

1263 (only normal) Amide III: (α-helix, protein) [38] 

1294 Paraffin wax 

1318 CH3 CH2 twisting mode of collagen/lipids 

1340 CH3 CH2 wagging mode of collagen, nucleic acids 

1389 

1397 

CH3 bend 

CH3 bending due to methyl bond in the membrane [38] 

1417 Paraffin wax 

1440 Paraffin wax 

1449 CH2 bending mode of proteins/(CH3) (CH2) collagen 

1462 Paraffin wax 

1554 C=C Tryptophan, porphyrin 
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1578 Guanadine, adenine, TRP (protein) 

1584 Pyrimidine ring (nucleic acids) and heme protein/C=C phenylalanine 

1604 C=C in-plane bending mode of phenylalanine and tyrosine, C=C porphyrin 

1618 C=C stretching mode of tyrosine and tryptophan 

1658 

1670 

Amide I (C=O stretching mode of proteins, α-helix conformation)/C=C lipid stretch 

Amide I (Proteins with β-sheet conformational structures) 

Table 2 Bio-molecular assignments of main spectral peaks. 
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Train 

spectra 

Test 

spectra 

Confidence 

level 

Histopathological 

type 

Sensitivity 

(%) 

Specificity 

(%) 

GBM vs. 

norm vs. met 

Figure 4 (a) 

 

 

GBM vs. 

norm vs. met 

Figure 4 (b) 

 

639 

 

 

 

 

159 

 

316 

 

 

 

 

78 

90% GBM 90.48 22.26 

Normal 91.89 88.30 

Metastatic 98.08 59.09 

 

90% 

GBM 90.00 98.15 

Normal 76.92 96.08 

Metastatic 80.49 100.00 

Table 3 PC-LDA model details, including spectral numbers and the resulting sensitivities and specificities. 
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LDA1 loading bands LDA2 loading bands 

~Negative Loading 

Band Position (cm
-1
) 

~Positive Loading Band 

Position (cm
-1
) 

~Negative Loading 

Band Position (cm
-1
) 

~Positive Loading Band 

Position (cm
-1
) 

524 

642 

718 

925 

1200 

 

1010 

1250 

1402 

1670 

642 

719 

780 

805 

998 

1234 

1338 

1375 

1578 

1613 

1673 

550 

869 

1078 

1268 

1653 

 

Table 4 Spectral differences causing the separations seen in Figure 4 (b). 

Page 26 of 38Analytical Methods

A
n

al
yt

ic
al

 M
et

h
o

d
s 

A
cc

ep
te

d
 M

an
u

sc
ri

p
t



 

 

Histopathological 

type 

Sensitivity 

(%) 

Specificity 

(%) 

GBM vs. 

norm vs. met 

Figure 6 

 

GBM 100.00 94.44 

Normal 96.55 100.00 

Metastatic 85.71 100.00 

Table 5 The resulting sensitivities and specificities from the 2d peak ratio scores plot in Figure 6. 
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Train 

spectra 

Test 

spectra 

Confidence 

level 

Histopathological 

type 

Sensitivity 

(%) 

Specificity 

(%) 

Metastatic 

comparison 

448 115 90% Breast 89.29 85.71 

Lung 60.00 72.22 

Colon/Rectum 92.31 60.78 

Melanoma 80.00 83.33 

Oesophagus & 

stomach 

87.50 54.17 

Primary 

comparison 

111 53 90% Breast 89.29 85.71 

Colon/Rectum 100.00 54.76 

Melanoma 71.43 38.90 

Oesophagus & 

stomach 

85.71 100.00 

Table 6 PC-LDA model details, including spectral numbers and the resulting sensitivities and specificities. 
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Figure 1 Microscopic images of H&E stained tissue sections of normal brain, metastatic brain, primary sites 

and GBM brain WHO grade IV (x 100). Scale bar represents 50 microns. 
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Figure 2 Immersion Raman average spectrum produced through averaging 1116 immersion acquisitions using a 

x 50 objective. Non-immersion averages spectrum was produced using 458 non-immersion acquisitions using a 

x 60 objective.  
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Figure 3 GBM, Metastatic and normal brain tissue average spectrums, recorded using immersion Raman 

spectroscopy. The GBM spectrum was created from averaging 127 GBM acquisitions, the Metastatic from 668 

metastatic acquisitions and the normal brain spectrum from 157 normal brain acquisitions. Spectra have been 

vector normalised, the backgrounds have been corrected using a 5th order polynomial fit and 7 points of 

smoothing. The asterisks correspond to paraffin peaks from residual wax in the tissue. 
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Figure 4 (a) LDA scores plot showing the separation of GBM (blue), metastatic (green) and normal brain 

tissue (black) spectra. Training spectra displayed with symbols filled and test spectra un-filled, 95% (outer 

ellipse) and 90% (inner ellipse) confidence limits are also shown; PC-LDA training model created using the first 

12 PCs, which achieved a %CC score of 72% (b) LDA scores plot of the same data used in (a) but with the 

spectra averaged. The 20 spectra recorded from each patient tissue sample were split into 4 and averaged. The 

training model was created using the first 8 PCs and achieved a % CC score of 97%. 

 

(a) 

(b) 
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Figure 5 (a) PC-LDA loading plot of the LDA 1 separation boundary produced in Figure 4 (b) (pink) (upper 

curves) and mean spectra (lower curves), GBM (blue), metastatic (green) and normal tissue spectra (black) (b) 

PC-LDA loading plot of the LDA 2 separation boundary produced in Figure 4 (b). 

 

(a) 

(b) 
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Figure 6 2D score plot of the 620 cm
-1
 to 782 cm

-1
 peak ratio versus the 721 cm

-1
 to 620 cm

-1
 peak ratio. Each 

data point is the spectral patient average. 
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Figure 7 LDA scores plot of average spectra recorded from primary breast (black), primary colon/rectum 

(blue), primary melanoma (red) and primary oesophagus & stomach (green) cancerous tissue. Training spectra 

displayed with symbols filled and test spectra un-filled, 95% (outer ellipse) and 90% (inner ellipse) confidence 

limits are also shown; training model created using the first 12 PCs and achieved a % CC score of 72%. 
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Figure 8 LDA scores plot of average spectra recorded from metastatic breast (blue), colon/rectum met (green), 

lung met (cyan) melanoma met (red) and oesophagus & stomach met (black). Training spectra displayed with 

symbols filled and test spectra un-filled, 95% (outer ellipse) and 90% (inner ellipse) confidence limits are also 

shown; training model created using the first 9 PCs and achieved a % CC score of 63%.  
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Figure 9 (a) Mean spectral comparisons of primary (blue) and Metastatic brain tissue (black) (b) PCA 

comparisons of primary and Metastatic brain tissue recorded spectra (2d PCA scores plot displaying the best 

separation between Primary and Metastatic tissue). The spectra have been vector normalised, baseline corrected 

by 5th order polynomial fit and subtraction, and 7 points of smoothing (1) Primary Breast spectra vs. Met Breast 

tissue spectra (2) Primary Colon/Rectum spectra vs. Met Colon/Rectum tissue spectra (3) Primary Melanoma 

vs. Met Melanoma tissue spectra (4) Primary Oesophagus and Stomach spectra vs. Met Oesophagus and 

Stomach tissue spectra. 
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