
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

Analytical
 Methods

www.rsc.org/methods

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


 

 

Graphical Abstract: A newly combination (MC-UVE-SPA) of Monte Carlo-uninformative variable 

elimination and successive projections algorithm was proposed to select the most effective variables.  
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Informative variable (or wavelength) selection plays an important role in quantitative analysis by visible and near 

infrared (Vis/NIR) spectroscopy. In this study, a newly combination of Monte Carlo-uninformative variable elimination 

(MC-UVE) and successive projections algorithm (SPA) was proposed to select most effective variables. The selected 

variables were used as the inputs of least squares-support vector machine (LS-SVM) to build the 

MC-UVE-SPA-LS-SVM models for determining the soluble solids content (SSC) and firmness of pear. The 

conventional PLS models were also developed for comparison. The results indicated that calibration models built using 

MC-UVE-SPA-LS-SVM on 14 and 17 effective variables achieved the optimal performance for two internal quality 

indices comparing with full-spectrum PLS, MC-UVE-PLS, MC-UVE-LS-SVM and MC-UVE-SPA-PLS models by 

balancing between model accuracy and model complexity. The correlation coefficient (r) and root mean square error of 

prediction (RMSEP) and RPD for prediction set were 0.9486, 0.3244, 3.1598 and 0.8955, 1.1077, 2.2469 for SSC and 

firmness, respectively. The overall results indicated that Vis/NIR spectroscopy incorporated to MC-UVE-SPA-LS-SVM 

could be applied as an alternative fast and accurate method for the determination of SSC and firmness of pear, 

nondestructively. The effective variables might be important for the development of portable instruments and online 
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monitoring for quality of pear. 

Keywords: Vis/NIR spectroscopy, Pear, Internal quality, Least squares-support vector machine, Variable selection 

1.  Introduction 

Visible and near infrared (Vis/NIR) spectroscopy is a fast, easy-to-use and non-destructive analytical technique.1 

Nowadays, it has been widely employed as alternatives to develop chemistry procedures for qualitative and quantitative 

analysis in agro-food products fields.2-4 Multivariate calibration methods play crucial roles in Vis/NIR spectral analysis 

because Vis/NIR spectra are typically consisted of broad, weak, non-specific and overlapped band which there may be 

some irrelevant variables for multivariate calibration.5 However, the used spectral data sets may have thousands of 

variables because the modern spectroscopy instrumentations usually have a high resolution. Thus, the calibration 

process is time-consuming and not convenient to fulfill the high speed feature of spectroscopy in industrial 

applications.6 Moreover, the full spectral region may include wavelengths which contribute more collinearity, 

redundancies and noises than relevant information to models.7 Thus, constructing a robust model using selected 

characteristic variables to improve modeling efficiency and prediction accuracy is crucial.8,9 Also, variable selection can 

make the model simpler and better interpretation and improve the modeling and prediction rate of model. Hence, some 

variable selection methods, such as stepwise regression analysis,10 generalized simulated annealing,11 interval PLS,12 

genetic algorithms,13 x-loading weights14, regression coefficients,15 wavelet transforms,16 successive projections 

algorithm (SPA)17 and correlation coefficient method,18 have been developed to obtain a parsimonious model for the 

qualitative and quantitative analysis.  

Among these methods, SPA uses simple projection operations to select variables with minimum of collinearity. It is 

a novelty variable selection algorithm and has also been employed to effectively solve the collinearity problems. Di 

Nezio et al.17 used the SPA to determine directly and simultaneously five phenolic compounds in sea water, and found 

that MLR-SPA was potential for solving complex analytical problems.  Liu et al.19 applied the SPA to determine the 
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effective wavelengths of acetic, tartaric and lactic of plum vinegar. Different calibration models were compared. The 

results indicated that SPA-LS-SVM achieved the optimal performance for three acids comparing with full-spectrum 

PLS, SPA-MLR, SPA-PLS, RC-PLS and RC-LS-SVM. Balabin and Smirnov used the iPLS, MWPLS and SPA 

approaches for variable selection in PLS regression, they found that these algorithms decrease the prediction error of 

PLS regression by 8±5%.20 Xu et al.9 compared four different variable selection methods. Calibration model built using 

successive projection algorithm-multiple linear regression combined with GA (GA-SPA-MLR) on 18 selected 

wavelengths (2% of the total number of variables) exhibited higher coefficient of determination (R2=0.880) and root 

mean square error of prediction (RMSEP=0.459oBrix) for the validation set. However, two main problems may be 

existent: one is variables selected by SPA may be with low signal-noise ratio (S/N) or useless information for 

establishment of model which can affect prediction performance of model,7 the other is SPA operation is 

time-consuming when the full spectra were considered. Therefore, it might be possible to improve the performance of 

calibration model if informative variables with low S/N were first obtained before SPA was performed. Uninformative 

variable elimination (UVE) can be very suitable for this aim. Elimination of uninformative variables can effectively 

remove useless information of spectral data and predigest calibration model.21 UVE is a method for variable selection 

based on an analysis of regression coefficients. This technology has been widely applied in analytical chemistry.22-25 

Although good results were obtained, this method is time-consuming when it meets a large data set. And, there is a 

compelling problem for the UVE method because the regression coefficients are obtained by leave-one-out method in 

UVE process. The leave-one-out method in the multivariate data analysis usually results in over-fitting which leads to 

an under-estimation of true predictive error.26   

In this paper, Monte Carlo cross-validation strategy proposed by Picard and Cook27 is first introduced to UVE-PLS 

instead of leave-one-out strategy. Then, a new combination of Monte Carlo-uninformative variable elimination 

(MC-UVE) with SPA called MC-UVE-SPA is proposed for variables selection of NIR spectral data to determine the 

soluble solids content and firmness of pear. Soluble solids content and firmness are important quality attribute of pear. 
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Good-quality pears develop a buttery, juicy texture, following softening related to changes in cell wall structure.28
 

Charting SSC and firmness as a function of postharvest storage time could provide valuable information for commercial 

decision-making, since fruit sold to the consumer must meet given quality standards based on these parameters.29 

Nowadays, Vis/NIR spectroscopy has been used to assess the internal quality of fruits such as apple,30,31 orange,32 

kiwifruit,33 intact banana and mango,34 banana,35,36 olive,37,38 apricot fruit,39 jujube,40 date fruit,41 etc. Near spectroscopy 

also had been applied to determine the SSC and firmness of pear.9,42-44 However, up to our knowledge, few studies 

focused on the incorporated MC-UVE and SPA methods for variables selection of pear or other any fruit types. 

   In addition, among currently developed calibration models for quantitative analysis of pear, the most used models 

are linear analysis methods such as multiple linear regression (MLR), partial least squares (PLS) and principle 

component regression (PCR). These methods only discussed the linear relationship between the spectra and chemical 

components, whereas, there might be latent nonlinear information which is existed in the spectral data and related to the 

chemical constituents. In especial, some studies also found nonlinear models were better than linear models for 

prediction of internal quality of some fruits.41,45-48 The reason might be that some latent nonlinear information was 

existed in the spectral data and related to the chemical constituents. Therefore, study on linear and nonlinear models was 

significative for specific fruit in order to develop the more robust prediction model. In addition, when fruit quality was 

online and fast estimated for the industrial application, some nonlinear factors such as fruit movement speed, change of 

temperature, change of fruit size, etc. might be included in the obtained original spectra. Although some preprocessing 

methods can decrease their effects, they could not be completely eliminated. Therefore, development of nonlinear 

models could be more helpful for online and fast measurement of fruit quality. In order to make advantage of the 

nonlinear information as well as the most linear information, a new and promising machine learning method,49 least 

squares-support vector machine (LS-SVM) has been applied to develop the calibration models in the present work. 

Herein, a new combination of MC-UVE-SPA and LS-SVM is proposed for the determination of soluble solid content 

(SSC) and firmness of pear using Vis/NIR spectra. Combining both MC-UVE-SPA and LS-SVM was thought to be a 
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powerful calibration method using the selected relevant variables as well as the linear and nonlinear spectral 

information.  

The objective of this paper is (1) to confirm the effective variables of SSC and firmness of pear by newly proposed 

combination of MC-UVE and SPA (2) to build the PLS linear calibration models and LS-SVM nonlinear calibration 

models based on selected variables; and (3) to achieve the best calibration models for predicting the SSC and firmness 

of pear after the comparison of PLS and LS-SVM calibration models.  

2.  Materials and Methods 

2.1 Fruit samples 

A total of three varieties of pears were obtained in local market named Cuiguan, Huanghua and Qingxiang. All of 

these pears were commonly variety in China. The equatorial diameter range of pears was 70-80 mm, and all samples 

were individually numbered and stored in standard refrigeration at 0℃ and 90%  relative humidity (RH) . Before the 

measurement, samples were taken out from cold storage accommodation and placed under room condition (20℃, 60%  

relative humidity) for more than 2 days to have an equalization room temperature to reduce the effect on the prediction 

accuracy by the temperature of samples.50,51 240 samples (80 for each variety) were prepared as calibration set and 

prediction set. Seventy samples were selected randomly from each variety and a total of 210 pear samples were used in 

the calibration set, whereas, the remaining 30 samples (10 for each variety) were selected as the validation set for 

estimating the performance of models. In order to compare the performance of different calibration models, the samples 

in the calibration and prediction sets would keep unchanged for all models. 

2.2 Vis/NIR reflectance spectroscopy collection and preprocessing 

The experimental system for testing pear fruit included a spectrometer (QualitySpec®Pro (350-1800 nm), 

Analytical Spectral Devices, Inc., USA) with an external fiber-optic cable installed at the high intensity contact probe, a 

Si detector for 350-1000 nm, an InGaAs detector for 1000-1800 nm, tungsten halogen lamp with 12V Bulb/A350610. A 
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white Teflon tile was used for white calibration before measurement. The angle between the incident light source and 

the detector fiber was set to 45°. The fiber cable delivered the collected optical energy into the spectrometer, where it 

was projected onto a holographic diffraction grating. The grating was separated and reflected the wavelength 

components for independent measurement by the detectors. The measurement system was arranged in reflectance mode 

for collecting Vis/NIR diffuse reflectance spectra from the peel and flesh of pear fruit. Pears were placed steadily upon 

the fruit holder, with the stem-calyx axis horizontal. The reflectance spectra from 350 to 1800 nm were measured at 1 

nm interval with an average reading of 10 scans for each spectrum. Three separate spectral measurements were made at 

three marked locations on each sample around the equator (120°) of the fruit, and the average spectrum of these three 

measurements was used for calibration model. Finally, all spectral data were stored in a computer for further analysis.  

Because the acquired data contain background information and noises besides sample information, it is very 

necessary to preprocess spectral data for obtaining reliable, accurate and stable calibration models.52 In this study, the 

reflectance spectra were firstly transformed into ASCII format by using the ASD ViewspecPro software (Analytical 

Spectral Devices, Boulder, USA). Then, three spectra for each sample were averaged into one spectrum and 

transformed by log(1/R), where R = reflectance, into absorbance spectrum by using “The Unscrambler v9.7” software 

(CAMO PRECESS AS, Oslo, Norway). Finally, different preprocessing methods including multiplicative scatter 

correction (MSC), standard normal variate transformation (SNV), smoothing way of moving average, Savitzkye-Golay 

(SG), first derivative and second derivative were performed. After some trials and computation, it was found that the 

smoothing way of moving average and SNV were optimal for building the PLS models, whereas the first-derivative for 

development of LS-SVM models. Smoothing was necessary to optimize the signal-to-noise ratio.53 SNV and 

first-derivative were effective for light scatter correction and reducing the baseline shift.54 Therefore, these three 

preprocessing methods were used in subsequent study. 

2.3 SSC and firmness analysis 
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The real SSC and firmness (compression test) values were determined using traditional destructive tests. The 

firmness by compression of diameter height fruit 3% was used as a general term to describe the mechanical properties 

of the fruit. The measurements were carried out with a 3.5 mm diameter Magness-Taylor (MT) probe, which was 

attached to a fruit sclerometer (Model: gY-1, hangzhou Huier Instrument, Co. Ltd., Hangzhou, China) with accuracy of 

±0.1 N. The skin was removed thinly and the MT probe was forced into the peeled tissue. The force required to 

compress a fruit by about 3% of its diameter was recorded at an operating speed of 10 mm min-1.55 The maximum force 

was used as the measurement of fruit firmness. Next, about 1.0 mL filtered juice was then taken using a manual fruit 

squeezer (Model: HL-56, Shanghai, China) from the same position for SSC measurement with a digital refractometer 

(Model: PR-101α, Atago Co, Ltd, Tokyo, Japan). The refractive index accuracy is ±0.1 and the Brix (%) range is 

0.0–45.0% with temperature correction. In terms of each sample, these two quality parameters were measured from 

three different marked positions where spectral measurement had just been performed, respectively. For further 

calculations, the averaged values for SSC and firmness values from three different locations of each fruit was stored and 

used as reference for proposed Vis/NIR spectrometric method, respectively.56 In addition, the standard error of 

laboratory (SEL) represents the precision of a laboratory method. A statistical definition was given from these three 

measurements for each sample using the following equation: 57  

                           )1(

)(
1 1

2

−

−
=

∑ ∑= =

rn

yy
SEL

n

j

r

i jij

                               (1) 

where n is the number of sanples, yij is the jth measurement of the ith sample, ȳj is the reference method mean value of 

all there measurements of the ith sample and r is the number of measurements.  

2.4 Monte Carlo-Uninformative Variable Elimination (MC-UVE) 

The Monte Carlo method is a powerful and widely used technique for analyzing complex multi-variable 

problems.58,59 It is a stochastic technique and investigates problems based on the use of random numbers and probability 

statistics. In this work, MC method is used to acquire stability of each variable. A large number of PLS models with 
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different calibration samples selected by the MC technique are produced firstly. Then, the stability of the corresponding 

coefficient is calculated by using the regression coefficients of these models. The MC technique has advantages of 

reducing dependence on single model and evaluating the reliability of each variable credibly to judge the remaining or 

rejection of them. In our study, a combination of MC and UVE (MC-UVE) is used for variable selection in Vis/NIR 

spectral data. It uses the stability defined in UVE method to evaluate the reliability of each variable, but the stability 

values are obtained through the Monte Carlo method replacing the leave-one-out procedure in UVE. Moreover, instead 

of adding random noise variables to the original data matrix as in UVE method to estimate the cutoff threshold, the 

wavelengths to be selected are determined directly by their stability. The retained variables were used as the inputs of 

PLS and LS-SVM models in order to compare the performance between linear model and nonlinear model. However, 

more variables may also be obtained by using MC-UVE. Therefore, the retained variables would be used to further 

analyze by using the SPA. (Note that more detailed information on UVE could be found in the literature.21,60 

2.5 Successive projections algorithm (SPA) 

SPA is a forward selection method, which starts with one wavelength, and then incorporates a new one at each 

iteration, until a specified number N of wavelengths is reached. The main purpose of this algorithm is to select 

wavelengths whose information content is minimally redundant. The main points are summarized here. The main steps 

of SPA can be summarized as follows, assuming that the first wavelength k(0) and the number N are given:61-64  

Step 0: Before the first iteration (n=1), let xj = jth column of Xcal; j=1, 2, …, J; 

Step 1: Let S be the set of wavelengths which have not been selected yet. That is, S={j such that 1≦j≦J and j∉
 

{k(0), …, k(n-1)}}; 

Step 2: Calculate the projection of xj on the subspace orthogonal to xk(n-1) as 

                     

1
)1()1()1()1( )()( −

−−−−−= nk
T

nknknk
T
jjj xxxxxxPx

                              
   (2)

 

for all Sj ∈ ,where P is the projection operator; 
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Step 3: Let k(n)=arg(max||Pxj||, Sj ∈ ); 

Step 4: Let xj= Pxj, Sj ∈ ; 

Step 5: Let n=n+1. If n<N go back to Step 1; 

End: The resulting wavelengths are {k(n); n=0, … , N-1}. 

The optimal initial variable and number of variables can be determined on the basis of the smallest root mean square 

error of validation (RMSEV) in validation set of MLR calibration. More details on the steps involved in SPA 

application can be found in previous studies. SPA was initially proposed by Araújo et al.61 as a technique for variable 

selection for multiple linear regression (MLR). Nowadays, however, SPA method has found its way with different 

modelling techniques such as SPA-PLS,19,65-67 SPA-least square support vector machine (LS-SVM),19,25,68,69 

SPA-artificial neural network (ANN),70,71 SPA-support vector machine (SVM),72 SPA linear discriminate analysis 

(LDA).73,74 These studies indicated that SPA was a very good algorithm of variable selection and also can be used by 

combining with different multivariate calibration methods to build the linear and nonlinear models in special research 

field. In this work, the variables selected by the SPA were also used as the inputs of the PLS and LS-SVM. A graphical 

user interface for the SPA (GUI_SPA) is available at http://www.ele.ita.br/~kawakami/spa/. 

2.6 Least squares-support vector machine (LS-SVM) analysis 

LS-SVM, a state-of-the-art statistical learning method, is capable of dealing with linear and nonlinear multivariate 

analysis and resolving these problems in a relatively fast way.75 Moreover, support vector machine (SVM) is capable of 

learning in high-dimensional feature space with fewer training data. It employs a set of linear equations instead of 

quadratic programming problems to obtain the support vectors. SVM embodies the structural risk minimization 

principle instead of traditional empirical risk minimization principle to avoid overfitting problems. The LS-SVM 

regression model can be expressed as: 

                              
∑

=

+=
N

k
kk bxxKxy

1
),()( α

                            
   (3) 
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where K(x, xk) is the kernel function, xk is the input vector, αk is the Lagrange multiplier called support value, and b is 

the bias. The frequently-used kernel function K(x, xk) includes linear kernel, nonlinear kernel and radial basis function 

(RBF) kernel. K(x, xk) must follow Mercer’s condition and perform the linear and nonlinear mapping. After the 

comparison of the above functions, we found that RBF kernel could handle the nonlinear relationship between the 

spectra and target attributes and gave a good performance. So, RBF kernel function was used in this study and defined 

as follows: 

                                   K(x, xk) = exp(-||xk-x||2/(2σ2 ))                                  (4) 

where ‖xk-x‖ represents the distance between input vector and threshold vector, and σ is a width vector. All the 

calculations on LS-SVM were performed using Matlab 2008a (The Math Works, Natick, MA, USA). The free LS-SVM 

v1.5 toolbox (Suykens, Leuven, Belgium) was applied to develop the calibration models.  

Before developing the LS-SVM calibration model, proper kernel function and the optimal model parameters firstly 

need to be obtained. Regularization parameter gam (γ) and RBF kernel function parameter sig2 (σ2) are very important 

parameters in the modeling. To a great extent, these two parameters determine the learning ability, prediction ability and 

generalization ability of LS-SVM.49 Gam (γ) is used to maximize model performance (on training) and minimize model 

complexity. Large gam(γ) implies little regularization, and thus a more nonlinear model. Sig2 (σ2) influences the 

number of neighbors in the model. And large sig2 (σ2) means more neighbors in the model which leads to a more 

nonlinear model.76 In this paper, a two-step grid search technique with leave-one-out cross-validation was conducted to 

find the optimal parameter values gam (γ) and sig2 (σ2). The first step of grid search was for a crude search with a large 

step size and the second step for the specified search with a small step size. The selection of the initial value has no 

effect on results because search process is a traverse process. Therefore, the initial values of gam (γ) and sig2 (σ2) were 

set to 0.01 in this study. 

2.7 Model evaluation standard 
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The performance of the calibration model was evaluated in terms of the root mean square error of calibration 

(RMSEC) in the calibration process for the calibration set. Root mean square error of prediction (RMSEP) and residual 

predictive deviation (RPD) were used to evaluate the performance of the prediction in the prediction process. The 

correlation coefficient (r) including rcal (calibration) and rpre (prediction) were used in all the processes.  

RMSEC and RMSEP are defined as follows: 

                                

∑
=

−=
cn

i
actualipredictedi

c
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                            (5)                             
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                             (6)   
                  

where 
predictediy ,

and actualiy ,  is the predicted value and measured value of the i-th observation in the calibration set and  

prediction set, respectively. nc, and np are the number of observations in the calibration and prediction set, respectively. 

The RMSECV was measured in form of leave-one-out cross-validation, which means that the model was fitted to nc-1 

training samples and used to predict the one left out for all nc different left out samples. 

The correlation coefficient (r) is defined as follows: 

                              ∑
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                                (7) 

where
predictediy ,

is the predicted value of the i-th observation, actualiy , is the measured value of the i-th observation, 

actualiy , is the mean value of the calibration or prediction set, n is the number of observations in the data set. 

RPD is the standard deviation of reference data for the prediction samples divided by the standard error of 

prediction (SEP) and provides a standardization of the SEP.80 An RPD between 1.5 and 2 means that the model can 

discriminate low from high values of the response variable; a value between 2 and 2.5 indicates that coarse quantitative 

predictions are possible, and a value between 2.5 and 3 or above corresponds to good and excellent prediction accuracy, 

respectively.4  

Generally, a good model should have higher rcal, rpre and RPD, lower RMSEC and RMSEP, but also a small 
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difference between RMSEC and RMSEP values. 

3.  Results and discussion 

3.1 Overview of spectra and statistic values of SSC and firmness 

The absorbance spectra of 240 pears by smoothing way of moving average and SNV preprocessing, and 

first-derivative preprocessing are shown in Fig.1(a) and (b), respectively. In the spectral curves, the trends of spectra 

were similar. There are only some differences in the wavelength range of 500-740 nm. This may be due to differences of 

peel color of different batches of pears. There is an absorbance at 680 nm which may be related to peel color of pear. 

The spectra curves are relatively flat and low except for 960 nm from 750 nm to 1100 nm. There is the absorption peak, 

associated with second overtone of band O-H.56,77 There two strong absorption peaks at 1190 nm and 1450 nm, 

associated with a combination of second overtone of band C-H and overtones of band O-H in H2O, and first overtone of 

bond O-H, respectively.78 The first-derivative spectra shown in Fig.1(b) effectively reduced the baseline shift and 

enhanced the features and characteristics of spectra. In the middle part, the great jump and drop of the curves is due to 

the slope changes of the original spectra. Seen from the Fig.1, it could be also noticed that spectra introduced 

considerable noises at the beginning of the wavelength range. Therefore, the first 50 nm were removed from the spectral 

data, and only the spectral region (400-1800 nm) was employed for building the models.  

 

(a)                                                  (b) 
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Fig.1. The Vis/NIR preprocessed absorbance spectra of pears. (a) smoothing way of moving average and SNV processing, and (b) 

first-derivative processing.  

Table 1 showed that the statistic values of SSC and firmness of pear in the calibration and prediction sets. Thus, 

range, mean, standard deviation (S.D.) and number of samples for the calibration and prediction sets are summarized in 

the table, in addition to standard error of laboratory (SEL). As can be seen, the SSC and firmness measurements of 240 

samples were fairly normally distributed around the mean values (10.81°Brix and 9.08 N), with standard deviations of 

1.056 and 2.366, respectively. The SSC and firmness values in the calibration sets and prediction sets covered a large 

enough range. Moreover, the range of calibration sets is bigger than prediction sets for each quality index. The table 1 

also shows the similarity between the descriptive statistics of calibration and prediction sets. These features are helpful 

to develop a good model. In addition, because the spatial variation of internal constituents may be existed for any 

quality parameter (SSC or firmness) in fruit, the precision of analyses (SEL) was acceptable (Table 1).  

Table 1. Real measurement results of firmness and SSC of pear in the calibration and prediction sets. 

Quality indices  Units Sets  S. N.a  Min. Max. Mean S. D.b SEL  

SSC °Brix Total samples 240 8.5 13.3 10.81 1.056 0.225 

Calibration set 210 8.5 13.3 10.81 1.072 0.231 

Prediction set 30 9.2 12.7 10.79 0.955 0.196 

  

Firmness N Total samples 240 2.3 16.8 9.08 2.366 0.383 

Calibration set 210 2.3 16.8 9.13 2.347 0.352 

Prediction set 30 3.8 13.6 8.78 2.515 0.365 

a S. N. shows sample number. bS. D. shows standard deviation. 

3.3 Variables selection based on MC-UVE 
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Fig.2(a) and (b) show the stability of each variable in the spectral region 400-1800 nm for the SSC and firmness by 

MC-UVE method, respectively. In the figures, the dot lines represent the cutoff, which is determined by a number N of 

the informative variables. Variables between dot lines will be eliminated, and the variables whose stability lies out of 

the dot lines are used for further analysis. In order to more clear analyze the stability distribution of each variable, one 

spectral curve (red line) that is randomly selected from sample set is also shown in Fig.2(a) and (b). Seen from figures, 

it is easy found that effective variables (wavelengths) were distributed in Vis/NIR spectral region. How to determine the 

number of retained variables is very important because number of selected variables decides the stability and accuracy 

of the model. If the number of retained variables is too large, some uninformative variables may be contained in 

developed model and make its performance poor. On the contrary, if the number of retained variables is too small, the 

robustness and accuracy of model may be affected due to the loss of informative.  

   

(a)                                                  (b) 

Fig.2. The stability distribution of each variable for prediction of the SSC (a) and firmness (b) by MC-UVE. 

For each variable number N, a PLS model is developed and the model is then used to predict the sample set. 

Therefore, the change relationship between the RMSEP values and variable number N is investigated and shown in 

Fig.3(a) and (b), respectively. With a close observation, the RMSEP is large at the beginning, and then sharply 

decreased from N=1 to N=115 for SCC and firmness, respectively, although a little variation in the variable range from 

N=75 to N=100 and from N=30 to N=65 in Fig.3(a) and (b), respectively. Afterwards, RMSEP slowly decreases with the 
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variable number N, and when N is 490 and 240, the optimal values of RMSEP (0.3639 and 1.2377) are obtained for 

SSC and firmness prediction. Next, when N is bigger than 490 and 240, values of RMSEP have a little increase with 

increase of variable number. Above statement indicates that variable number selected to model will affect the prediction 

performance of model. Therefore, N=490 and N=240 are used for further analysis. 

  

Fig.3. The change of RMSEP with number of selected variables for prediction of the SSC (a) and firmness (b) by MC-UVE. 

3.4 Variables selection based on SPA 

As analyzed above, although the variable number N of model is decreased from 1400 to 490 and 240 for SSC and 

firmness by MC-UVE method respectively, the N is still large for the development of portable instruments and online 

monitoring SSC and firmness of pear. In addition, although some uninformative variables in spectra data are eliminated, 

some collinear variables are still existent. These collinear variables will contain a large number of redundant 

information. Therefore, SPA was used for further variable selection for the determination of two internal quality indices 

of pear. During performing the SPA, a SPA-MLR procedure was applied for the calculation of a sequence of root mean 

square error (RMSE) values using the selected variable subsets. This process confirmed the achievement of the optimal 

number of selected variables with an optimal RMSE value, and this RMSE value was not significantly larger than the 

minimum RMSE value.  

Fig.4(a) and (b) show the RMSE screen plots for the number of selected variables obtained by applying SPA. As 
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can be seen, the RMSE values sharply declined as SPA selected the first four variables. The RMSE values then 

gradually descended with increasing number of selected variables. When the 14 and 17 variables were selected (shown 

in open square markers) for MLR analysis, the RMSE reached its optimal values (0.41888oBrix and 1.1653 N) for 

prediction of SSC and firmness, respectively. The overall trends of RMSE curves for SSC and firmness are still descent 

with increasing number of selected variables although some fluctuations are also existent in descent.  

 

(a)                                                  (b) 

 Fig.4. RMSE plots obtained for SSC (a) and firmness (b) by SPA. 

   The selected variables for prediction of SSC and firmness (solid blue circles) are shown Fig.5(a) and (b), 

respectively. In the figures, the curves represent 490 and 240 variables obtained by MC-UVE for SSC and firmness of 

pear. Although less variables were obtained and shown in Fig.5, the exactly variables (effective wavelengths) 

corresponding to the variable index could not be get in the figures. Therefore, these effective wavelengths 

corresponding to raw spectra are also shown in Fig.6. The variables (vertical solid line) above and below raw spectra 

curves represent the effective variables (wavelengths) for prediction of firmness and SSC. As can be seen in Fig.6, the 

selected 14 variables for prediction of SSC included 406, 690, 1580, 503, 483, 702, 422, 1470, 409, 431, 1549, 1312, 

726 and 1634 nm, and the selected 17 variables for prediction of firmness included 817, 934, 811, 1012, 987, 1664, 

1673, 954, 473, 1324, 1632, 1523, 784, 1574, 1246, 1610 and 1214 nm. These selected variables by SPA are sequenced 

in order of relevance. The selected variables indicated that wavelengths at 406 nm and 817 nm were the most relevant 
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wavelengths of 14 and 17 selected variables for the prediction of SSC and firmness of pear, respectively. Comparing the 

selected variables for two internal indices, the variables for SSC and firmness were not the same. This might indicate 

that different chemistry feature is needful for analysis of SSC and firmness. In addition, it was also easy found (see 

Fig.6) that only one wavelength included in the Vis region (400-780 nm), whereas16 wavelengths in the NIR region 

(781-1800 nm) for firmness. This indicated that NIR spectra, especially, wavelengths regions in the 781-1150 nm, 

1200-1350 nm and 1300-1700 nm were more important in the development of model for firmness prediction of pear. In 

terms of SSC prediction, 9 wavelengths distributed in the Vis region, whereas, 5 wavelengths in the NIR region. It 

indicated that the color variances had certain indirect and latent relationship with the chemical compositions such as the 

SSC of pear. Therefore, it should not be considered that only certain wavelength region (such as only Vis region or only 

NIR region) was used the prediction of SSC of pear. Comprehensive analysis based on Vis/NIR spectra is helpful for 

development of reliable model for predicting the SSC.  

 

(a)                                                  (b) 

Fig.5. The selected variables (shown in circle markers) for SSC (a) and firmness (b) by SPA. 
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Fig.6. The selected variables (vertical solid line) corresponding to raw spectra for SSC (below spectra) and firmness (above spectra).  

3.5 Calibration models and prediction performance 

To more effectively assess the performance of informative variables (wavelengths) obtained by MC-UVE and SPA, 

the full-spectrum PLS models were developed without variable elimination for the prediction of SSC and firmness of 

pear. Moreover, PLS and LS-SVM models based on MC-UVE and MC-UVE-SPA were also developed to compare the 

performance of linear and nonlinear models for predicting the internal attributes in pear. In this work, the optimal 

combinations of (γ, σ2) are achieved with (3.0×104, 1.1×103) and (5.9×104, 7.0×102) by MC-UVE-SPA-LS-SVM model, 

whereas (3.2×10, 2.8×104) and (2.1×10, 1.7×103) by MC-UVE-LS-SVM model for SSC and firmness, respectively.  

The performance was confirmed by the samples in the prediction set. Different variables including full-spectrum, 

490 and 240 variables by MC-UVE, and 14 and 17 variables by SPA were used as input matrixes to develop PLS and 

LS-SVM models. The prediction results are shown in Table 2. As can be seen, in terms of full-spectrum, the rpre, 

RMSEP and RPD were 0.9173, 0.4221 and 2.5113 for SSC, while 0.8740, 1.1502 and 2.0579 for firmness, respectively. 

Results indicated that coarse quantitative predictions are possible for SSC and firmness by full-spectrum in this work.4 

However, all models based on MC-UVE and MC-UVE-SPA for SSC and firmness also yielded good results comparing 

with full-spectrum PLS models for both calibration and prediction sets. These results indicated the proposed variable 

selection methods (MC-UVE and SPA) are effective for determination of SSC and firmness of pear. Compared between 
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models by MC-UVE and models by MC-UVE-SPA, models with MC-UVE performed slightly better than models with 

MC-UVE-SPA for prediction of SSC and firmness, respectively. However, it is also worth mentioning that models with 

MC-UVE-SPA also preformed an acceptance result considering the largely reduced number of variables.  

Table 2. The prediction results of SSC and firmness of pear by different models.  

Parameters Variable selection methods (models) Variable 

Calibration set  Prediction set 

rcal
a RMSEC  rpre

b RMSEP RPD 

SSC (°Brix) None (PLS) 1400 0.9490 0.3325  0.9173 0.4221 2.5113 

MC-UVE (PLS) 490 0.9409 0.3632 0.9420 0.3639 2.9796 

MC-UVE (LS-SVM) 490 0.9621 0.3208 0.9587 0.3239 3.5159 

MC-UVE-SPA (PLS) 14 0.9335 0.4011 0.9301 0.4162 2.7225 

MC-UVE-SPA (LS-SVM) 14 0.9517 0.3156 0.9486 0.3244 3.1598 

  

Firmness (N) None (PLS) 1400 0.9094 0.9821 0.8740 1.1502 2.0579 

MC-UVE (PLS) 240 0.8906 1.0713 0.8701 1.2377 2.0289 

MC-UVE (LS-SVM) 240 0.9226 0.8915 0.9035 0.9931 2.3332 

MC-UVE-SPA (PLS) 17 0.8807 1.1092 0.8616 1.1885 1.9701 

MC-UVE-SPA (LS-SVM) 17 0.9081 1.0352 0.8955 1.1077 2.2469 

a rcal represents correlation coefficient of calibration set. b rpre represents correlation coefficient of prediction set. 

It is also be seen from Table 2 that all LS-SVM models for two indices yielded better results than PLS models for 

calibration and prediction sets. The reason could be that LS-SVM could make advantage of the latent nonlinear 

information of spectral data which contributed a better prediction performance, and PLS only dealt with the linear 

relationships between the spectra and chemical compositions. In our study, the superiority of LS-SVM for handling 

nonlinear information was not very distinct might be due to little nonlinear information in spectral data or small samples 
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number used. However, the overall results still suggested that LS-SVM was a powerful analysis tool to quantity SSC 

and firmness of pear. Moreover, some recent studies also have found nonlinear models were better than linear models 

for prediction of internal quality of some fruits including pear fruit.45-48,72 So, some latent nonlinear information might 

be existed in the spectral data and relate to the chemical constituents, especial for online and fast assessment of fruit 

quality. Compared with all the models shown in Table 2, LS-SVM models combining with MC-UVE-SPA variables 

selection method achieved the optimal results among all developed models for two indices both in calibration and in 

prediction sets by balancing between model accuracy and model complexity. Therefore, selection of effective variables 

(wavelengths) by MC-UVE-SPA was suitable for such situation in the present study. The rpre, RMSEP and RPD were 

0.9486, 0.3244 and 3.1598 for SSC, while 0.8955, 1.1077 and 2.2469 for firmness, respectively. The results showed 

that good prediction accuracy for SSC values and coarse quantitative prediction for firmness, respectively.4 However, 

firmness prediction by MC-UVE-SPA-LS-SVM model was more effective than full spectrum LS-SVM or PLS models. 

Therefore, in this work, the effective variables could represent most of the features and characteristics of the whole 

spectral region, and could be applied instead of the whole wavelength region to predict the SSC and firmness of pear. 

Fig.7(a) and (b) show the scatter plots of predicted versus measured SSC and firmness obtained by LS-SVM combining 

both MC-UVE and SPA methods, respectively. The solid line is the regression line corresponding to the ideal, unity 

correlation between the predicted and measured values.  

  

(a)                                                  (b) 
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Fig.7. Measured vs. predicted values for SSC (a) and firmness (b) prediction by the LS-SVM calibration models combining both 

MC-UVE and SPA method. 

The prediction results for the SSC obtained in this study are slightly superior or similar to those obtained by Ying 

and Liu42 in pear with r=0.9109, RMSEP=0.395 and RPD=2.4235 for SSC, Paz et al.29 in ‘Blanquilla’ pear with r2=0.76 

(coefficient of determination), SECV=0.59 and RPD=2.0413 for SSC and r2=0.79, SECV=5.33 and RPD=2.1822 for 

firmness, Blanke31 in ‘Lucas’ pear with r2=0.54 and RPD=1.4744 for firmness. On the other hand, better results also 

have been found in pear with RPD=3.43 for SSC, and RPD=2.28 for firmness by Jiang and Zhu.44 In addition, it is 

worth mentioning that a relatively good result also has been reported by Xu et al.9 in Chinese royal pear with 

RPD=2.8867 for SSC for online application. Compared to the research results from other fruit types, the prediction 

results obtained by MC-UVE-SPA-LS-SVM model in this study is superior to those in Huang et al.47 for SSC prediction 

of mulberry fruit (r = 0.8367, RMSEP=1.1721, RPD=1.8232) and in Zhang et al.79 for SSC prediction of nanfeng 

mandarin orange (r = 0.8577, RMSEP =0.7113, RPD=1.9450) and in Blanke31 for apple with RPD=1.7678 for firmness 

and RPD=2.7735 for SSC as well as in Møller et al.30 for apple (r2 = 0.80, RPD=2.2380 for SSC). However, the result 

in this study is also slightly inferior to the results obtained by Jamshidi et al.32 for Valencia oranges (r = 0.96, 

RMSEP=0.33, RPD=3.5714 for SSC) and the results obtained by Mireei et al.41 for firmness prediction of 'Mazafati' 

date fruit (r2 = 0.90, RMSEP=1.3, RPD=3.1623) and similar to the results obtained by Shao et al.46 for SSC of peach 

(r=0.9485, RMSEP=0.4155 and RPD=3.1568) and Ragni et al.33 for firmness of ‘Hayward’ kiwifruit (r2=0.806 and 

RPD=2.2704). Although the prediction accuracies in our study were not optimal compared with all the above models 

might due to appropriately influenced by instrumentation differences and different measurement modes such as 

reflectance and transmission, the application of LS-SVM combining both MC-UVE and SPA has been proved to be 

effective in this specific case, and the application of MC-UVE-SPA-LS-SVM supplied a new way for variables 

selection and further potential applications in other field. 

4.  Conclusions  
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The Vis/NIR spectroscopy spectrometric technique was developed to measure the SSC and firmness of pear fruit in 

the wavelength range of 400-1800 nm. The prediction results for PLS and LS-SVM models based on MC-UVE and SPA 

methods were compared. MC-UVE was proposed to eliminate the uninformative variables in the full-spectrum and SPA 

was also proposed as a new powerful way for further characteristic variables selection, and the new developed 

combination of MC-UVE-SPA-LS-SVM achieved the optimal prediction performance for SSC and firmness of pear 

comparing with full-spectrum PLS, MC-UVE-PLS, MC-UVE-LS-SVM and MC-UVE-SPA-PLS models by balancing 

between model accuracy and model complexity. The prediction results by MC-UVE-SPA-LS-SVM were that the r, 

RMSEP and RPD for prediction set were 0.9486, 0.3244, 3.1598 and 0.8955, 1.1077, 2.2469 for SSC and firmness, 

respectively. The overall results indicated that Vis/NIR spectroscopy incorporated to MC-UVE-SPA-LS-SVM could be 

applied as an alternative fast and accurate method for the determination of SSC and firmness of pear, nondestructively.  
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