Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

Analytical Methods

Rapid determination of orbifloxacin residue in milk by a optimized fluorescence polarization immunoassay (FPIA) based on a heterogeneous fluorescent tracer.

Analytical Methods Accepted Manuscript

2	
3	
4	
5	
5	
6	
7	
8	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
40	
18	
19	
20	
21	
20	
22	
23	
24	
25	
20	
20	
27	
28	
29	
20	
30	
31	
32	
33	
24	
34	
35	
36	
37	
20	
30	
39	
40	
41	
12	
42	
43	
44	
45	
46	
40	
41	
48	
49	
50	
50	
51	
52	
53	
54	
55	
00	
56	
57	
58	
· · · ·	
50	
59	

1

1	Development and Optimization of a Fluorescence
2	Polarization Immunoassay for Orbifloxacin in Milk
3	Tiejun Mi,† ^{<i>a</i>} Xiao Liang,† ^{<i>a</i>} Long Ding, ^{<i>a</i>} Suxia Zhang, ^{<i>a</i>} Sergei A. Eremin, ^{<i>b</i>} Ross C.
4	Beier, ^c Jianzhong Shen, ^a and Zhanhui Wang ^a *
5	^a Department of Veterinary Pharmacology and Toxicology, College of Veterinary
6	Medicine, China Agricultural University, Beijing 100193, People's Republic of China
7	^b Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow
8	119991, Russia
9	^c Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center,
10	Agricultural Research Service, U.S. Department of Agriculture, 2881 F&B Road,
11	College Station, TX 77845-4988, USA
12	†These authors contributed equally to this paper.
13	*Author to whom correspondence should be addressed.
14	Tel: 8610 - 6273 3088
15	Fax: 8610 - 6273 3088
16	E-mail: wangzhanhui@cau.edu.cn

17

Analytical Methods

18	Abstract A novel monoclonal antibody for orbifloxacin (ORB) was produced for
19	the frist time and used to develop a homogeneous fluorescence polarization
20	immunoassay (FPIA) for ORB determination in milk. Three coating antigens and six
21	fluorescent tracers were prepared, and evaluated by ELISA and FPIA methods,
22	respectively. Heterogeneous tracer, LOM-BDF, was selected to develop the FPIA,
23	providing high sensitivity and stability. Moreover, a new optimization strategy for
24	tracer and Ab concentration was proposed by integrating Z' factor into checkerboard
25	titration, and Z' factor > 0.8 was considered as a prerequisite to ensure the robustness
26	of quantitative FPIA. The optimized FPIA provided a detection limit of 3.9 ng mL ^{-1}
27	and IC_{50} of 24.5 ng mL ⁻¹ with an expected Z' factor of 0.81. Saturated (NH ₄) ₂ SO ₄
28	precipitation was applied for milk sample pre-treatment due to high tolerance to
29	elevated-ionic strength in the FPIA. Mean recoveries of fortified milk were ranged
30	from 74.3 to 112 % at the adding levels of 10, 20 and 40 ng mL ^{-1} . The results
31	indicated that the developed FPIA was efficient and especially suitable for fast
32	screening of ORB in milk.
33	Keywords Fluorescence polarization immunoassay; Assay optimization;

Analytical Methods Accepted Manuscript

34 Monoclonal antibody; Orbifloxacin; Milk

Analytical Methods Accepted Manuscript

35 1. Introduction

36	Quinolones (QNs) and the subset fluoroquinolones (FQs) represent a large group
37	of synthetic antibiotics that are widely used for both the prevention and therapy of
38	disease, not only in humans, but also in animal medicine. Some QNs including
39	enrofloxacin (ENRO), danofloxacin (DANO), difloxacin (DIF), flumequine (FLU),
40	marbofloxacin (MARB), orbifloxacin (ORB), oxolinic acid (OA) and sarafloxacin
41	(SARA) are approved for veterinary practice in many countries. ^{1,2} However, residues
42	of these drugs in food could pose potential threats to human health; moreover, these
43	residues may contribute to the development of antibiotic resistant pathogenic
44	bacteria. ^{3, 4} With consideration of these potential hazards, in 2005 ENRO was
45	withdrawn in the United States from use in poultry. ⁵ To minimize the risk of QNs
46	exposure to humans via products from food-producing animals, maximum residue
47	limits (MRLs) have been established for several QNs by a number of countries and
48	organizations. Orbifloxacin, a third-generation fluoroquinolone developed exclusively
49	for veterinary use, was approved in Japan for use in cattle and swine production for
50	the treatment of gastrointestinal and respiratory infections, whereas in the United
51	States it has been approved only for pets (dogs and cats). ^{1, 2, 6} MRL for ORB was set
52	at 20 ng mL ⁻¹ (g^{-1}) in cattle and swine edible tissues and products, including milk. ⁷ It
53	has been demonstrated that ORB transfers from the blood into the milk rapidly, and
54	high-levels of ORB was observed in milk secretions. ⁸ Thus, it is necessary to develop
55	reliable and accurate analytical methods for the determination of ORB residues in
56	food animal products, especially milk.

Page 5 of 35

Analytical Methods

57	The basis of many methods used for analysis of QNs is dominated by liquid
58	chromatography coupled with fluorescence detection or mass spectrometry, that
59	indicate excellent sensitivity and accuracy.9, 10 However, these instrumental
60	techniques are generally complicated, time-consuming, and expensive to use in
61	routine screening programs. Immunoassay techniques like the enzyme-linked
62	immunosorbent assay (ELISA) may be an effective and economical alternative to
63	instrumental methods. However, ELISA is a heterogeneous solid-phase method,
64	which requires a long time (more than 2 h) for the immunoreactions to reach
65	equilibrium and for multiple-washing steps to separate the free and antibody-bound
66	analyte. Fluorescence polarization immunoassay (FPIA) is a competitive
67	homogeneous assay in solution phase based on differences in fluorescence
68	polarization (FP) of the fluorescent-labeled analyte in the antibody-bound and
69	non-bound fractions. In a homogeneous solution phase immunoassay, the
70	immunoreaction can reach equilibrium in minutes or even seconds, and no separation
71	or washing steps are required. Although FPIA is prone to interference by matrix and
72	antibody cross-reactivity, the advantage in detection speed makes it more suitable for
73	determining a large number of samples than the ELISA. ¹¹ Multiple-FPIAs have been
74	developed for the determination of food contaminants, the majority of which are for
75	analysis of pesticides ¹²⁻¹⁵ and for mycotoxins ¹⁶⁻²⁰ . Also, some veterinary drugs in
76	food residue, including sulfonamides ²¹⁻²⁶ , maduramicin ²⁷ , and chloramphenicol ²⁸
77	have been analyzed by FPIA.

Analytical Methods Accepted Manuscript

Analytical Methods Accepted Manuscript

1	
2	
3	
4	
5	
6	
7	
/ 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20	
20	
21	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
40	
-10 //7	
41 10	
40 40	
49	
5U	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

78	In the current study, only two QNs, sparfloxacin (SPA) and lomefloxacin (LOM),
79	which shared unique similarities with ORB in chemical structure, were cross-reactive
80	with monoclonal antibody (MAb) against ORB, and selected to synthetize
81	heterologous coating antigens for ELISA and fluorescent tracers for FPIA. Moreover,
82	a new optimization strategy for tracer and Ab concentrations in FPIA was described
83	based on Z' factor and checkerboard titration. To our knowledge, this is the first report
84	for production of MAb against ORB, synthesis of fluorescent tracers and development
85	of a FPIA for ORB determination.
86	
87	2. Materials and Methods
88	2.1 Chemicals and standards
89	Bovine serum albumin (BSA), Ovalbumin (OVA), fluorescein isothiocyanate
90	(FITC) isomer I, N-hydroxysuccinimide (NHS), N,N'-dicyclohexylcarbodiimide
91	(DCC) and Freund's complete and incomplete adjuvants were obtained from
92	Sigma-Aldrich (St. Louis, MO, USA). Polyethylene glycol (PEG 2000) was
93	purchased from Merck-Schuchardt OHG (Darmstadt, Germany). Cell culture media
94	(DMEM) was obtained from Huamei (Beijing, P.R. China). Fetal calf serum and
95	supplements were obtained from GIBCO BRL (Carlsbad, CA). The analytical
96	standards of orbifloxacin, sparfloxacin, lomefloxacin, enoxacin (ENO),
97	marbofloxacin, ofloxacin (OFL), danofloxacin mesylate, oxolinic acid and nalidixic
98	acid (NAL) were obtained from Dr. Ehrenstorfer GmbH, (Ausburg, Germany).
99	Ciprofloxacin hydrochloride (CIP), enrofloxacin, flumequine, norfloxacin (NOR),

Page 7 of 35

Analytical Methods

100	pefloxacin methanesulfonate (PEF), sarafloxacin, and difloxacin were purchased from
101	the China Institute of Veterinary Drug Control (Beijing, P.R. China). Common
102	solvents and salts were analytical reagent grade and supplied by Beijing Reagent
103	Corporation (Beijing, P.R. China).
104	Borate buffer (0.05 M, pH 8.0) with 0.1% sodium azide was used as the working
105	buffer for all FPIA experiments. Individual stock standard solutions of the QNs (1 mg
106	mL^{-1}) were prepared by dissolving 10 mg of each QN standard in 1 mL of 0.03%
107	NaOH and diluted to a final volume of 10 mL with methanol. Aqueous standard
108	solutions of the analytes in the range of 0.1 to 1000 ng mL ^{-1} were prepared by dilution
109	of the stock solution with borate buffer.
110	2.2 apparatus
111	Pre-coated silica gel 60G F_{254} glass plates (plate size: 10×10 cm; layer
112	thickness: $0.15 \sim 0.2$ mm, particle size: $2\mu m$) for thin-layer chromatography (TLC)
113	were purchased from Yantai XinDe Corporation (Shandong, P.R. China). Polystyrene
114	microplates (96-well) for ELISA and black microplates (96-well) with a non-binding
115	surface for FPIA were obtained from Corning Life Sciences (New York, NY, USA).
116	A SpectraMax M5 microplate reader from Molecular Devices (Downingtown, PA,
117	USA) was used to measure fluorescence polarization and optical density (OD) signal.
118	High-performance liquid chromatography (HPLC) analysis were performed using a
119	Waters 2695 Separations Module and a Waters 2475 Multi-Wavelength Fluorescence
120	Detector equipped with a reverse-phase Symmetry C_{18} 250 mm \times 4.6 mm column
121	(Waters, Milford, MA, USA).

Analytical Methods Accepted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
12
1/
14
10
10
17
10
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
<u>40</u> Δ1
42
<u>4</u> 2
Δ <i>Δ</i>
 15
40
40
41 10
40 40
49 50
5U
51
52
53
54
55
56
57
58
59
60

122	2.3 Synthesis	of protein	and fluorescent	conjugates
-----	---------------	------------	-----------------	------------

]	123	The carboxylic group of ORB (20 mg, 50 μ mol) was activated by gently stirring
1	24	overnight at room temperature in 1mL of N,N-Dimethylformamide (DMF) containing
]	125	6 mg (60 μ mol) of NHS and 12 mg (60 μ mol) of DCC. The mixture was centrifuged
]	126	at $1000 \times g$ for 10 mins to remove precipitated dicyclohexylurea. The clear
]	127	supernatant phase was collected and 900 μ L of the supernatant was added drop-wise
]	128	to 30 mg (0.5 $\mu mol)$ BSA in 8 mL of sodium carbonate (0.01 M, pH 9.0). The
]	129	reaction was stirred overnight at 4°C, and then dialyzed against 1000 mL of PBS
]	130	(0.01 M, pH 7.4) for 3 days, which was changed twice a day. The immunogen,
1	131	ORB-BSA, was diluted to 2 mg mL $^{-1}$ with PBS and divided into aliquots and stored at
]	132	-20°C until used. Three coating antigens (ORB-OVA, SPA-OVA and LOM-OVA)
]	133	were prepared in the same way.
]	134	Three fluorescein derivatives, fluorescein thiocarbamyl ethylenediamine (EDF),
]	135	fluorescein thiocarbamyl butanediamine (BDF) and fluorescein thiocarbamyl
]	136	hexylenediamine (HDF) were synthesized from FITC as previously described. ²⁹ ORB
]	137	(4 mg, 10 μ mol) was activated with NHS and DCC as stated above and added to 4.8
]	138	mg (10 μ mol) of EDF in 0.5 mL DMF. After stirring for 12 h at RT, a small portion of
]	139	the reaction mixture was purified by TLC using methanol/AcOEt/NH4OH (2:1:0.04,
]	140	$v\!/\!v\!/\!v)$ as the eluent. The major yellow band at $R_{\rm f}0.5$ was scraped from the plate and
]	141	extracted with methanol (0.2 mL). Other tracers ORB-BDF, ORB-HDF, LOM-EDF,
]	142	LOM-BDF and LOM-HDF were prepared by the same method (see Table 1). The
1	143	tracer concentration was calculated according to the absorbance at a wavelength of

 492 nm^{28} , and all the tracers were diluted with the borate buffer to get the routine working solution of 10nM, which the fluorescence intensity (FI) of tracers was about 10 times that of buffer background $(2 \sim 3 \text{ RFU})$.²⁶ 2.4 MAb production The procedures used for MAb production were similar to those described in our previous report.²³ Briefly, five 8-week old BALB/c mice were immunized with ORB-BSA at a dosage of 1 μ g g⁻¹ body weight in an equal volume of Freund's complete adjuvant. Booster injections were then given 2, 4, and 6 weeks later with the same dosage of immunogen emulsified with an equal volume of Freund's incomplete adjuvant. Blood was collected from the caudal vein of each mouse and antisera titers were determined before fusion. The mouse exhibiting the highest-titer and best sensitivity was sacrificed after the last immunization and the spleen was removed for hybridoma production. After fusion, the cells were selected using the selection medium. The growing hybridoma cells were screened for antibody production by ELISA in the absence and presence of 100 ng mL^{-1} ORB. The positive hybridomas were cloned by the limiting dilution method, and one stable clone was obtained. Ascites fluid of the positive hybridoma was collected and purified by (NH₄)₂SO₄ precipitation. 2.5 ELISA protocol The ELISA approach was described as follows: The ELISA plate was coated with

Analytical Methods Accepted Manuscript

165 by incubation at 37 °C for 2 h. After washed with 300 μL per well of PBS (0.01 M,

coating antigen (100 µL per well) in coating buffer (0.05 M carbonate buffer, pH 9.6)

Analytical Methods Accepted Manuscript

2		
3		
4		
5		
6		
7		
8		
9		
1	0	
1	1	
1	2	
1	2 2	
1	J ⊿	
1	4 5	
1	с С	
1	0	
1	1	
1	8	
1	9	
2	0	
2	1	
2	2	
2	3	
2	4	
2	5	
2	6	
2	7	
2	8	
2	q	
<u>ר</u>	0 0	
2	1	
ა ი	่ ว	
ა ი	2	
ა ი	ۍ ا	
3	4	
3	5	
3	6	
3	7	
3	8	
3	9	
4	0	
4	1	
4	2	
4	3	
4	4	
4	5	
4	6	
Ľ	7	
± ⊿	, 8	
	a	
+ 5	0	
0 5	4	
о г	1	
5	2	
5	3	
5	4	
5	5	
5	6	
5	7	
5	8	
5	9	

60

1

166	pH7.4) with 0.05% Tween20 for 4 times, the plate was blocked by incubation with
167	300 μL per well of blocking buffer (PBS with 1.0% casein) for 1h and followed by
168	another washing step. Then 50 μL per well of PBS in the absence or presence of
169	standard was added, followed by adding 50 μL per well of diluted MAb. The plate
170	was incubated for 30 mins at 37°C. After washing, 100 μ L of diluted goat-anti-mouse
171	IgG-HRP solution was added, and the plate was incubated for 30 mins at 37 °C again.
172	Then, substrate solution (100 μL per well) was added after washing, and the reaction
173	was stopped by 50 μL per well of 2 M H_2SO_4 after incubation at 37°C for 15 mins.
174	Then the OD value was determined in dual-wavelength mode (450 nm for test and
175	630 nm for reference). The concentrations of MAb and coating antigen were
176	optimized by checkerboard titration according to B_0 value of around 1.5 and
177	sensitivity

178 2.6 FPIA protocol

The FPIA approach was described as follows: 50 µL per well of tracer solution 179 180 was mixed with 50 µL per well of borate buffer in the absence or presence of standard 181 in the microplate well. Subsequently, 50 µL per well of diluted MAb was added, and 182 the mixtures were shaked for 10 s in the microplate reader. After a short incubation period (2min) at room temperature, FP value was measured at $\lambda_{ex} = 485$ nm, $\lambda_{em} = 530$ 183 184 nm (emission cutoff = 515 nm, G factor = 1.0). And the blank control containing all 185 assay elements except tracer was performed simultaneously for correcting polarization 186 measurement by subtracting the background in assay buffer or sample matrix.

Page 11 of 35

Analytical Methods

187	The antibody binding assay was performed by mixing tracer (10nM) with
188	two-fold serially diluted MAb over the range of 1/200 to 1/102400. Then antibody
189	titers (the dilution resulting in 50% tracer binding) for different tracers were obtained
190	according to the respective dilution curves. The optimal pair of fluorescent tracer and
191	antibody concentrations were selected by checkerboard titration according to
192	appropriate Z' factor 30 and sensitivity.
193	2.7 Curve fitting and cross-reactivity determination
194	The sigmoidal curve was used to fit both ELISA and FPIA data by OriginPro 7.0
195	(OriginLab Corp., Northampton, MA, USA). IC ₅₀ was the standard concentration at
196	50% of specific binding. The limit of detection (LOD) was defined as the standard
197	concentration corresponding to the mean signal of 20 independent blank controls
198	minus three times their standard deviation (SD). The limit of quantification (LOQ)
199	was the standard concentration at IC_{80} and the dynamic range was defined as the
200	standard concentration at the range of $IC_{20} \sim IC_{80}$. Cross-reactivity (CR) was
201	calculated by both ELISA and FPIA methods according to the following equation:
202	CR (%) = (IC ₅₀ of ORB / IC ₅₀ of tested QNs) \times 100 Eq.1
203	where IC ₅₀ values were obtained from calibration curves and CR was calculated using
204	IC ₅₀ values in nM unit.
205	2.8 Effects of Physicochemical Conditions on Assay Performance
206	The effects of pH value, salt concentration, and organic solvent on assay
207	performance were assessed by comparing δmP and IC ₅₀ parameters of the standard
208	curves under various conditions. The ORB standard, tracer and MAb were dissolved

Page 12 of 35

2
3
4
5
6
7
, 8
0
9 40
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
20
20
21
28
29
30
31
32
33
34
35
36
37
38
39
40
-0 /1
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
50
09
00

1

in buffers of different pH values, salt concentrations, and organic solvent
concentrations, and were prepared as follows. The pH of a 50 mM borate buffer was
about 9.4, and then the pH of the borate buffer was adjusted to different values (from
pH 5 to 10) with concentrated HCl or 6 M NaOH. Buffers of different ionic strength
(0 to 2.0 M) were prepared by adding solid NaCl to 50 mM borate buffer. Buffers
with different organic solvents were comprised of 50 mM borate buffer containing
methanol or acetonitrile in different proportions (0 to 20%).

216 *2.9 Sample preparation*

Negative control milk (4 mL) was added into 10 mL polypropylene centrifuge 217 218 tubes and fortified with the appropriate ORB standard solution. After mixing with a 219 vortex mixer, the samples were allowed to stand for 30 mins in the dark at RT. An 220 equal volume of saturated (NH₄)₂SO₄ solution was added to deproteinize the samples 221 followed by mixing in a vortex mixer, and then sonicating for 5 mins. The mixtures 222 were centrifuged at $7400 \times g$ at 4°C for 10 mins. Some of the clear supernatant 223 (500 μ L) was filtered through a 0.45 μ m filter and 50 μ L of the filtrate was analyzed 224 by FPIA. Additionally, 4 mL of supernatant was collected and the pH adjusted to 6.0 225 by the addition of HCl, followed by extracting with 4 mL of dichloromethane 226 (CH₂Cl₂). The whole lower organic layer (around 4 mL) was transferred into an 227 eppendorf tube and evaporated under a stream of nitrogen gas at 40°C. The residue was re-dissolved in 1.0 mL of the mobile phase and filtered through a 0.45 µm filter, 228 229 50 µL of the filtrate was subjected to HPLC analysis. HPLC method was modified based on the previous study.⁸ The mobile phase consisted of a mixture of acetonitrile 230

Analytical Methods

3 4 5	231	and 0.5% trifluoroacetic acid solution (20:80, v/v). The HPLC system was operated
6 7 8	232	isocratically at a flow rate of 0.8 mL min ^{-1} and fluorescence detection was conducted
9 10 11	233	at an excitation wavelength of 280 nm and an emission wavelength of 450 nm.
12 13	234	
14 15 16	235	3. Results and discussion
17 18	236	3.1 Characterization and selection of tracers
20 21	237	In this study, three coating antigens (ORB-OVA, SPA-OVA and LOM-OVA)
22 23 24	238	were prepared with respective cross-reactants (ORB, SPA and LOM), and evaluated
25 26	239	in ELISA method. As observed in Fig. 1, the heterogenous coating antigen
27 28 29	240	LOM-OVA exhibited the highest sensitivity in ELISA method. Then, LOM was
30 31 32	241	selected to prepare heterogeneous fluorescent tracers to investigate the effect of tracer
33 34	242	structure on the analytical characteristics of the FPIA. Three synthesized
35 36 37	243	heterogeneous tracers which were different in the bridge length between LOM and
38 39 40	244	fluorescein (two carbons length for LOM-EDF, four carbons length for LOM-BDF
41 42	245	and six carbons length for LOM-HDF) were expected to improve assay sensitivity.
43 44 45	246	And other three similar tracers, ORB-EDF, ORB-BDF and ORB-HDF were prepared
46 47 48	247	as the homogeneous controls.
49 50	248	Six tracers were fristly characterized by the antibody binding assay. As the results
51 52 53	249	shown in Fig. 2, antibody titers for LOM-EDF, LOM-BDF, LOM-HDF, ORB-EDF,
54 55 56	250	ORB-BDF and ORB-HDF were 1/1600, 1/2400, 1/4000, 1/3000, 1/7000 and 1/8000,
57 58	251	respectively. But two of these tracers (LOM-EDF, ORB-EDF) did not present the
59 60	252	adequate increase in FP signal (8mp<100) after adding saturating amounts of

Analytical Methods Accepted Manuscript

2	
3	
4	
5	
6	
7	
0	
ð	
9	
10	
11	
12	
13	
14	
15	
10	
10	
17	
18	
19	
20	
21	
22	
23	
20	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
44	
45	
46	
<u>4</u> 7	
11	
40	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	
59	
60	

1

253	antibody. Other four tracers giving satisfactory binding ($\delta mp > 180$) were subjected to
254	a further identification by ESI-MS in positive ion mode, which indicated the m/z of
255	810.6 for LOM-BDF, 839.4 for LOM-HDF, 850.4 for ORB-BDF, 875.4 for
256	ORB-HDF. Optimal tracer was selected according to assay sensitivity and stability
257	that displayed in Fig. 3. The highest-sensitivity (lowest B/B_0) was obtained when
258	using the heterogeneous tracer LOM-BDF with shorter linker (four carbons length).
259	Generally, the antibody affinity for the hapten conjugate is higher than the analyte
260	itself due to the homology of the hapten used in the immunogen and tracer. ³¹ In order
261	to achieve the high sensitivity, the antibody affinity for the tracer should be of the
262	same order of magnitude as for the analyte. ³² So, the tracers with structurally
263	heterogeneous hapten or linker between hapten and fluorescein were considered to
264	change the affinity with Ab. In agreement with previous reports ^{23, 31} , the
265	heterogeneous tracer LOM-BDF with shorter linker provided lower-relative affinity
266	with antibody, resulting in higher-sensitivity in our work.
267	Moreover, FP signal was much more stable using the heterogeneous tracers
268	during the incubation time over 60 mins compared with homogeneous tracers (Fig. 3).
269	Only a short incubation time (1min) was required to reach interaction equilibrium,
270	which proved to be more likely to develop a real "mix and read" assay. Thus, total
271	time required for one 96-well microplate was about 15 mins for FPIA compared with
272	more than 2 h for a conventional ELISA. So, LOM-BDF was selected as the optimal
273	tracer in the following studies.

274 *3.2 Z factor in FPIA*

Analytical Methods

2		
4	275	The Z factor (Eq. 2) is a widely used statistical parameter to judge assay quality
5	275	The 2 factor (Eq.2) is a wheely used statistical parameter to judge assay quanty
6	276	in high-throughput screening (HTS) assays which indicates the ability to distinguish
7 8	270	in high-throughput screening (1115) assays, which indicates the ability to distinguish
9	277	signals between complexity of control
10	277	signals between sample and control.
11		
1Z 13	278	$Z = 1 - (3\sigma_s + 3\sigma_c)/ \mu_s - \mu_c \qquad \text{Eq.2}$
14		
15	279	Where μ_s and μ_c represent the average signal of the sample and the control,
16		
17	280	respectively. And σ_s and σ_c are the respective SDs of these values $Z \ge 0.5$ represents
18 10	200	1 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =
20	201	and concretion of the distributions and indicates on excellent assau: $0 < 7 < 0.5$ means
21	201	good separation of the distributions and indicates an excellent assay, 0 <2<0.5 means
22	• • •	
23	282	moderate separation of the distributions and indicates a doable assay; $Z < 0$ is a sign of
24		
20	283	poor quality. Similarly, this factor can also serve as the parameter for the quality of
27		
28	284	the assay itself which defined as Z' factor.
29	201	
30	205	$7! - 1$ $(2 - 1)^{1}$ $(2 - 1)^{1}$ $(2 - 1)^{1}$
31	285	$L = 1 - (3\sigma_{c+} + 3\sigma_{c-})/ \mu_{c+} - \mu_{c-} $ Eq.5
33	• • •	
34	286	Where μ_{c+} and μ_{c-} represent the average signal of the positive and negative control,
35		
36	287	respectively. And σ_{c^+} and σ_{c^-} are the respective SD of these values. ³⁰
37 38		
39	288	In order to apply Z factor in competitive FPIA for quantitative determination,
40		
41	280	these two factors were similarly defined as:
42	20)	these two factors were similarly defined as.
43 11	••••	
45	290	$Z = 1 - 3 \times (SD_{max} + SD_x)/(mP_{max} - mP_x) \qquad Eq.4$
46		
47	291	$Z' = 1 - 3 \times (SD_{max} + SD_{min}) / (mP_{max} - mP_{min}) \qquad Eq.5$
48		
49 50	292	Where mP_{max} and mP_{min} are the observed mean FP signal for bound and free
50		
52	202	fluorescent tracer Constally mP and mP represent maximum (no inhibition) and
53	295	nuorescent tracer. Generarry, nit max and nit min represent maximum (no minoriton) and
54	2 04	
55 56	294	minimum (complete inhibition) signal in standard curve; $mP_{max} - mP_{min}$, represents
57		
58	295	the assay window (δmP); mP_x is the observed mean FP value in the presence of
59		
60		

Analytical Methods Accepted Manuscript

296	analyte at some concentration; $SD_{\text{max}},SD_{\text{min}}$ and SD_{x} are the respective SDs of these
297	values.

298	Typically, a Z' factor ≥ 0.5 indicates a reliable assay in HTS. However, that may
299	be not a suitable threshold value for quantitative determination in our opinion. If Z'
300	factor = 0.5, $Z_{50} = 0$ (Z at IC ₅₀), that inevitably resulted in poor quality (Z<0) for the
301	concentration less than IC_{50} . On account of defining IC_{80} as LOQ, it was essential to
302	keep Z ₈₀ >0 (Z at IC ₈₀) in quantitative FPIA. As displayed in Fig. 4, mP_{max} - mP_{80} >
303	6SD and $\delta mP > 30SD$ were achieved in the case of almost constant variance in FP
304	value for the fixed tracer concentration (shown in Fig. 5). Consequently, Z'>0.8 was
305	obtained and considered as a prerequisite to ensure the robustness of quantitative
306	FPIA.

3.3 Tracer and antibody concentration

It is known that the tracer signal sets the sensitivity, low tracer concentration will result in the high sensitivity. In previous reports, tracer working solution was empirically set to its concentration exhibited about 10 times more FI signal than the buffer background.^{26, 32} However, the precision of FP signal (SD), rather than the FP signal itself, is related to the tracer concentration, low tracer concentration also results in low precision in FP signal.³³ As the results shown in Fig. 5, almost constant SD of FP value (SD_{max} \approx SD_{min} \approx SD) was observed for the fixed tracer concentration, and precision decreased for the tracer concentration less than 10nM. It has been proved that the dilution of antibody corresponding to 50% tracer binding would provide best sensitivity.²³ However, the FP assay window (δmP) is very narrow and dependent on

318 the concentration of Ab, and low Ab concentration will not provide a good assay
 319 window for measurement.³⁴

Therefore, it is necessary to establish a method for optimization of their concentrations simultaneously. One of the most effective methods was checkerboard titration, which has been widely applied in ELISA optimization. Moreover, Z' factor was integrated into checkerboard titration, due to it incorporating the precision of FP signal and the assay window. As the results shown in Table. 2, 20 nM of LOM-BDF and 1/1600 of Ab dilution were selected as the optimal couple for the tracer and Ab concentrations on the basis of Z' factor > 0.8 and higher sensitivity (lower B/B₀). 20 nM of LOM-BDF giving FI of ~50 RFU was approximately 20 times that of the background signal for borate buffer, and assay window was about 130 mP obtained at 1/1600 of Ab dilution, which was corresponding to 60% tracer binding. The optimal standard curve was shown in Fig. 4 with a IC₅₀ of 24.5 ng mL⁻¹, LOD of 3.7 ng mL⁻¹, dynamic range of 7.3–90.7 ng mL⁻¹, R^2 of 0.997 and expected precision (Z' = 0.81). 3.4 Cross-reactivity determination The specificity of the ORB MAb was evaluated by determining the cross-reactivity with 15 other QNs (SPA, LOM, ENO, MARB, OFL, DANO, OA, NAL, ENRO, CIP, NOR, FLU, PEF, SARA and DIF) in both the ELISA and FPIA (Table 3). The MAb showed medium and less cross-reactivitiy with SPA and LOM, respectively, and showed negligible cross-reactivity with the other QNs. Based on the cross-reactivity results, some substituents of LOM, ORB and SPA may play important roles in the antibody recognition; when the CH_3 -group is present at the R_3 or R_5 position of the

Page 18 of 35

Analytical Methods Accepted Manuscript

piperazine ring, and when the fluorine substituent is at the C₈ position of the quinolone nucleus, which are nonexistent structural features in other QNs (see Table 1). 3.5 Effects of Physicochemical Conditions on Assay Performance 3.5.1 pH effects The relationship of the IC₅₀ and δ mP as a function of pH was shown in Fig. 6(a). The lowest IC₅₀ and highest δmP were obtained at pH 8; whereas, δmP was significantly reduced and the IC₅₀ was lower at pH 9 and 10. The results demonstrate that the assay performed optimally at pH 8, and did not function well at higher or lower pH values. 3.5.2. Ionic strength The assay was tested in working buffer with salt concentrations ranging between 0 and 1.5 M, and the results are presented in Fig. 6(b). No negative effect on the IC₅₀ or δmP was observed at salt concentrations ranging from 0 to 1.0 M. A 30% increase in the IC₅₀ occurred as a result of the 1.5 M salt concentration, and δmP simultaneously increased by 10%. Therefore, elevated-ionic strength did not remarkablely affect the FPIA. 3.5.3 Organic solvent The effects of methanol and acetonitrile were studied because these solvents are water-miscible and commonly used in sample extraction procedures. However, only 10% methanol or 2.5 % acetonitrile could be tolerated in current assay (Data not

361 shown).

362	3.6 Analysis of spiked milk
362	3.6 Analysis of spiked milk

363	A FPIA method was developed to determine ORB in milk. Milk is a very
364	complex matrix consisting of different components (fats, proteins, various sugars,
365	etc.), which can strongly interfere with the analytical determination of residues. ²⁸
366	FPIA is susceptible to some of these components; therefore, milk protein removal is
367	required. Since elevated-ionic strength almost does not affect the performance of our
368	FPIA, a saturated solution of $(NH_4)_2SO_4$ was used for protein precipitation in the
369	recovery study, which has proved efficient for removing protein from milk. ²⁸ In order
370	to confirm the recovery results, the samples were simultaneously analyzed by HPLC
371	after a liquid-liquid extraction (LLE) clean-up step. The mean recoveries were 74.3 to
372	112 % with coefficient of variation (CV) ranging from 7.4 to 26.8 % at the adding
373	levels of $0.5 \sim 2$ MRLs (shown in Table 4), and improved recovery and coefficients of
374	variation were observed by HPLC determination following the clean-up step. FPIA
375	standard curves performed in both borate buffer and milk matrix were displayed in
376	Fig.7, which suggests that the $(NH_4)_2SO_4$ precipitation step did not completely
377	eliminate the matrix interference from milk; however, it was not only a sufficient
378	pretreatment for screening assay, but a safe and environmental-friendly technology.
379	Twenty four milk samples collected from the local markets were determined by these
380	two methods, no positive results were found in these samples.

Analytical Methods Accepted Manuscript

381 4. Conclusions

382 A rapid, simple, and sensitive FPIA for orbifloxacin determination in milk was
383 developed for the first time. LOM-BDF with 4 carbon linkers was selected as optimal

384	fluorescent tracer due to its high sensitivity and short incubation time (1min). Total
385	time required for measuring one 96-well microplate was about 15 mins for FPIA in
386	comparison with more than 2 h for a conventional ELISA. Z' factor>0.8 was
387	considered as the prerequisite to ensure the robustness of quantitative FPIA, and the
388	optimized FPIA showed satisfactory results for ORB analysis in milk using a simple
389	and safe sample pre-treatment. The optimization strategy for tracer and Ab
390	concentrations described in the present study could be beneficial in the development
391	of FPIA for quantitative determination.
202	
392	Acknowledgements
393	This work is supported by the grants from Trans-Century Training Programme
394	Foundation for the Talents by the Ministry of Education (NCET-12-0529), National
395	Natural Science Foundation of China (No.31372475), CAU Fundamental Research
396	Funds (2012QJ111), Beijing Excellent Doctoral Dissertation Fund (YB20081001902)
397	and Sino-Russian International Scientific and Technological Cooperation
398	(2011DFR30470).

1 2 3 4									
5 6	399	Ref	References						
7 8 9	400 401	1.	J. E. Riviere and M. G. Papich, Veterinary pharmacology and therapeutics consulting editor H. Richard Adams, 9th ed. edn., Wiley-Blackwell, Ames (Iowa), 2009.						
10 11	402	2.	V. Andreu, C. Blasco and Y. Picó, TrAC - Trends in Analytical Chemistry, 2007, 26, 534-556.						
12 13 14	403 404	3.	K. E. Smith, J. M. Besser, C. W. Hedberg, F. T. Leano, J. B. Bender, J. H. Wicklund, B. P. Johnson, K. A. Moore and M. T. Osterholm, <i>N Engl J Med</i> , 1999, 340 , 1525-1532.						
15 16 17	405 406	4.	A. Fàbrega, J. Sánchez-Céspedes, S. Soto and J. Vila, <i>International Journal of Antimicrobial Agents</i> , 2008, 31 , 307-315.						
10	407	5.	J. M. Nelson, T. M. Chiller, J. H. Powers and F. J. Angulo, Clin Infect Dis, 2007, 44, 977-980.						
20 21	408	6.	S. Nakamura, Drugs, 1995, 49, 152-158.						
22 23 24 25	409 410	7.	The maximum residue limits of substances used as ingredients of agricultural chemicals in foods (Provisional MRLs List).						
26	411		http://www.mhlw.go.jp/english/topics/foodsafety/positivelist060228/dl/index-1b.pdf.						
27 28 29	412 413	8.	P. Marín, E. Escudero, E. Fernández-Varón and C. M. Cárceles, <i>Journal of Dairy Science</i> , 2007, 90 , 4219-4225.						
20 30 31 32 33 34 35	414 415	9.	N. Dorival - García, A. Zafra - Gómez, S. Cantarero, A. Navalón and J. L. Vílchez, <i>Microchemical Journal</i> , 2013, 106 , 323-333.						
	416 417	10.	S. Zhao, H. Jiang, X. Li, T. Mi, C. Li and J. Shen, <i>Journal of Agricultural and Food Chemistry</i> , 2007, 55 , 3829-3834.						
36 37	418	11.	D. S. Smith and S. A. Eremin, Analytical and Bioanalytical Chemistry, 2008, 391, 1499-1507.						
38 39 40	419 420	12.	M. A. Deryabina, Y. N. Yakovleva, V. A. Popova and S. A. Eremin, <i>Journal of Analytical Chemistry</i> , 2005, 60 , 80-85.						
41 42 43	421 422	13.	S. A. Eremin, I. A. Ryabova, J. N. Yakovleva, E. V. Yazynina, A. V. Zherdev and B. B. Dzantiev, <i>Analytica Chimica Acta</i> , 2002, 468 , 229-236.						
44 45 46 47	423 424	14.	Z. L. Xu, Q. Wang, H. T. Lei, S. A. Eremin, Y. D. Shen, H. Wang, R. C. Beier, J. Y. Yang, K. A. Maksimova and Y. M. Sun, <i>Anal Chim Acta</i> , 2011, 708 , 123-129.						
48 49 50	425 426	15.	H. Lei, G. Xue, C. Yu, S. A. Haughey, S. A. Eremin, Y. Sun, Z. Wang, Z. Xu, H. Wang, Y. Shen and Q. Wu, <i>Analytical Methods</i> , 2011, 3 , 2334-2340.						
51 52 53 54 55 56	427 428	16.	E. H. Choi, D. M. Kim, SW. Choi, S. A. Eremin and H. S. Chun, <i>International Journal of Food Science & Technology</i> , 2011, 46 , 2173-2181.						
	429 430	17.	F. Zezza, F. Longobardi, M. Pascale, S. A. Eremin and A. Visconti, <i>Analytical and Bioanalytical Chemistry</i> , 2009, 395 , 1317-1323.						
57 58	431	18.	C. M. Maragos and R. D. Plattner, J Agric Food Chem, 2002, 50, 1827-1832.						
59 60	432 433	19.	C. M. Maragos, M. E. Jolley, R. D. Plattner and M. S. Nasir, <i>J Agric Food Chem</i> , 2001, 49 , 596-602.						

1 2			
3 4	434	20.	C. M. Maragos, M. E. Jolley and M. S. Nasir, Food Addit Contam, 2002, 19, 400-407.
5 6 7	435 436	21.	Z. Wang, S. Zhang, S. Ding, S. A. Eremin and J. Shen, <i>Food Additives and Contaminants -</i> <i>Part A Chemistry, Analysis, Control, Exposure and Risk Assessment,</i> 2008, 25 , 574-582.
8 9 10	437 438	22.	S. Zhang, Z. Wang, I. S. Nesterenko, S. A. Eremin and J. Shen, <i>International Journal of Food Science and Technology</i> , 2007, 42 , 36-44.
11 12 13	439 440	23.	Z. Wang, S. Zhang, I. S. Nesterenko, S. A. Eremin and J. Shen, <i>Journal of Agricultural and Food Chemistry</i> , 2007, 55 , 6871-6878.
14 15 16 17	441 442 443	24.	S. A. Eremin, N. R. Murtazina, D. N. Ermolenko, A. V. Zherdev, A. A. Mart'ianov, E. V. Yazynina, I. V. Michura, A. A. Formanovsky and B. B. Dzantiev, <i>Analytical Letters</i> , 2005, 38 , 951-969.
19 20 21	444 445	25.	N. R. Murtazina, S. A. Eremin, O. V. Mozoleva, S. J. Everest, A. Jim Brown and R. Jackman, <i>International Journal of Food Science & Technology</i> , 2004, 39 , 879-889.
22 23	446	26.	S. A. Eremin, J. Landon, D. S. Smith and R. Jackman, Analyst, 1994, 119, 2723-2726.
24 25 26	447 448	27.	Z. Wang, S. Zhang, N. R. Murtazina, S. A. Eremin and J. Shen, <i>International Journal of Food Science and Technology</i> , 2008, 43 , 114-122.
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	449	28.	N. V. Gasilova and S. A. Eremin, Journal of Analytical Chemistry, 2010, 65, 255-259.
	450 451	29.	C. Nistor, A. Oubiña, M. P. Marco, D. Barceló and J. Emnéus, <i>Analytica Chimica Acta</i> , 2001, 426 , 185-195.
	452 453	30.	J. H. Zhang, T. D. Y. Chung and K. R. Oldenburg, <i>Journal of Biomolecular Screening</i> , 1999, 4 , 67-73.
	454 455	31.	A. I. Krasnova, S. A. Eremin, M. Natangelo, S. Tavazzi and E. Benfenati, <i>Analytical Letters</i> , 2001, 34 , 2285-2301.
	456 457	32.	P. Onnerfjord, S. Eremin, J. Emneus and G. Marko-Varga, <i>J Immunol Methods</i> , 1998, 213 , 31-39.
42 43	458	33.	N. Ehrlich, A. L. Christensen and D. Stamou, Anal Chem, 2011, 83, 8169-8176.
44	459	34.	N. J. Moerke, in Current Protocols in Chemical Biology, John Wiley & Sons, Inc., 2009.
45 46 47	460		
47 48 49 50 51 52 53 54 55 56 57 58 59 60	461		

Page 23 of 35

Analytical Methods

462	Figure Captions
463	Fig. 1. The normalized ELISA calibration curves using three coating antigens:
464	LOM-OVA ($IC_{50} = 5.53 \text{ ng mL}^{-1}$), SPA-OVA ($IC_{50} = 8.13 \text{ ng mL}^{-1}$) and ORB-OVA
465	(IC ₅₀ = 14.8 ng mL ⁻¹). Each point of the curve represents the mean Absorbance \pm SD
466	(n=3).
467	Fig. 2. Antibody binding curves for the anti-ORB MAb with six tracers: LOM-EDF,
468	LOM-BDF, LOM-HDF, ORB-EDF, ORB-BDF and ORB-HDF with antibody titers of
469	1/1600, 1/2400, 1/4000, 1/3000, 1/7000 and 1/8000, respectively.
470	Fig. 3. Screening the optimal tracer by comparison of four tracers in sensitivity and
471	stability by incubating the assay at room temperature over 60mins. Each point
472	represents the mean of three replicates (n=3). The data was measured under 10 nM of
473	tracers and respective antibody titers. $\delta mP = mP_{max} - mP_{min}$, represented the assay
474	window. B/B_0 was calculated at the ORB concentration of 20 ng mL ⁻¹ .
475	Fig. 4. $Z' > 0.8$ was proposed as the prerequisite to ensure the robustness of FPIA
476	according to Z_{80} > 0. Z_{80} was the Z factor obtained at IC ₈₀ ; mP ₈₀ was the mean FP
477	value at IC_{80} (LOQ).
478	Fig. 5. SD of the FP signal relatively depends on the tracer concentration
479	(Fluorescence intensity). mP_{max} was the mean FP measured by mixing LOM-BDF
480	with saturating amounts of antibody $(1/100)$; mP _{min} was the mean FP for free tracer

Analytical Methods Accepted Manuscript

481 (LOM-BDF), SD_{max} and SD_{min} were the respective SDs. Each point represents the 482 mean of eight replicates (n=8).

Analytical Methods Accepted Manuscript

Fig. 6. Effect of a) pH and b) assay buffer salt concentration on the analytical characteristics of the ORB competitive standard curve. Each point represents the mean of three replicates.

- 486 Fig. 7. The normalized standard curves for the FPIA determination of ORB in borate
- 487 buffer (IC₅₀= 24.5 ng mL⁻¹) and milk matrix (IC₅₀= 21.7 ng mL⁻¹). Each point of the
- 488 curve represents the mean FP \pm SD (n=3).

Analytical Methods Accepted Manuscript

508 and coating antigens), and Fluorescent tracers.

			5	C 1	4		
Compound	Substituents						
-	$R_{3'}$	R _{5'}	R_1	R ₅	R_8	R_3	
FQs							
ORB	CH ₃	CH ₃	\bigtriangleup	F	F	СООН	
SPA	CH ₃	CH_3	\bigtriangleup	NH_2	F	СООН	
LOM	Н	CH ₃	C_2H_5	Н	F	СООН	
Immunogen							
ORB-BSA	CH_3	CH ₃	\bigtriangleup	F	F	CO-NH-BSA	
Coating antiger	ns						
ORB-OVA	CH ₃	CH ₃	\bigtriangleup	F	F	CO-NH-OVA	
SPA-OVA	CH ₃	CH ₃	\bigtriangleup	NH_2	F	CO-NH-OVA	
LOM-OVA	Н	CH ₃	C_2H_5	Н	F	CO-NH-OVA	
Fluorescent tra	cers						
ORB-EDF	CH ₃	CH ₃	\bigtriangleup	F	F	CO-NH-(CH ₂) ₂ -NH-FITC	
ORB-BDF	CH_3	CH ₃	\bigtriangleup	F	F	CO-NH-(CH ₂) ₄ -NH-FITC	
ORB-HDF	CH ₃	CH ₃	\bigtriangleup	F	F	CO-NH-(CH ₂) ₆ -NH-FITC	
LOM-EDF	CH_3	CH_3	C_2H_5	Н	F	CO-NH-(CH ₂) ₂ -NH-FITC	
LOM-BDF	CH_3	CH ₃	C_2H_5	Н	F	CO-NH-(CH ₂) ₄ -NH-FITC	
LOM-HDF	CH_3	CH_3	C_2H_5	Н	F	CO-NH-(CH ₂) ₆ -NH-FITC	

 $\triangle: cyclopropyl, ORB: Orbifloxacin, SPA: Sparfloxacin, LOM: Lomefloxacin, BSA: Bovine serum albumin, OVA:$

511 ovalbumin, EDF: Fluorescein thiocarbamyl ethylenediamine, BDF: Fluorescein thiocarbamyl butanediamine,

512 HDF: Fluorescein thiocarbamyl hexylenediamine

3 Table 2. Determination of optimal concentrations for tracer LOM-BDF and antibody using

514 checkerboard titration in FPIA.

Ab dilution	Parameter	LOM-BDF concentration (nM)					
10 unution	1 drumeter	10	20	40	80		
400	B/B_0	0.967	0.900	0.843	0.748		
	Z'	0.86	0.85	0.86	0.85		
800	B/B_0	0.904	0.809	0.696	0.780		
	Z'	0.84	0.84	0.83	0.74		
1600	B/B_0	0.740	0.619	0.727	0.852		
	Z'	0.82	0.81	0.67	0.53		
3200	B/B_0	0.588	0.670	0.784	0.921		
	Z'	0.63	0.58	0.27	-0.33		

 B/B_0 was calculated at the ORB concentration of 20 ng mL⁻¹.

Analytical Methods Accepted Manuscript

1
2
3
4
5
6
7
1
8
9
10
11
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
26
27
28
29
20
21
21
32
33
34
35
36
37
38
39
40
41
42
12
43
44
45
46
47
48
49
50
51
52
53
5 <u>/</u>
55
55
00 57
ວ/ 50
58
59

516 Table 3. Cross-reactivity of several structurally related analogues in the ELISA and FPIA

		ELISA ^a		FPIA ^b			
Analyte	IC ₅₀	IC ₅₀	Cross-reactivity	IC ₅₀	IC ₅₀	Cross-reactivity	
	$(ng mL^{-1})$	(nM)	(%)	$(ng mL^{-1})$	(nM)	(%)	
ORB	5.94	15.0	100	22.4	56.7	100	
SPA	10.5	25.5	58.9	27.8	70.8	80.1	
LOM	106.7	275.1	5.45	197	507.9	11.2	
Other QNs	>10 ⁵	>10 ⁵	< 0.01	>10 ⁵	>10 ⁵	< 0.01	

517 ^a LOM-OVA was the coating antigen for the ELISA

518 ^bLOM-BDF was the fluorescent tracer for the FPIA

1
2
3
4
5
6
7
8
å
10
10
11
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
26
27
20
20
29
30
31
32
33
34
35
36
37
20
<u>ა</u> ი
39
40
41
42
43
44
45
46
47
71 10
40
49
50
51
52
53
54
55
56
57
57
58

519 Table 4. Recoveries of ORB from milk by FPIA and HPLC (n = 4)

ORB		FPIA	HPLC				
Added (ng mL ⁻¹)	Found $(ng mL^{-1})$	Recovery (%)	CV (%)	I (ng	Found g mL ^{-1})	Recovery (%)	CV (%)
10	11.2 ± 3.0	112	26.8	9.	1 ± 1.2	91.0	13.2
20	16.6 ± 2.4	83.0	14.4	17	.2 ± 1.5	86.0	8.7
40	29.7 ± 2.2	74.3	7.4	32	.5 ± 2.5	81.3	7.7

520