Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the RSC Publishing peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This Accepted Manuscript will be replaced by the edited and formatted Advance Article as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication.

More information about *Accepted Manuscripts* can be found in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard **Terms & Conditions** and the **ethical guidelines** that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these *Accepted Manuscript* manuscripts or any consequences arising from the use of any information contained in them.

RSCPublishing

www.rsc.org/methods Registered Charity Number 207890

1	An indirect competitive enzyme-linked immunosorbent assay for the
2	determination of 3, 4-dichlorobiphenyl in sediment using a specific
3	polyclonal antibody
4	Guangxin Yang, Huisheng Zhuang [*] , Hanyu Chen, Xianyin Ping
5	School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong
6	Chuan Road, Shanghai, 200240, China
7	

^{*} Corresponding author phone: Tel: 86-21-57748994; Fax: 86-21-54740825. E-mail address: <u>hszhuang@sjtu.edu.cn (H.s. Zhuang)</u>; <u>huishengzhuang@126.com (G.x. Yang)</u>.

8	ABSTRACT: A specific polyclonal antibody targeting non-dioxin-like PCB 3,
9	4-dichlorobiphenyl (PCB12) was obtained, and a sensitive indirect competitive
10	enzyme-linked immunosorbent assay (ic-ELISA) was developed for the determination
11	of PCB12 in sediment samples. Under optimal conditions, good linearity was
12	achieved within a range of 0.06 to 6 μ g L ⁻¹ . The observed half-maximal inhibition
13	concentration (IC ₅₀) was 2.37 μ g L ⁻¹ , and the limit of detection (LOD) was 0.021 μ g
14	L^{-1} . This method was used for the detection of PCB12 in the sediment samples
15	collected from the East China Sea adjacent to Shanghai, China. The concentrations of
16	PCB12 in the samples ranged from 0.21 μ g kg ⁻¹ to 8.59 μ g kg ⁻¹ . The recovery was
17	from 81% to105% and the CV values were from 2.8% to 8.4%. The consistency
18	between the results obtained from ic-ELISA and GC-ECD was 98%. It further
19	confirmed the reliability and accuracy of the ic-ELISA for rapid detection of PCB12
20	in the environment.
21	Key words: Polychlorinated biphenyls; PCB12; ic-ELISA; Polyclonal antibody;
22	Sediment

24 **1. Introduction**

25	Polychlorinated biphenyls (PCBs) are a class of anthropogenic chlorinated
26	organic compounds comprised of 209 congeners. Because of the PCBs desirable
27	physical and chemical properties such as a low vapour pressure, non-flammability,
28	heat-resistance, dielectric, and good thermal and chemical stability, they were used as
29	the dielectric fluid in capacitors and transformers in the electric power industry ¹ .
30	PCBs have also been used in other products, such as microscope immersion oils,
31	carbonless copy paper, inks, cutting oils, adhesives, waxes and as an inert ingredient
32	in pesticides ^{2, 3} . PCBs were globally produced decades before they were banned, there
33	were approximately 1.3 million tons of PCBs produced during 1929 to 1993 ⁴ . Without
34	exception, approximately 10 thousand tons of PCBs were produced from 1965 to
35	1974 in China, most of which were used in power capacitors and used as paint
36	additives ⁵ . Even today, a large proportion of the PCBs are still present in old
37	transformers and power capacitors, which have the potential to be released into the
38	environment. Although the production of PCBs was banned in 1974 in China, they
39	remain ubiquitous in the environment, even in the Tibetan Plateau ⁶ .
40	PCBs were listed as one of the dozen persistent organic pollutants (POPs) in the
41	Stockholm Convention for their ability to bio-accumulate in food chains, their long
42	term stability, and high toxicity to human beings and the natural environment. PCB
43	exposure routes include the following: inhalation of contaminated air (both outdoor
44	and indoor), dermal contact with contaminated surfaces, and particularly from the

45 ingestion of contaminated food⁷. It has been shown that PCBs can have hazardous

46	effects on human beings, including hepatotoxicity, developmental neurotoxicity ⁸ ,
47	endocrine system disruption, and carcinogenicity. Four non-ortho and eight
48	mono-ortho PCB congeners (CB-81, 77, 126, 169, 105, 114, 118, 123, 156, 157, 167,
49	and 189) are recognised by the World Health Organization (WHO) as "dioxin-like" in
50	reference to their toxic effects similar to dioxins ¹ .
51	The determination of PCBs in various environmental matrixes including sedimen
52	ts has been based mostly on gas chromatographic methods, which were coupled with
53	different detector types such as an electron capture detector (ECD) ^{9, 10} , a low
54	resolution mass spectrometer (LRMS) ^{11, 12} , or a high resolution mass spectrometer
55	(HRMS) ^{13, 14} . Although these techniques are certainly suitable
56	for PCB analysis for various samples as proven by their widespread use in the last dec
57	ades, they have two main drawbacks, time-consuming and expensive.
58	Time-consuming is from the sample processing protocols and the high cost is mainly
59	from the detection system (instrumental analysis itself). Various sampling and
60	processing techniques are well developed for PCB determinations to shorten the total
61	analysis time, but it's hard to reduce the high cost of the traditional analysis methods.
62	Therefore, a fast, cost-effective and reliable screening tool is needed for determination
63	of the PCBs in environmental samples.
64	Recently, there has been an increasing use of immunoassays for the detection of
65	environmental contaminants because of their reliability, rapid detection,
66	ease-of-operation, and relatively low cost ¹⁵ . During the past two decades, several
67	immunoassays, including the radioimmunoassay ^{16, 17} , ELISA ¹⁸⁻²⁰ , the

68	fluoroimmunoassay ²¹ , immunosensor assay ²²⁻²⁴ , bioelectrochemical immunoassay ^{25, 26} ,
69	real-time quantitative fluorescence immuno PCR ²⁷⁻²⁹ , and commercial PCB test kits,
70	have been developed for PCB detection in the environment. Immunoassays are also
71	capable of detecting a wide variety of PCB congeners at sub-microgram levels.
72	Indeed, a large number of studies using immunoassays for the determination of
73	PCB concentrations (individual congeners or sums of various congeners) have been
74	performed in the past few decades; however, most of the studies were focused on the
75	"dioxin-like" PCBs ^{21, 28-32} , the indicator PCBs (PCB-28, 52, 101, 138, 153, 180 and
76	occasionally PCB-118) ²³ , and the mixture PCBs such as Aroclor ^{19, 25} . Only a few
77	studies focused on the detection of other single PCB congeners. Although these single
78	PCB congeners may not be as dioxin-like as the other PCBs, they are nonetheless
79	persistent organic pollutants that are potentially hazardous to humans and ecosystems.
80	Although PCB12 is not one of the dioxin-like or indicator PCBs, its
81	developmental toxicity has the potential to adversely affect a developing baby:
82	adverse health effects include low birth weight, birth defects, behavioural and
83	psychological problems, and foetal death ³³ . Meanwhile, di-PCB is the major PCB
84	homologue group in Chinese background and rural soil ³⁴ ; therefore, we developed a
85	rapid, reliable, and sensitive method for the detection of 3, 4-dichlorobiphenyl in
86	sediment. A specific polyclonal antibody targeting 3, 4-dichlorobiphenyl was
87	obtained and a sensitive indirect competitive ELISA (ic-ELISA) method was
88	subsequently developed. The experimental conditions of the ic-ELISA method were
89	optimised including the concentration of the coating antigen, the dilution factor for

90	the antibody, the incubation time, and the blocking buffer, the solvent, the pH of the
91	assay buffer and the ionic strength. This optimised method was implemented to
92	determine PCB12 in sediment sampled from the East China Sea adjacent to Shanghai,
93	China. The ic-ELISA results were further compared with those by GC-ECD analysis.
94	2. Materials and methods
95	2.1. Chemicals and solutions
96	The standards for PCB12, 37, and 77, and Aroclor 1242, 1248, 1254, 1260 were
97	purchased from Accustandard, Inc (New Haven, CT, USA). Dimethylsulfoxide
98	(DMSO), ethanol and dimethylformamide (DMF) were purchased from Shanghai
99	Lingfeng Chemical Reagent Co., Ltd (Shanghai, China). NaHCO ₃ , Na ₂ CO ₃ , KCl,
100	NaCl, Na ₂ HPO ₄ , KH ₂ PO ₄ 12H ₂ O, gelatin, pesticide-grade hexane,
101	N-hydroxysuccinimide (NHS), n-butylamine, isobutyl chloroformate,
102	dicyclohexylcarbodiimide (DCC), 3, 3', 5, 5'-tetramethylbenzidine (TMB), Bovine
103	Serum Albumin (BSA) and hydrogen peroxide (H_2O_2) were all purchased from
104	Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). Ovalbumin (OVA) was
105	purchased from Sango Biotech Co., Ltd (Shanghi, China). Horseradish peroxidase
106	(HRP) conjugated goat anti-rabbit IgG was purchased from Solarbio (Shanghai,
107	China). Freund's complete adjuvant (cFA) and incomplete adjuvant (iFA) were
108	purchased from Sigma-Aldrich Company (St. Louis, MO, USA). Hapten PCB12 was
109	directly from our lab. The chemical structure of the hapten PCB12 is shown in Fig. 1.
110	The details of the buffers and solutions were described in the electronic
111	supplementary information (ESI). All animal studies performed complied with the

112	institutional guidelines.
113	
114	Fig. 1
115	
116	2.2. Materials and Instruments
117	Microtitre plates were purchased from Sango Biotech Co., Ltd (Shanghai, China).
118	Immunoassay absorbance was measured with a Multiskan photometer in dual
119	wavelength mode (450-630 nm) purchased from Thermo Labsystems (Vantaa,
120	Finland). Ultraviolet-visible (UV-VIS) spectra were obtained on a DU-800
121	spectrophotometer (Beckman Coulter, Inc., Brea, CA).
122	2.3. Preparation of protein-hapten conjugates
123	As a small molecule, PCB12 is not capable of initiating an immune response
124	unless conjugated with a protein to form a complete antigen; therefore, the hapten was
125	used for the preparation of the immunogen and the coating antigen conjugates with
126	BSA and OVA, respectively (see ESI). The UV spectra showed qualitative
127	differences between carrier proteins and conjugates in the region of maximum
128	absorbance of hapten (see ESI, Fig. S1 and Fig. S2).
129	2.4. Immunisation and antibody production
130	Two female New Zealand white rabbits were immunised by subcutaneous and
131	intramuscular injections with the immunogen. The initial immunisation was
132	performed by injecting 1 mg of hapten-BSA dissolved in 0.5 mL normal saline and
133	emulsified with 0.5 mL of CFA. Twenty days after the injections, the rabbits were

134	boosted five times at two week intervals by injecting a solution of 1 mg of the
135	immunogen dissolved in 0.5 mL normal saline and emulsified with 0.5 mL of IFA.
136	The last booster (1 mg hapten-BSA dissolved in 1 mL normal saline) was performed
137	ten days later. From the third booster onward, each rabbit was bled from the ear vein
138	seven days after each immunisation. Serum titres were determined by ELISA to
139	monitor the quality of the antisera from the immunised rabbits. Seven days after the
140	last booster, the blood was collected from the jugular vein of each rabbit and the
141	serum was separated by the caprylic acid/ammonium sulfate precipitation method ³⁵ .
142	The obtained antiserum was freeze-dried and stored at -20 $^{\circ}$ C. And the titre of the
143	final purified antibody was 1:204800.
144	2.5. Indirect competitive ELISA
145	Indirect competitive ELISA, based on the immobilisation of coating antigens,
146	was performed as follows: the microwell plates were coated with the coating antigen
147	(4.58 μ g mL ⁻¹) in 100 μ L of coating buffer (pH 9.6) overnight at 4 °C. The plates
148	were then washed three times with PBST and blocked with 1% gelatin (200 $\mu L/\text{well})$
149	for 1h at 37 $$ °C. After three times wash, 50 μL of the PCB12 standard solution or the
150	sample solutions (diluted in PBS with 5% DMSO), combined with 50 μL of the
151	diluted antibody (1:6000) solution, were added to the allocated wells. A total of 100
152	μL of PBS was added to the blank wells. The plates were then incubated at 37 ${}^\circ\!\mathrm{C}$ for
153	1 h. After another wash, 100µL of HRP-conjugated goat anti-rabbit IgG was added to
154	the plates and incubated for 45 min. After an additional five times wash, 100 μL of

 $2 \text{ mol } L^{-1}$ sulphuric acid after 15 min. The absorbance was immediately recorded by 156 the microplate reader in dualwavelength mode (450 nm as test and 630 nm as 157 158 reference). The results were represented as inhibition (%) = $(1 - B/B_0) \times 100$, where B is the 159 absorbance of the well with the competitor and B₀ was the absorbance of the well 160 without the competitor. The competitive inhibitory curves were plotted as inhibition 161 versus Log C (concentrations of PCB12). 162 2.6. Cross-reactivity 163 164 The assay specificity was evaluated by testing the cross-reactivity (CR) of the antibody with other analogues and stereoisomers. The CR values were calculated 165 according to the following formula: cross-reactivity (%) = $(IC_{50} \text{ of } PCB12) / (IC_{50} \text{ of } PCB12)$ 166 167 other compounds) $\times 100$. 2.7. Sample preparation 168 Eight sediment samples collected from the East China Sea, adjacent to Shanghai, 169 were dried in the shade, filtered through a 60 mesh sieve, and stored at 4 °C. Aliquots 170 of the samples for the recovery test were spiked with known amounts of the PCB12 171 standard solution within the quantitative working range. An ultrasonic extraction 172 method (see ESI) was used to extract PCB12 from the un-spiked and spiked samples. 173 The treated sample was divided into two fractions: one for the ELISA detection and 174 the other for GC- ECD analysis (see ESI). 175 176 2.8. Recovery tests Recovery tests were performed by spiking sediment samples with a series of 177

known PCB12 concentrations to determine the efficiency of the ic-ELISA assay. The

178

spiked samples were prepared by the aforementioned sample preparation procedure. 179 180 Recoveries were calculated using the following formula: Recovery (%) = $100 \times$ (Css-Cus)/Cs. Where Css and Cus are concentrations measured in the spiked and 181 unspiked samples, respectively, and Cs is the spiked concentration. 182 3. Results and discussion 183 3.1. Optimisation of ELISA 184 To develop a sensitive method for the detection of PCB12, several parameters 185 186 such as the concentration of the coating antigen, the dilution of the antibody, the blocking buffer, the incubation time, the solvent, the pH of the assay buffer and the 187 ionic strength were optimised. The IC₅₀ and the maximum absorbance (A_{max}) were 188 used to assess the optimum conditions for the assays 36 . 189 Accordingly, the concentrations of the immobilised antigen and the dilution 190 factor of the antibody were optimised using a checkerboard procedure. The 191 concentration of the coating antigen ranged from 9.17 μ g mL⁻¹ to 1.14 μ g mL⁻¹ and 192 the dilution of the antibody ranged from 1:1000 to 1:8000. An optimal combination 193 for the reagents was 4.58 µg mL^{-1} of the coating antigen combined with dilutions of 194 1:6000 for the antibody, producing an absorbance around 1 in the absence of analytes 195 (data not shown). 196

197 The blocking buffer was used to prevent non-specific binding in the ELISA 198 analysis. Without the blocking buffer, unoccupied sites in the plates may absorb 199 components such as antibody or HRP-conjugated goat anti-rabbit IgG during the

200	incubation steps, which may cause high background signals. Three blocking buffers
201	(OVA, gelatin, and skim milk powder) prepared with PBS at a concentration of 1%
202	were tested for their blocking capacity. The gelatin showed a better result because of
203	the lower background value (0.05) than that of 1% OVA (0.13) or 1% skim milk
204	powder (0.09) , thus, it was chosen as the blocking buffer in this study.
205	The optimal incubation periods for the coating antigen (first incubation period)
206	and the immunoreactions (second incubation period) were evaluated according to the
207	A_{max} and IC ₅₀ values. The first incubation periods were overnight at 4 °C, for 60, 90,
208	and 120 min at 37 $^{\circ}$ C, when the coating antigen was coated overnight at 4 $^{\circ}$ C, the
209	A_{max} was the highest and the IC ₅₀ was the lowest (see ESI, Table S1). So the plates
210	were coated overnight at 4 $$ °C. The second incubation periods were 30, 60, 90, and
211	120 min at 37 $$ °C, when the time was increased, the A_{max} was increased. However, the
212	IC_{50} was lowest when the incubation time was 60 min (see ESI, Table S2). So the
213	immunoreactions were incubated for 60 min at 37 °C. Because of the lipophilic
214	character of PCB12, a water-miscible organic cosolvent is needed to ensure solubility.
215	DMSO is a common solvent used in immunoassays and has proven to be an effective
216	solubiliser for hydrophobic PCBs ³⁷ ; therefore, we used DMSO as the water-miscible
217	organic cosolvent and investigated the effects of various concentrations (5%, 10%,
218	15%, 20%) of these solvents on the assay. The maximum absorbance decreased with
219	increasing concentrations of DMSO, and the IC_{50} values calculated from the standard
220	curves increased slightly (see ESI, Table S3). So, the PBS solution containing 5%
221	DMSO (v/v) was used to improve the analyte solubility in this study.

222	The effects of pH values were evaluated using different PBS solutions ranging
223	from pH 5.5 to 9.0. It was found that the pH had an insignificant effect on the
224	sensitivity of the assay (see ESI, Table S4). When the pH was increased from 7.4 to
225	9.0, the IC ₅₀ value was slightly increased from 2.51 to 3.01 μ g L ⁻¹ , and pH 7.4 was
226	selected with a lowest IC ₅₀ value of 2.51 μ g L ⁻¹ . PBS buffers with different ionic
227	strength (from 0.1 mol L^{-1} to 0.4 mol L^{-1}) were tested to determine the effects of ionic
228	strength. When the ionic strength was increased, the IC_{50} was increased and the A_{max}
229	was decreased (see ESI, Table S5). So the salt concentration of 0.14 mol L^{-1} was
230	selected because of the lowest IC_{50} .
231	3.2. Sensitivity and stability of ic-ELISA
232	Under optimum conditions, series of diluted concentrations of PCB12 standard
233	sample (0.01 μ g L ⁻¹ , 0.06 μ g L ⁻¹ , 0.1 μ g L ⁻¹ , 0.2 μ g L ⁻¹ , 0.6 μ g L ⁻¹ , 1 μ g L ⁻¹ , 2 μ g L ⁻¹ , 6
234	μ g L ⁻¹ , 10 μ g L ⁻¹ , 60 μ g L ⁻¹ , 100 μ g L ⁻¹) were reacted in the method to construct
235	standard curves. Sixteen independent assays were performed over a forty five days
236	period, each concentration had six reactions in an independent run, and the mean
237	values of the sixteen assays were used to plot the standard curves (Fig 2). The linear
238	range was from 0.06 to 6 μ g L ⁻¹ and the linear equation was y=0.16x+0.44 (r ² =0.99,
239	Fig 2). The IC_{50} , which is a key criterion for evaluating the sensitivity of ELISA, was
240	2.37 μ g L ⁻¹ , the IC ₁₅ , which was calculated as the concentration that gave 15%
241	inhibition of the maximal signal ^{38, 39} , was 0.015 μ g L ⁻¹ , suggesting that the established
242	ic-ELISA was highly sensitive. The determination of limit of quantitation (LOQ) was
243	base on 20 blank samples accepting no false positive rates, and the result, which was

by	
.6	ipt
un.	Manuscri
at	Accepted
	Methods
29,	Analytical

244	obtained by adding 10 times the standard deviation of the 20 blank samples to the
245	mean blank value ⁴⁰ , was 0.065 μ g L ⁻¹ . The limit of detection, which was calculated b
246	adding 3 times the standard deviation of the 20 blank samples to the mean blank
247	value ⁴⁰ , was 0.021 μ g L ⁻¹ .
248	The stability of the method was tested by running the ic-ELISA procedures for
249	eight individual times with five concentrations of PCB77 (0.06 μ g L ⁻¹ , 0.1 μ g L ⁻¹ , 0.6
250	μ g L ⁻¹ , 1 μ g L ⁻¹ , 6 μ g L ⁻¹). Each concentration had six reactions in an independent ru
251	Two results were obtained from the six reactions for each concentration in an
252	independent run. So, sixteen results for each concentration were obtained from the
253	eight independent runs. The relative standard deviation (RSD) of the sixteen results a
254	each standard concentration was from 2% to 6.3%, indicating the good stability and
255	reproducibility of the method.
256	Fig. 2
257	3.3. Specificity of ic-ELISA
258	The cross-reactivity of the ic-ELISA was evaluated using benzene,
259	chlorobenzene, dichlorobenzene, six PCB congeners (PCB8, PCB15, PCB28, PCB29
260	PCB37, PCB77) and four mixture PCBs (Aroclors 1242, 1248, 1254, 1260).
261	Cross-reactivity values and general structures of the compounds are presented in
262	Table 3. In all cases, there was a low cross-reaction between PCB12 and other
263	structurally similar compounds, whereas PCB8, PCB15, Aroclors 1242 and 1248
264	showed slightly higher cross-reaction values, which were 8.96%, 8.27%, 9.55% and
264 265	showed slightly higher cross-reaction values, which were 8.96%, 8.27%, 9.55% and 9.1%, respectively. Benzene, chlorobenzene, dichlorobenzene can be used as the

Page 14 of 27

266	materials to synthesise PCB congeners, even more, chlorobenzene and
267	dichlorobenzene have chloride substituent on the benzene ring, but their structures
268	only have one benzene ring, which were different with PCB12. This may explain their
269	low cross-reactivity (<0.3). The cross-reactions of the four PCB congeners were a
270	little higher because their structures are much similar with PCB12, and the same
271	structure is that all of them have a biphenyl ring. The poor affinity (Table 1) of the
272	produced anti-PCB12 antibody toward PCB28, PCB29 and PCB77 seems reasonable
273	due to the different quantity and substituent positions of the chloride substituent on
274	the biphenyl ring of these compounds from those of PCB12. It is hard to explain the
275	low recognition of PCB37 (4.34%) because PCB37 is quite structurally similar to
276	PCB12, the only difference between the molecular structures of PCB37 and PCB12 is
277	the substituent at position 4' of the biphenyl ring, which is a chloride substituent for
278	PCB37 but no substituent for PCB12. Aroclors 1242 and 1248 are PCB mixtures
279	mainly composed of low chloro-substituted biphenyls, containing little PCB12;
280	therefore, Aroclors 1242 and 1248 showed slightly higher cross-reaction values.
281	Cross-reactions of Aroclors1254 and 1260 had the lowest values, as they were mainly
282	composed of highly chlorinated biphenyls, which may be indicative of the relatively
283	large structural differences between the Aroclors and PCB12. The low cross-reaction
284	between PCB12 and other structurally related compounds suggests that the antibody
285	is very specific for the PCB12.
286	Table 1

287 *3.4. Analysis of sediment samples*

Analytical Methods

288	The ic-ELISA method has been used to detect the presence of PCB12 in eight
289	sediment samples collected from the East China Sea. PCB12 was found in all the
290	samples, and the concentrations ranged from 0.21 $\pm 0.02~\mu g~kg^{\text{-1}}$ to 8.59 $\pm 0.22~\mu g~kg^{\text{-1}}$
291	(table 2). The concentrations of PCB12 in sample 2 and sample 3 were much higher
292	than other samples. This is because sample 2 and sample 3 were collected close to
293	petrochemical industrial parks where may be polluted by PCBs, and PCB12 may be
294	the intermediate of dechlorination process of some trichlorodiphenyls in the
295	environment ⁴¹ . As the sampling site of sample 1 was far from the land, it had the
296	lowest concentration of PCB12. The classical GC-ECD method was used to confirm
297	the accuracy of ic-ELISA: consistency (y=0.91x-0.14, R ² =0.98, Fig. 3) was observed
298	between the two methods. This indicated that the ic-ELISA could offer a practical
299	approach for screening of PCB12 in real samples. The p-value from the paired sample
300	t-test for the comparisons of the two methods was 0.034. That is mean, at the 0.05
301	level, the difference was statistically significant. In a general, the ic-ELISA results
302	were higher than the GC-ECD results across all the samples. This difference may be
303	caused by the non-specific absorbance of reagents used in the method, including
304	polyclonal antibody and HRP-conjugated goat anti-rabbit IgG. In addition, polyclonal
305	antibody had cross-reactivity for other PCBs present in the samples, which were not
306	measured by the GC-ECD method and contribute to the ic-ELISA-derived
307	concentrations.
308	Table 2

15

Fig. 3

310 *3.5. Recovery*

311	The recovery of the spiked samples and the CV were calculated to evaluate the
312	accuracy and precision of the ELISA. Four samples (samples 1, 2, 4, and 7) were
313	spiked with PCB12 standard concentrations ranging from 0.05-20 μ g kg ⁻¹ . Table 3
314	shows that the recoveries of the PCB12 from the spiked samples were ranged from 81%
315	to 105%, the CV were below 9%.
316	Table 3
317	4. Conclusions
318	A sensitive ic-ELISA assay for the determination of non-dioxin-like PCB12 in
319	sediment samples has been developed on the basis of specific polyclonal antibodies.
320	Under optimised conditions, the $I\!C_{50}$ value and the LOD of the assay were 2.37 $\mu gL^{\text{-}1}$
321	and 0.021 μ g L ⁻¹ , respectively. The ic-ELISA was used to detect the presence of
322	PCB12 in samples obtained from the environment, and satisfactory recoveries were
323	achieved for PCB12 from the spiked samples. Consistent results were observed from
324	ic-ELISA and GC-ECD. The results showed that this method would be a useful option
325	for screening PCB12 in real environmental samples. Furthermore, the microplate used
326	for this method contained 96 wells that allow for a higher throughput analysis (HTA),
327	thus the method will be useful for the preliminary screening of large numbers of real
328	samples before GC-ECD analysis.
329	

5
0
O
σ
Q
T
Ū
C
0
0
Q
0
Ŧ
U
Ö
て
ž

330 Acknowledgements

331	We gratefully acknowledge the National Natural Science Foundation of China
332	(Project No. 21177082), the Science and Technology Commission of Shanghai
333	Municipality in China (Key Project of Fundamental Research No. 09JC1407600), the
334	Scientific and Technical Innovation Develop Special Founds of Shanghai Jiaotong
335	University, and Shanghai Jiao Tong University Innovation Fund for Postgraduates for
336	their financial support.

338 **References**

- 339 1. T. R. Glass, N. Ohmura, H. Saiki, K. Sawadaishi, C. Kataoka, Y. Takagi and T. Ohiwa, Ana.l
- 340 *Chim. Acta.*, 2004, **517**, 161-168.
- 341 2. J. Castro-Jimenez and C. Gonzalez, J. Environ. Monit., 2011, 13, 894-900.
- 342 3. W. J. Crinnion, Altern. Med. Rev., 2011, 16, 5-13.
- 343 4. K. Breivik, A. Sweetman, J. M. Pacyna and K. C. Jones, *Sci. Total. Environ.*, 2002, 290, 181-198.
- 344 5. Y. Xing, Y. Lu, R. W. Dawson, Y. Shi, H. Zhang, T. Wang, W. Liu and H. Ren, *Chemosphere*,
 345 2005, 60, 731-739.
- 346 6. X. Zheng, X. Liu, G. Jiang, Y. Wang, Q. Zhang, Y. Cai and Z. Cong, *Environ. Pollut.*, 2012, 161, 101-106.
- 348 7. M. Altstein, O. Ben Aziz, N. Skalka, A. Bronshtein, J. C. Chuang and J. M. Van Emon, *Anal.*
- 349 *Chim. Acta.*, 2010, 675, 138-147.
- 8. P. R. Kodavanti, C. Osorio, J. E. Royland, R. Ramabhadran and O. Alzate, *Toxicol. Appl.*
- **351** *Pharmacol.*, 2011, **256**, 290-299.

352 9. G. Bianco, G. Novario, D. Bochicchio, G. Anzilotta, A. Palma and T. R. Cataldi, *Chemosphere*,

- **353** 2008, **73**, 104-112.
- 10. M. Zaater, Y. Tahboub and S. Qasrawy, Anal. Lett., 2005, 38, 2231-2245.
- 355 11. A. V. Mitroshkov, E. N. Tarasova, I. A. Revelskii, N. V. Komornikova and A. M. Sarkisyan, J.
 356 Anal. Chem., 1997, 52, 784-788.
- 357 12. J. Z. Wang, Z. Y. Yang and E. Y. Zeng, J. Chromatogr. A, 2010, 1217, 1956-1962.
- 358 13. T. Chen, X. Li, J. Yan and Y. Jin, J. Hazard. Mater., 2009, 172, 1339-1343.
- 359 14. R. B. Rajendran, I. Imagawa, H. Tao and R. Ramesh, *Environ. Int.*, 2005, 31, 503-512.
- 360 15. N. Lambert, T. S. Fan and J. F. Pilette, Sci. Total. Environ., 1997, 196, 57-61.
- 361 16. M. Franek, K. Hruska, M. Sisak and I. Diblikova, J. Agric. Food. Chem., 1992, 40, 1559-1565.
- 362 17. M. Sisak, M. Franek and K. Hruska, Anal. Chim. Acta., 1995, 311, 415-422.
- 18. J. C. Chuang, L. S. Miller, D. B. Davis, C. S. Peven, J. C. Johnson and J. M. Van Emon, Anal.
- 364 *Chim. Acta.*, 1998, **376**, 67-75.
- 365 19. M. Franek, V. Pouzar and V. Kolar, Anal. Chim. Acta., 1997, 347, 163-176.
- 366 20. T. R. Glass, N. Ohmura, K. Morita, K. Sasaki, H. Saiki, Y. Takagi, C. Kataoka and A. Ando, *Anal.* 367 *Chem.*, 2006, **78**, 7240-7247.
- 368 21. T. Endo, A. Okuyama, Y. Matsubara, K. Nishi, M. Kobayashi, S. Yamamura, Y. Morita, Y.
- 369 Takamura, H. Mizukami and E. Tamiya, Anal. Chim. Acta., 2005, 531, 7-13.
- 370 22. S. Centi, S. Laschi and M. Mascini, *Talanta*, 2007, 73, 394-399.
- 371 23. S. Centi, E. Silva, S. Laschi, I. Palchetti and M. Mascini, Anal. Chim. Acta., 2007, 594, 9-16.
- 372 24. E. Silva, M. Mascini, S. Centi and A. P. F. Turner, *Anal. Lett.*, 2007, 40, 1371-1385.
- 373 25. S. Bender and O. A. Sadik, *Environ. Sci. Technol.*, 1998, 32, 788-797.
- 374 26. Y. Y. Lin, G. D. Liu, C. M. Wai and Y. H. Lin, Anal. Chim. Acta., 2008, 612, 23-28.
- 375 27. H. Y. Chen and H. S. Zhuang, Anal. Bioanal. Chem., 2009, 394, 1205-1211.
- 376 28. H. Y. Chen and H. S. Zhuang, *Microchim. Acta.*, 2011, 172, 233-239.
- 377 29. H. Zhuang, Q. Ye and H. Chen, Anal. Lett., 2009, 42, 2774-2792.
- 378 30. H. Y. Chen, H. S. Zhuang and G. X. Yang, Bull Korean Chem. Soc., 2013, 34, 922-926.
- 379 31. J. Pribyl, M. Hepel and P. Skladal, Sensor. Actuat. B-Chem., 2006, 113, 900-910.
- 380 32. T. Tsutsumi, Y. Amakura, A. Okuyama, Y. Tanioka, K. Sakata, K. Sasaki and T. Maitani,

381 Chemosphere, 2006, 65 , 46
--

- 382 33. B. Ulbrich and R. Stahlmann, *Arch. Toxicol.*, 2004, **78**, 252-268.
- 383 34. N. Ren, M. Que, Y. F. Li, Y. Liu, X. Wan, D. Xu, E. Sverko and J. Ma, Environ. Sci. Technol.,
- **384** 2007, **41**, 3871-3876.
- 385 35. M. M. McKinney and A. Parkinson, J. Immunol. Methods, 1987, 96, 271-278.
- 386 36. X. L. Hao, H. Kuang, Y. L. Li, Y. Yuan, C. F. Peng, W. Chen, L. B. Wang and C. L. Xu, J. Agric.
- **387** *Food Chem.*, 2009, **57**, 3033-3309.
- 388 37. A. P. Deng, V. Kolar, R. Ulrich and M. Franek, Anal. Bioanal. Chem., 2002, 373, 685-690.
- 389 38. J. X. Dong, Z. F. Li, H. T. Lei, Y. M. Sun, F. Ducancel, Z. L. Xu, J. C. Boulain, J. Y. Yang, Y. D.
- 390 Shen and H. Wang, Anal. Chim. Acta., 2012, 736, 85-91.
- 391 39. H. L. Liu, L. Ren, G. Z. Fang, H. Y. Li and S. Wang, Anal. Methods, 2013, 5, 5677-5683.
- **392** 40. X. Q. Tao, H. Y. Jiang, X. Z. Yu, J. H. Zhu, X. Wang, L. L. Niu, X. P. Wu, X. Xia, W. M. Shi and
- **393** J. Z. Shen, *Anal. Methods*, 2012, **4**, 4083-4090.
- 41. N. Yoshida, L. Ye, D. Baba and A. Katayama, *Microbes. Environ.*, 2009, 24, 343-346.
- 395

- Table 1. Cross-reactivity of the antibody against PCB12 and other PCB compounds.
- Table 2. Concentration of PCB12 in sediment samples determined by ic-ELISA and GC-ECD.
- Table 3. Recovery of PCB12 detected by ic-ELISA in spiked sediment sample.

Compound	Structure	IC_{50} (µg L ⁻¹)	Cross reaction (%)
PCB12		2.39	100
benzene		>1000	<0.3
chlorobenzene	CI	>1000	<0.3
dichlorobenzene	Cl	>1000	<0.3
PCB8		21.42	8.96
PCB15	aa	28.89	8.27
PCB28		68.43	3.49
PCB29		57.39	4.16
PCB37		54.98	4.34
PCB77		69.55	3.43
Aroclors 1242	Mainly include trichlorinated biphenyls	25.02	9.55
Aroclors 1248	Mainly include tetrachlorinated biphenyls	26.25	9.10
Aroclors 1254	Mainly include pentachlorinated biphenyls	>1000	<0.3
Aroclors 1260	Mainly include hexachlorinated biphenyls	>1000	<0.3

401	Table 1. Cross-	-reactivity of the	antibody agains	st PCB12 and	other PCB compounds.
-----	-----------------	--------------------	-----------------	--------------	----------------------

402

404 Table 2. Concentration of PCB12 in sediment samples determined by ic-ELISA and	GC-ECD
--	--------

(n=6) (µg Kg	¹ , mean±SD).
--------------	--------------------------

Sediment	Concentration (µg Kg ⁻¹)	
samples	ic-ELISA (n=6)	GC-ECD (n=6)
Sample 1	0.21±0.02	0.12±0.031
Sample 2	8.59±0.22	8.14±0.12
Sample 3	6.56±0.16	5.33±0.24
Sample4	3.31±0.12	3.21±0.066
Sample5	2.10±0.048	1.48±0.031
Sample6	0.80±0.09	0.52±0.035
Sample7	0.79±0.086	0.64±0.041
Sample8	0.74±0.027	0.69±0.039

407

Table 3. Recovery of PCB12 detected by ic-ELISA in spiked sediment sample.

Sediment samples	spiked concentration (μg Kg ⁻¹)	recovery (%)	CV (CV%, n=6)
Sample1	0.05	81	4.9%
	0.1	88	5.7%
	0.5	86	4.6%
Sample2	5	105	2.8%
	10	98	7.1%
	20	92	6.5%
Sample4	1	87	3.4%
	5	92	6.5%
	10	95	8.4%
Sample7	0.1	86	3.5%
	0.5	102	6.9%
	1	97	6.2%

410	Figure Captions
411	
412	Fig. 1.The structure of hapten PCB12.
413	Fig. 2. Standard curve for PCB12 analyzed by ic-ELISA. The concentrations of PCB12 were
414	$0.01 \mu g L^{-1}$, $0.06 \mu g L^{-1}$, $0.1 \mu g L^{-1}$, $0.2 \mu g L^{-1}$, $0.6 \mu g L^{-1}$, $1 \mu g L^{-1}$, $2 \mu g L^{-1}$, $6 \mu g L^{-1}$, $10 \mu g L^{-1}$, 60
415	μ g L ⁻¹ , 100 μ g L ⁻¹ . The linear range was from 0.06 μ g L ⁻¹ to 6 μ g L ⁻¹ . The linear equation was
416	$y=0.16x+0.44$ ($r^2=0.99$, $n=16$).
417	Fig. 3. Comparison of data from the ic-ELISA and GC-ECD analysis in the sediment samples. The
418	regression equations was $y=0.91x-0.14$ ($R^2=0.98$).

421

